QUADRATURE DOMAINS AND THE REAL QUADRATIC FAMILY

KIRILL LAZEBNIK

Abstract. We study several classes of holomorphic dynamical systems associated with quadrature domains. Our main result is that real-symmetric polynomials in the principal hyperbolic component of the Mandelbrot set can be conformally mated with a congruence subgroup of PSL(2, Z), and that this conformal mating is the Schwarz function of a simply connected quadrature domain.

Contents

1. Introduction 104
2. Dynamics of Schwarz functions 109
3. Hyperbolic dynamics 111
4. Modular group structure 113
5. Conformal mating definition 117
6. Topology of the filled Julia set 118
7. Quasiconformal surgery 119
8. Simultaneous uniformization 122
9. Remarks 124
References 124

1. Introduction

Parallels in the study of Kleinian groups and of complex dynamics are generally termed as entries in Sullivan’s dictionary. We refer to Section 3.5 of [BF14] for an overview. In this paper we are concerned mainly with the following question: when can we “combine” the dynamical plane of a quadratic polynomial with that of a Kleinian group, and what is the resulting object? Let us introduce some terminology in order to make this question more precise.

Associated with the family of quadratic polynomials \(p_c(z) := z^2 + c \) is the Mandelbrot set \(\mathcal{M} \): defined as those \(c \in \mathbb{C} \) for which \(p_c^n(0) \not\to \infty \) as \(n \to \infty \). We list [Lyu17] as a comprehensive reference. Here we will primarily be concerned with the principal hyperbolic component of the Mandelbrot set: namely those \(c \in \mathbb{C} \) such that \(p_c \) has a finite attracting fixed point. We will denote by \(K(p_c) \) the filled Julia set of \(p_c \), and by \(\mathcal{J}(p_c) \) the Julia set of \(p_c \).

The Kleinian group relevant to our study is the congruence subgroup \(\Gamma \) of PSL(2, Z) defined by generators \(\alpha(z) := -1/z \) and \(\beta(z) := z + 2 \). A fundamental
domain U for Γ is shown in Figure 1. Associated with Γ we define the following function $\rho : \mathbb{H} \setminus \text{int} U \to \mathbb{H}$:

$$\rho(z) := \begin{cases}
\alpha(z) & \text{if } |z| \leq 1, \\
\beta^{-1}(z) & \text{if } \text{Re}(z) \geq 1, \\
\beta(z) & \text{if } \text{Re}(z) \leq -1.
\end{cases}$$

We will discuss further the connection between Γ and ρ in Section 4.

Now let c belong to the principal hyperbolic component of \mathcal{M}. An initial connection between Γ and p_c is as follows: the maps $p_c : J(p_c) \to J(p_c)$ and $\rho : \hat{\mathbb{R}} \to \hat{\mathbb{R}}$ are topologically conjugate (this is explained in Remark 5.1). This leads to the following question: is there a holomorphic map $p_c \sqcup \Gamma$ exhibiting simultaneously the dynamics of p_c on $K(p_c)$, and Γ on \mathbb{H}? To state this question more precisely we will need to discuss the notion of conformal mating, which we defer to Section 5. Our first result (illustrated in Figure 2) is that for $c \in \mathbb{R}$, the conformal mating $p_c \sqcup \Gamma$ exists, and is in fact an object well studied in its own right.

Theorem A. Let $c \in (-.75, .25)$. Then there exists a conformal mating $p_c \sqcup \Gamma$ as the Schwarz function of a simply connected quadrature domain.

A planar domain Ω is a **quadrature domain** if there exists a meromorphic function $\sigma : \Omega \to \hat{\mathbb{C}}$ such that σ is meromorphic in Ω and has an extension to $\overline{\Omega}$ satisfying $\sigma(z) = \overline{z}$ on $\partial \Omega$. The function σ is then called the **Schwarz function** of Ω. Quadrature domains have been studied in connection to several different areas of analysis, including extremal problems for analytic functions, the Hele-Shaw flow in fluid dynamics, and potential theory. We refer to [EGKP05], [LM16] for details and a broader overview, both of quadrature domains and the aforementioned connections. We mention two examples of quadrature domains. The first is that a simply connected domain is a quadrature domain if and only if the corresponding Riemann map is a rational function (Lemma 2.3, [AS76]). The second example (see the left-most curve in Figure 3) is that of a disjoint union of a cardioid with the exterior of a circle.
Figure 2. Pictured is the dynamical plane of the mating $p_c \sqcup \Gamma$ as in Theorem A with c ranging in $(-.75,.25)$. The simply connected quadrature domain is the complement of the turquoise region, with Schwarz function $\sigma = p_c \sqcup \Gamma$. In pink is the filled Julia set $K(\sigma)$ (see Definition 2.10), where σ is conformally conjugate to $p_c : K(p_c) \to K(p_c)$. The complement of $K(\sigma)$ is the escaping set $I(\sigma)$ (see Definition 2.8) of σ, where σ is described by the action of the group Γ on \mathbb{H} (see Theorem 4.8). The map σ on the common boundary of $I(\sigma), K(\sigma)$ is topologically conjugate both to $p_c : J(p_c) \to J(p_c)$ and $\rho : \hat{\mathbb{R}} \to \hat{\mathbb{R}}$.

