Combinatorics of criniferous entire maps with escaping critical values
HTML articles powered by AMS MathViewer
- by Leticia Pardo-Simón
- Conform. Geom. Dyn. 25 (2021), 51-78
- DOI: https://doi.org/10.1090/ecgd/358
- Published electronically: June 21, 2021
- PDF | Request permission
Abstract:
A transcendental entire function is called criniferous if every point in its escaping set can eventually be connected to infinity by a curve of escaping points. Many transcendental entire functions with bounded singular set have this property, and this class has recently attracted much attention in complex dynamics. In the presence of escaping critical values, these curves break or split at critical points. In this paper, we develop combinatorial tools that allow us to provide a complete description of the escaping set of any criniferous function without asymptotic values on its Julia set. In particular, our description precisely reflects the splitting phenomenon. This combinatorial structure provides the foundation for further study of this class of functions. For example, we use these results in another paper to give the first full description of the topological dynamics of a class of transcendental entire maps with unbounded postsingular set.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33–59. MR 2318569, DOI 10.1007/s00209-007-0114-7
- Anna Miriam Benini and Núria Fagella, A separation theorem for entire transcendental maps, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 291–324. MR 3335280, DOI 10.1112/plms/pdu047
- Krzysztof Barański and Bogusława Karpińska, Coding trees and boundaries of attracting basins for some entire maps, Nonlinearity 20 (2007), no. 2, 391–415. MR 2290468, DOI 10.1088/0951-7715/20/2/008
- A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 9–56. MR 2492498
- Anna Miriam Benini and Lasse Rempe, A landing theorem for entire functions with bounded post-singular sets, Geom. Funct. Anal. 30 (2020), no. 6, 1465–1530. MR 4182831, DOI 10.1007/s00039-020-00551-3
- Stephen B. Curry, One-dimensional nonseparating plane continua with disjoint $\epsilon$-dense subcontinua, Topology Appl. 39 (1991), no. 2, 145–151. MR 1108604, DOI 10.1016/0166-8641(91)90014-D
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Vasiliki Evdoridou, Núria Fagella, Xavier Jarque, and David J. Sixsmith, Singularities of inner functions associated with hyperbolic maps, J. Math. Anal. Appl. 477 (2019), no. 1, 536–550. MR 3950051, DOI 10.1016/j.jmaa.2019.04.045
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- Lisa R. Goldberg and John Milnor, Fixed points of polynomial maps. II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51–98. MR 1209913, DOI 10.24033/asens.1667
- Jan Beno Kiwi, Rational rays and critical portraits of complex polynomials, ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–State University of New York at Stony Brook. MR 2697078
- Helena Mihaljević-Brandt, Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds, Trans. Amer. Math. Soc. 364 (2012), no. 8, 4053–4083. MR 2912445, DOI 10.1090/S0002-9947-2012-05541-3
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- John W. Osborne and David J. Sixsmith, On the set where the iterates of an entire function are neither escaping nor bounded, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 561–578. MR 3525384, DOI 10.5186/aasfm.2016.4134
- Leticia Pardo Simon, Dynamics of Transcendental Entire Functions with Escaping Singular Orbits, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–The University of Liverpool (United Kingdom). MR 4119938
- L. Pardo-Simón, Splitting hairs with transcendental entire functions, Preprint, arXiv:1905.03778v3, 2019.
- L. Pardo-Simón, Criniferous entire maps with absorbing Cantor bouquets, Preprint, arXiv:2010.09845, 2020.
- L. Pardo-Simón, Topological dynamics of cosine maps, Preprint, arXiv:2003.07250, 2020.
- L. Pardo-Simón, Orbifold expansion and entire functions with bounded Fatou components, Ergodic Theory Dynam. Systems (2021), 1–40.
- Lasse Rempe, Siegel disks and periodic rays of entire functions, J. Reine Angew. Math. 624 (2008), 81–102. MR 2456625, DOI 10.1515/CRELLE.2008.081
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- L. Rempe-Gillen, Arc-like continua, Julia sets of entire functions, and Eremenko’s Conjecture, Preprint, arXiv:1610.06278v3, 2016.
- Günter Rottenfusser, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125. MR 2753600, DOI 10.4007/annals.2011.173.1.3
- Lasse Rempe, Philip J. Rippon, and Gwyneth M. Stallard, Are Devaney hairs fast escaping?, J. Difference Equ. Appl. 16 (2010), no. 5-6, 739–762. MR 2675603, DOI 10.1080/10236190903282824
- Lasse Rempe and Dierk Schleicher, Combinatorics of bifurcations in exponential parameter space, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 317–370. MR 2458808, DOI 10.1017/CBO9780511735233.014
- P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, Proc. Lond. Math. Soc. (3) 105 (2012), no. 4, 787–820. MR 2989804, DOI 10.1112/plms/pds001
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
Bibliographic Information
- Leticia Pardo-Simón
- Affiliation: Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
- ORCID: 0000-0003-4039-5556
- Email: l.pardo-simon@impan.pl
- Received by editor(s): October 23, 2020
- Published electronically: June 21, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Conform. Geom. Dyn. 25 (2021), 51-78
- MSC (2020): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/ecgd/358
- MathSciNet review: 4275674