Unicritical polynomial maps with rational multipliers
HTML articles powered by AMS MathViewer
- by Valentin Huguin
- Conform. Geom. Dyn. 25 (2021), 79-87
- DOI: https://doi.org/10.1090/ecgd/359
- Published electronically: June 30, 2021
- PDF | Request permission
Abstract:
In this article, we prove that every unicritical polynomial map that has only rational multipliers is either a power map or a Chebyshev map. This provides some evidence in support of a conjecture by Milnor concerning rational maps whose multipliers are all integers.References
- Robert Benedetto, Patrick Ingram, Rafe Jones, Michelle Manes, Joseph H. Silverman, and Thomas J. Tucker, Current trends and open problems in arithmetic dynamics, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 4, 611–685. MR 4007163, DOI 10.1090/bull/1665
- Thierry Bousch, Les racines des composantes hyperboliques de M sont des quarts d’entiers algébriques, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 25–26 (French, with English summary). MR 3289904
- Alexandre Eremenko and Sebastian van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6453–6463. MR 2833563, DOI 10.1090/S0002-9947-2011-05308-0
- Valentin Huguin, Étude algébrique des points périodiques et des multiplicateurs d’une fraction rationnelle, 2021, Thesis (Ph.D.)–Université Toulouse III - Paul Sabatier (in preparation).
- The LMFDB Collaboration, The L-functions and modular forms database, elliptic curve with LMFDB label 108. https://www.lmfdb.org/EllipticCurve/Q/108/a/1, 2020.
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI 10.4171/011-1/1
- John Milnor, Arithmetic of unicritical polynomial maps, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 15–24. MR 3289903
- Patrick Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319–350. MR 1414593
- Patrick Morton and Pratiksha Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. (3) 68 (1994), no. 2, 225–263. MR 1253503, DOI 10.1112/plms/s3-68.2.225
- Patrick Morton and Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81–122. MR 1324210, DOI 10.1515/crll.1995.461.81
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Franco Vivaldi and Spyros Hatjispyros, Galois theory of periodic orbits of rational maps, Nonlinearity 5 (1992), no. 4, 961–978. MR 1174226, DOI 10.1088/0951-7715/5/4/007
Bibliographic Information
- Valentin Huguin
- Affiliation: Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9, France
- MR Author ID: 1427332
- ORCID: 0000-0002-8174-5324
- Email: valentin.huguin@math.univ-toulouse.fr
- Received by editor(s): November 18, 2020
- Received by editor(s) in revised form: April 29, 2021, and May 17, 2021
- Published electronically: June 30, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Conform. Geom. Dyn. 25 (2021), 79-87
- MSC (2020): Primary 37P05, 37P35; Secondary 37F10, 37F44
- DOI: https://doi.org/10.1090/ecgd/359
- MathSciNet review: 4280290