The study of the dynamics of the *Schwarz reflection map* defined by $z \mapsto \overline{\sigma(z)}$ was initiated in [LM16], and several works have since studied the dynamics of $\overline{\sigma}$ for various classes of quadrature domains: see [LLMM18a], [LLMM18b], [LLMM19a], [LLMM19b], [LMM19], [LMM20]. Indeed, the case $c = 0$ of Theorem A may naturally be viewed as a holomorphic version of the anti-holomorphic statement in Theorem 1.1 of [LLMM18a] (see Remark 4.5 for details). Associated with $\overline{\sigma}$ is a natural dynamical partition of $\hat{\mathbb{C}}$. In the presence of \mathbb{R}-symmetry, a similar partition holds for σ (see Definitions 2.8, 2.10). Indeed, one can conclude the following from the work of [LLMM18b] together with a variant of Theorem 4.8:

Theorem 1.1 ([LLMM18b]). Let $c \in [-2, -0.75]$ be such that p_c is geometrically finite. Then there exists a conformal mating $p_c \sqcup \Gamma$ as the Schwarz function of a disjoint union of a cardioid and circle.

Taken together, Theorem A and Theorem 1.1 yield the following description:

Corollary 1.2. Let $c \in [-2, 0.25)$, and assume furthermore p_c is geometrically finite if $c \in [-2, -0.75]$. Then there exists a conformal mating $p_c \sqcup \Gamma$ as the Schwarz function of a:

1. simply connected quadrature domain if $c \in (-0.75, 0.25)$
2. disjoint union of a cardioid and circle if $c \in [-2, -0.75]$.
Let us discuss cases (1) and (2) in Corollary 1.2. As \(c \in \mathbb{R} \) passes through \(-.75\), the dynamics of \(p_c \) undergo the well-known phenomenon of bifurcation: the finite attracting fixed point of \(p_c \) in case (1) “becomes” a period 2 attracting cycle as one passes to case (2). We observe here the following for the corresponding quadrature domains in (1) and (2): the quadrature domains in case (1) converge to those in case (2) (see Section 9 for a more precise conjecture). This is illustrated in Figure 3. The group structure \(\Gamma \), on the other hand, is the same in cases (1) and (2). We remark that (1) of Corollary 1.2 likely holds for \(c = .25 \) as well, although this does not follow from the methods of the present work.

In fact, we will study a broader class of holomorphic dynamical systems \(\mathcal{R} \) (see Section 2) associated with a simply connected quadrature domain, which includes as a special case those systems in Theorem A. Numerical evidence indicates a rich quadratic-like structure in the parameter space of \(\mathcal{R} \): see Figure 4. Further, it is possible to draw several conclusions beyond the \(\mathbb{R} \)-symmetric and degree 2 setting of Theorem A. In the following, \(\Gamma_d \) denotes a Kleinian group whose fundamental domain is a regular hyperbolic \((d + 1)\)-gon in \(\mathbb{D} \) (see Definition 8.1), and \(\Gamma_2 \) is Möbius conjugate to the group \(\Gamma \) of Theorem A. The generating elements of \(\Gamma_d \) can roughly be described as Möbius transformations which map a set of circles \((C_j)_{j=1}^{d+1}\) (see Definition 8.1) lying perpendicular to \(|z| = 1\) to their complex conjugates \((\overline{C_j})_{j=1}^{d+1}\). Moreover, we denote by \(\beta(\Gamma_d) \) the Bers slice of \(\Gamma_d \): this is roughly the space of Kleinian groups which are quasiconformally conjugate to \(\Gamma_d \) via a conjugacy which is conformal in \(\mathbb{C} \setminus \mathbb{D} \). For a more precise definition of the Bers slice, we refer to Definitions 2.17, 2.20 of [LMM20]. We will sketch a proof of the following in Section 8.

Theorem B. Let \(d \geq 2 \), and \(\beta \in \beta(\Gamma_d) \). Suppose \(p \in \text{Pol}_d \) is in the main hyperbolic component in the parameter space of \(\text{Pol}_d \). Then there exists a conformal mating \(p_c \sqcup \beta \) of \(p_c \) with \(\beta \).

The main idea of the proof is that of simultaneous uniformization due to Bers (see [Ber72]): after verifying the statement of Theorem B for a “base case” of \(p(z) = z^d \).
and Γ_d (where the mating is a Schwarz function σ), the more general setting of Theorem \[B\] will follow from applying quasiconformal surgery simultaneously in the group and polynomial parts of the dynamical plane of σ. Indeed, a similar strategy will be applied in the proof of Theorem \[A\] although in the setting of Theorem \[A\] the group structure is rigid and so we can only vary the polynomial dynamics. We emphasize that although the conformal mating $p_c \sqcup \beta$ is shown to exist in the proof of Theorem \[B\], a more concrete description of the mating is not given (unlike the Schwarz function description given in Theorem \[A\]).

We also remark that a notion of conformal matings between Kleinian groups and polynomials as holomorphic correspondences was introduced in [BP94] (see also [BL20]). The definition of conformal mating used in the present work follows more closely that of [LLMM18a]. In particular, the map $p_c \sqcup \Gamma$ as in Theorems \[A\] \[B\] is a single-valued holomorphic function, rather than a multi-valued correspondence as in [BP94]. There is, however, a natural extension of the Schwarz function of a simply connected domain as a correspondence on $\hat{\mathbb{C}}$. Thus a natural question is whether this correspondence is a mating of p_c, Γ in the sense of [BP94], some branch of which is the Schwarz function of Theorem \[A\]. If the answer is affirmative, this would provide a satisfying link between the two points of view.

We now briefly outline the paper. In Sections \[2\] and \[3\] we introduce the class of dynamical systems \mathcal{R} and establish some basic properties. In Section \[4\] we study the group Γ, leading to a definition of conformal mating in Section \[5\]. In Section \[6\] we study the topology of the filled Julia set of a base element in \mathcal{R}. Section \[7\] is devoted to quasiconformal deformations of this base element of \mathcal{R} and the proof of Theorem \[A\]. Section \[8\] is devoted to Theorem \[B\] and lastly in Section \[9\] we remark on some questions naturally arising from the present work.
2. Dynamics of Schwarz functions

Notation 2.1. We use the notation:
\[\text{Pol}_d := \{ p(z) = a_d z^d + \ldots + a_1 z + a_0 : a_d, \ldots, a_0 \in \mathbb{C}, a_d \neq 0 \} \], \text{Pol} := \bigcup_d \text{Pol}_d,
\[\text{Rat}_d := \left\{ \frac{p(z)}{q(z)} : p, q \in \text{Pol} \text{ and } \max(\deg(p), \deg(q)) = d \right\}. \]

Notation 2.2. Given three distinct points \(z_1, z_2, z_3 \in \mathbb{C} \), we denote by \(D_{z_1, z_2, z_3} \) the open Euclidean disc such that \(z_1, z_2, z_3 \in \partial D_{z_1, z_2, z_3} \) and \((z_1, z_2, z_3) \) is oriented positively with respect to \(D_{z_1, z_2, z_3} \). Given a Euclidean disc \(D \), we denote \(D^* := \mathbb{C} \setminus \mathcal{D} \).

Definition 2.3. We define a collection \(\mathcal{R} \) whose elements are pairs \((f, (c_1, c_2, c_3))\), where \(f \in \text{Rat}_3 \) is such that \(f' \) has only simple zeros, and \((c_1, c_2, c_3)\) are critical points of \(f \) such that \(f \) is univalent (injective) on \(\overline{D_{c_1, c_2, c_3}} \).

Remark 2.4. We will frequently omit the triple \((c_1, c_2, c_3)\) from our notation and simply write \(f \in \mathcal{R} \). Given a choice of \(c_1, c_2, c_3 \) as in Definition 2.3, we denote by \(c_f \) the remaining critical point of \(f \).

Definition 2.5. Let \((f, (c_1, c_2, c_3)) \in \mathcal{R} \), and \(D = D_{c_1, c_2, c_3} \). Let \(M \) denote the Möbius transformation determined by:
\[(1) \quad M(c_1) = c_1, \]
\[(2) \quad M(c_2) = c_3, \]
\[(3) \quad M(c_3) = c_2. \]

We define \(\sigma_f : f(D) \to \hat{\mathbb{C}} \) by the following diagram:
\[
\begin{array}{ccc}
D & \xrightarrow{M} & D^* \\
\downarrow{f^{-1}} & & \downarrow{f} \\
\hat{\mathbb{C}} & \xrightarrow{\sigma_f} & \hat{\mathbb{C}}
\end{array}
\]

Remark 2.6. We note that the map \(M \) of Definition 2.5 is an involution. We also remark that the definition of \(\sigma_f \) depends not only on \(f \in \mathcal{R} \), but also a choice (and ordering) of the critical points \(c_1, c_2, c_3 \).

Remark 2.7. When \(f \) is \(\mathbb{R} \)-symmetric, and \(c_1 \in \mathbb{R} \) with \(c_2 = \overline{c_3} \), the map \(\sigma_f \) is the Schwarz function of the quadrature domain \(f(D) \). Thus the family \(\mathcal{R} \) contains the Schwarz functions of simply connected \(\mathbb{R} \)-symmetric quadrature domains.

Definition 2.8. Let \(f \in \mathcal{R} \). We define the fundamental tile of \(f \) by
\[\mathcal{T}_f := \hat{\mathbb{C}} \setminus (f(D) \cup \{ f(c_1), f(c_2), f(c_3) \}). \]

The escaping set of \(\sigma_f \) is defined by:
\[I(\sigma_f) := \{ z \in \hat{\mathbb{C}} : \sigma_f^n(z) \in \mathcal{T}_f \text{ for some } n \geq 0 \}. \]

Proposition 2.9. Let \(f \in \mathcal{R} \), and let \(U := \hat{\mathbb{C}} \setminus \mathcal{T}_f \). Then
\[\sigma_f : \sigma_f^{-1}(\mathcal{T}_f) \to \mathcal{T}_f \]
is a degree 3 covering map (possibly branched), and
\[\sigma_f : \sigma_f^{-1}(U) \to U \]
is a degree 2 covering map (possibly branched). The only branched point of \(\sigma_f \) is \(f \circ M(c_f) \).

Proof. Note that \(f: \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is 3 : 1, and \(f: D \to f(D) \) is 1 : 1. Thus the degree statements follow from the diagram of Definition 2.5. Note that \(f \) has only four critical points: \(c_1, c_2, c_3, c_f \), and \(c_f \notin D_{c_1,c_2,c_3} \) since \(f \) is univalent in \(D_{c_1,c_2,c_3} \).

Thus from the the diagram of Definition 2.5 we see that \(\sigma_f \) has exactly one critical point at \(f \circ M(c_f) \).

Definition 2.10. Let \(f \in \mathcal{R} \). We define the filled Julia set of \(\sigma_f \) by:

\[
K(\sigma_f) := \hat{\mathbb{C}} \setminus I(\sigma_f).
\]

The Julia set and Fatou set of \(\sigma_f \) are defined by

\[
J(\sigma_f) := \partial K(\sigma_f), \quad \mathcal{F}(\sigma_f) := \text{int}K(\sigma_f)
\]

respectively.

Remark 2.11. We will sometimes omit the dependence on \(f \) from our notation when \(f \) is clear from the context, and write, for instance, \(T \) in place of \(T_f \), or \(\sigma \) in place of \(\sigma_f \).

Proposition 2.12. Let \(f \in \mathcal{R} \). Then \(I(\sigma_f) \) is open.

Proof. We will show that \(I(\sigma) \subseteq \text{int}I(\sigma) \). Let \(z \in I(\sigma) \). Suppose first that \(z \in T \). If \(z \notin f(\partial D) \), it is clear that \(z \in \text{int}T \subseteq \text{int}I(\sigma) \), so we assume that \(z \in f(\partial D) \). Since \(f(\partial D) \setminus \{f(c_1), f(c_2), f(c_3)\} \) is preserved set-wise by \(\sigma \), we have \(\sigma(z) \in f(\partial D) \setminus \{f(c_1), f(c_2), f(c_3)\} \). Thus for a small neighborhood \(U \) of \(z \), we have that

\[
\sigma(U \cap f(D)) \subseteq \hat{\mathbb{C}} \setminus \overline{f(D)}.
\]

Thus \(U \cap f(D) \subseteq I(\sigma) \), and so \(z \in \text{int}I(\sigma) \). Similar reasoning shows that if \(z \in \sigma^{-n}(I(\sigma)) \) for some \(n > 0 \), then \(z \in I(\sigma) \).

Remark 2.13. Proposition 2.12 indicates the importance of the requirement that the Möbius transformation \(M \) of Definition 2.5 preserves (set-wise) the critical points \(c_1, c_2, c_3 \). Without this requirement, one would have, for instance, isolated points in the Julia set (generically).

Proposition 2.14. Let \(f \in \mathcal{R} \). Then \(K(\sigma_f) \) is compact, full, and

\[
(2) \quad K(\sigma_f) = J(\sigma_f) \cup \mathcal{F}(\sigma_f).
\]

Proof. That \(K(\sigma) \) is closed follows from Proposition 2.12. Thus \(K(\sigma) \) is compact with respect to the spherical metric on \(\hat{\mathbb{C}} \). Relation 2 follows. Now observe once more that \(f(\partial D) \setminus \{f(c_1), f(c_2), f(c_3)\} \) is preserved set-wise by \(\sigma \). Thus each of the three components of \(\sigma^{-1}(T) \) have non-empty intersection with \(T \), and so \(\sigma^{-1}(T) \cup T \) is connected. Similar reasoning shows inductively that

\[
\bigcup_{n=0}^{k} \sigma^{-n}(T)
\]

is connected for each \(k \geq 0 \). Thus connectivity of \(I(\sigma) \) follows, and so \(K(\sigma) \) is full.

Proposition 2.15. Let \(f \in \mathcal{R} \). Then \(J(\sigma_f) \) and \(\mathcal{F}(\sigma_f) \) are both totally invariant under \(\sigma_f \).
Proof. That $\mathcal{F}(\sigma)$ is totally invariant follows from the observation that σ is an open mapping. As
$$\sigma(\mathcal{J}(\sigma)) \subset K(\sigma),$$
total invariance of $\mathcal{J}(\sigma)$ now follows from total invariance of $\mathcal{F}(\sigma)$.

Corollary 2.16. Let $f \in \mathcal{R}$. Then the family $(\sigma^n_f)_{n=1}^{\infty}$ is normal in $\mathcal{F}(\sigma_f)$.

Proof. Given $z \in \mathcal{F}(\sigma)$, all iterates of σ^n are defined in a sufficiently small neighborhood U of z by definition of $\mathcal{F}(\sigma)$. As $\sigma^n(U) \subset f(D)$ for all n, and $\hat{C} \setminus f(D)$ is open, the result follows from elementary criteria for normality.

Proposition 2.17. Let $f \in \mathcal{R}$. Then $K(\sigma_f)$ is connected if and only if $f \circ M(c_f) \not\in I(\sigma_f)$.

Remark 2.18. The proof of Proposition 2.17 mimics a proof (see Problem 9-e of [Mil06]) that the basin of infinity of a polynomial p is connected if and only if all finite critical points of p have bounded orbit.

Proof. Let $U := \hat{C} \setminus T_f$ as in Proposition 2.9 and define $V := \text{int}(U) = \hat{C} \setminus T_f$. Note that any component of $\sigma_f^{-1}(V)$ is simply connected by the maximum modulus principle, so that the Euler Characteristic $\chi(\sigma_f^{-1}(V))$ may be identified with the number of components of $\sigma_f^{-1}(V)$. The map $\sigma_f : \sigma_f^{-1}(U) \to U$ is a degree 2 (possibly) branched cover by Proposition 2.9 so that applying the Riemann-Hurwitz formula to $\sigma_f : \sigma_f^{-1}(V) \to V$ yields:

$$2 \cdot \chi(V) = \chi(\sigma_f^{-1}(V)) = \#\{\text{critical points of } \sigma_f \text{ in } \sigma_f^{-1}(V)\}$$

(more precisely we apply the Riemann-Hurwitz formula to each component of $\sigma_f^{-1}(V)$). Since V is simply connected, (3) implies:

$$2 - \#\{\text{components of } \sigma_f^{-1}(V)\} = \#\{\text{critical points of } \sigma_f \text{ in } \sigma_f^{-1}(V)\}.$$

Let $c := f \circ M(c_f)$. Since c is the only critical point of σ_f by Proposition 2.9 it follows that $\sigma_f^{-1}(V)$ is connected if and only if $c \in \sigma_f^{-1}(V)$ if and only if $\sigma_f(c) \not\in T_f$.

If $\sigma_f^{-1}(V)$ is connected, we can mimic the above reasoning to conclude that then $\sigma_f^{-2}(V)$ is connected if and only if $\sigma_f^2(c) \not\in T_f$. Inductively, we see that if $\sigma_f^{-k}(V)$ is connected, then $\sigma_f^{-k+1}(V)$ is connected if and only if $\sigma_f^{-k+1}(c) \not\in T_f$.

Remark 2.19. Proposition 2.17 defines a connectedness locus for the family \mathcal{R}. Figure 4 shows a zoom of the locus for a 1-dimensional subfamily of \mathcal{R}, in comparison with the connectedness locus for the quadratic family.

3. Hyperbolic Dynamics

Definition 3.1. Let $f \in \mathcal{R}$, and suppose that $p \in f(D)$ is such that $\sigma_f(p) = p$. We will call $\lambda := \sigma_f'(p)$ the multiplier of p. If $|\lambda| < 1$, we call p attracting, and define the basin of attraction $\mathcal{A} = \mathcal{A}(p)$ to be the set of $x \in K(\sigma_f)$ such that $\lim_{n \to \infty} \sigma_f^n(x)$ exists and is equal to p. The immediate basin of attraction \mathcal{A}_0 is defined to be the connected component of \mathcal{A} containing p.

Theorem 3.2 (König’s linearization). Let \(f \in \mathcal{R} \) be such that \(\sigma_f \) has a fixpoint at \(p \) of multiplier \(\lambda \) where \(0 < |\lambda| < 1 \). Then there is a holomorphic map \(\phi : \mathcal{A} \to \mathbb{C} \) with \(\phi(p) = 0 \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\sigma_f} & \mathcal{A} \\
\phi \downarrow & & \phi \\
\mathbb{C} & \xrightarrow{\lambda} & \mathbb{C}
\end{array}
\]

commutes. Moreover, \(\phi \) is conformal in a neighborhood of 0. Let \(\phi^{-1} \) denote the inverse of \(\phi \) defined near 0. There is a maximal open disc \(\mathbb{D}_r \) centered at the origin to which \(\phi^{-1} \) extends conformally. The map \(\phi^{-1} \) extends homeomorphically to \(\partial \mathbb{D}_r \), and \(\phi^{-1}(\partial \mathbb{D}_r) \) contains a critical point of \(\sigma_f \).

Proof. We need only observe that for such a \(p \), we have that \(p \in \mathcal{F}(\sigma_f) \) and hence \(\mathcal{A} \subset \mathcal{F}(\sigma_f) \). Thus denoting the Riemann surface \(S := \mathcal{F}(\sigma_f) \), we have \(\sigma_f : S \to S \) by Proposition 2.15. The conclusions listed in the theorem now follow directly from applying Theorem 8.2, Corollary 8.4, and Lemma 8.5 of [Mil06] to the holomorphic dynamical system \(\sigma_f : S \to S \).

Theorem 3.3 (Böttcher). Let \(f \in \mathcal{R} \) be such that \(\sigma_f(p) = p, \sigma'_f(p) = 0 \), and let \(\mathcal{A} := \mathcal{A}(p) \). Then there is a conformal map \(\phi : \mathcal{A} \to \mathbb{D} \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\sigma_f} & \mathcal{A} \\
\phi \downarrow & & \phi \\
\mathbb{C} & \xrightarrow{z \mapsto z^2} & \mathbb{C}
\end{array}
\]

commutes.

Proof. As in the proof of Theorem 3.2 we consider the holomorphic dynamical system \(\sigma_f : S \to S \) with \(S := \mathcal{F}(\sigma_f) \). The existence of a holomorphic map \(\phi \) satisfying the conclusions of the theorem follows directly from Theorem 9.1 of [Mil06]. By Proposition 2.9 \(\sigma_f \) has no other critical points in \(S \), and so by Theorem 9.3 of [Mil06], the map \(\phi \) is conformal in \(\mathcal{A} \).

Remark 3.4. We will refer to \(\phi \) as in the conclusion of Theorem 3.2 as the König coordinate for \(\sigma_f \), and \(\phi \) as in the conclusion of Theorem 3.3 as the Böttcher coordinate for \(\sigma_f \).

Theorem 3.5. Let \(f \in \mathcal{R}, p \in \text{Pol}_2 \) be such that \(\sigma_f \) and \(p \) each have an attracting fixed point of the same multiplier, with basins of attraction \(\mathcal{A}_\sigma, \mathcal{A}_p \), respectively. Then there is a conformal map \(\psi : \mathcal{A}_\sigma \to \mathcal{A}_p \) such that \(\psi \circ \sigma_f \circ \psi^{-1} \equiv p \) on \(\mathcal{A}_p \).

Proof. We first assume that \(\lambda \neq 0 \). Let \(\phi_\sigma, \phi_p \) denote the König coordinates for \(\sigma, p \), respectively. Let \(\mathbb{D}_r \), as in Proposition 3.2 denote the maximal disc centered at 0 to which \(\phi_\sigma^{-1} \) extends conformally. By multiplying \(\phi_\sigma \) by a real number, we may assume that \(\mathbb{D}_r \) is also the maximal disc centered at 0 to which \(\phi_p^{-1} \) extends conformally. Thus, by Lemma 8.5 of [Mil06], \(\phi_p^{-1}(\partial \mathbb{D}_r) \) contains a critical point \(c_p \) of \(p \), and by Theorem 3.2 \(\phi_\sigma^{-1}(\partial \mathbb{D}_r) \) contains the critical point \(c_\sigma \) of \(\sigma \). By multiplying \(\phi_\sigma \) by a unimodular constant, we may assume that

\[
(4) \quad \phi_p^{-1} \circ \phi_\sigma(c_\sigma) = c_p.
\]
Now, as ϕ_σ, ϕ_p are Koenig coordinates, we have

\begin{equation}
(\phi_p^{-1} \circ \phi_\sigma) \circ \sigma \circ (\phi_p^{-1} \circ \phi_\sigma)^{-1} \equiv p \text{ on } \phi_p^{-1}(D_r). \tag{5}
\end{equation}

Thus by (1) and (3), we have that

\begin{equation}
\phi_p^{-1} \circ \phi_\sigma(\sigma(c_\sigma)) = p \circ \phi_p^{-1} \circ \phi_\sigma(c_\sigma) = p(c_p). \tag{6}
\end{equation}

Moreover, as σ has only one critical point by Proposition 2.9,

\begin{equation}
\sigma : A \setminus \{c_\sigma\} \to A \setminus \{\sigma(c_\sigma)\} \text{ and } p : A \setminus \{c_p\} \to A \setminus \{p(c_p)\} \tag{7}
\end{equation}

are both (unbranched) covering maps. Thus, using (4) and (6), we have by iterative lifting under the coverings (7), that

\begin{equation}
\phi_p^{-1} \circ \phi_\sigma : \phi_\sigma^{-1}(D_r) \setminus \{\sigma(c_\sigma)\} \to \phi_p^{-1}(D_r) \setminus \{p(c_p)\} \tag{8}
\end{equation}

extends to a conformal map

\begin{equation}
\phi_p^{-1} \circ \phi_\sigma : A \setminus \{c_\sigma, \sigma(c_\sigma)\} \to A \setminus \{c_p, p(c_p)\} \text{ satisfying} \tag{9}
\end{equation}

\begin{equation}
(\phi_p^{-1} \circ \phi_\sigma) \circ \sigma \circ (\phi_p^{-1} \circ \phi_\sigma)^{-1} \equiv p \text{ on } A \setminus \{c_p, p(c_p)\} \tag{10}
\end{equation}

The above relation was already shown to hold at the points $c_p, p(c_p)$ in (4), (6), so that we have proven the existence of a conformal conjugacy $\psi : A_\sigma \to A_p$ between $\sigma|_{A}, p|_{A}$.

Lastly, we remark that in the case $\lambda = 0$, one readily checks that $\psi := \phi_p^{-1} \circ \phi_\sigma$ is the desired conjugacy, where ϕ_σ, ϕ_p now denote the Böttcher coordinates for σ, ϕ, respectively.

\section{4. Modular group structure}

\textbf{Notation 4.1.} We will use the notation α, β to denote the maps:

\begin{equation}
\alpha(z) := \frac{-1}{z}, \beta(z) := z + 2. \tag{11}
\end{equation}

We denote by Γ the subgroup of $\text{PSL}(2, \mathbb{Z})$ generated by $\alpha, \beta \in \text{PSL}(2, \mathbb{Z})$.

\textbf{Notation 4.2.} We denote by:

\begin{equation}
U := \left\{ z \in \mathbb{H} : -1 < \text{Re}(z) < 1 \right\} \cap \left\{ z \in \mathbb{H} : |z| > 1 \right\}, \text{ and} \tag{12}
\end{equation}

\begin{equation}
D := U \cup \left\{ z \in \mathbb{H} : \text{Re}(z) = -1 \right\} \cup \left\{ z \in \mathbb{H} : |z| = 1, \text{Re}(z) \leq 0 \right\}. \tag{13}
\end{equation}

\textbf{Proposition 4.3.} The set D is a fundamental domain for Γ.

\textbf{Proof.} First we prove that for any $z \in \mathbb{H}$, there exists $g \in \Gamma$ with $gz \in D$. Note the identity:

\begin{equation}
\text{Im} \left(\frac{az + b}{cz + d} \right) = \frac{\text{Im}(z)}{|cz + d|^2} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PSL}(2, \mathbb{Z}). \tag{14}
\end{equation}

Let $z := x + iy$. Then $|cz + d|^2 = (cx + dy)^2 + (cy)^2$. Thus, as h ranges over all elements of Γ and z is fixed, $|cz + d|^2$ stays bounded away from 0. Hence, by (11), there exists $g_0 \in \Gamma$ such that $\text{Im}(hz) \leq \text{Im}(g_0z)$ for all $h \in \Gamma$. In particular, we have $\text{Im}(\alpha g_0z) \leq \text{Im}(g_0z)$. Thus

\begin{equation}
\text{Im}(\alpha g_0z) = \frac{\text{Im}(g_0z)}{|g_0z|^2} \leq \text{Im}(g_0z). \tag{15}
\end{equation}
Figure 5. An overlay of the fundamental domain \tilde{D} for the group $\text{PSL}(2, \mathbb{Z})$ with the fundamental domain for Γ outlined by the dotted lines and $(|z| = 1) \cap \mathbb{H}$ (see also Figure 1).

and so $|g_0 z|^2 \geq 1$. It follows then that for some $n \in \mathbb{Z}$ we have $\beta^n g_0 z \in D$ as needed.

Secondly, we prove that if $z \in D$, then $gz \notin D$ for all non-identity elements $g \in \Gamma$. We will appeal to the standard result that $\tilde{D} := D \cap \{z \in \mathbb{H} : -1/2 \leq \text{Re}(z) < 1/2\}$ is a fundamental domain for $\text{PSL}(2, \mathbb{Z})$. The proof breaks up into several cases: namely we wish to show that if z belongs to any of the regions \tilde{D}, $T^{-1}(\tilde{D}) \cap D$, $T(\tilde{D}) \cap D$, $T^{-1}S(\tilde{D}) \cap D$ or $TS(\tilde{D}) \cap D$ (whose union constitutes D; see Figure 5) then $gz \notin D$. We focus on the case that $z \in T^{-1} \tilde{D} \cap D$ as the other cases are similar.

We will use the notation $T(z) := z + 1$, and $S(z) := \alpha(z)$. Let $g \in \Gamma$ be a non-identity element. Since $T^{-1} \tilde{D}$ is also a fundamental domain for $\text{PSL}(2, \mathbb{Z})$, it cannot be the case that $gz \in T^{-1} \tilde{D}$. Similarly, $gz \notin \tilde{D}$ since otherwise we would have $g = T \notin \Gamma$. If $gz \in T \tilde{D} \cap D$, then $g = T^2$, but $T^2(T^{-1} \tilde{D} \cap D) \cap D = \emptyset$. We also have $T^{-1}ST(T^{-1} \tilde{D} \cap D) \cap D = \emptyset$, so that by the same reasoning, $gz \notin T^{-1}S(\tilde{D})$. Lastly, if $gz \in TS(\tilde{D})$, then $g = TST$. But then $Sg = T^{-1}S^{-1} \in \Gamma$ (where we have used the identity $(ST)^3 = I$), and so $SgS = T^{-1} \in \Gamma$, and this is a contradiction as $\Gamma \subsetneq \text{PSL}(2, \mathbb{Z})$. Thus we have proven that if $z \in T^{-1} \tilde{D} \cap D$ and $g \in \Gamma$, then $gz \notin D$. In the other cases: $z \in \tilde{D}$, $z \in T(\tilde{D}) \cap D$, $z \in T^{-1}S(\tilde{D}) \cap D$ or $z \in TS(\tilde{D}) \cap D$, one similarly verifies that $gz \notin D$.

\begin{definition}
Define the map $\rho : \mathbb{H} \setminus \text{int}U \to \mathbb{H}$ by

$$
\rho(z) := \begin{cases}
\alpha(z) & \text{if } |z| \leq 1, \\
\beta^{-1}(z) & \text{if } \text{Re}(z) \geq 1, \\
\beta(z) & \text{if } \text{Re}(z) \leq -1.
\end{cases}
$$
\end{definition}
Remark 4.5. Let M denote the Möbius transformation satisfying:

- $M(1) = \infty$,
- $M(e^{2\pi i/3}) = -1$,
- $M(e^{4\pi i/3}) = 1$,

so that $M^{-1}(U)$ is the hyperbolic triangle in \mathbb{D} with vertices $1, e^{2\pi i/3}, e^{4\pi i/3}$. Then it is readily computed that:

1. $z \mapsto M^{-1} \circ \alpha \circ M(z)$ is reflection in the circle perpendicular to $|z| = 1$ and passing through the points $e^{2\pi i/3}, e^{4\pi i/3}$.
2. $z \mapsto \overline{M^{-1} \circ \beta^{-1} \circ M(z)}$ is reflection in the circle perpendicular to $|z| = 1$ and passing through the points $1, e^{4\pi i/3}$.
3. $z \mapsto M^{-1} \circ \beta \circ M(z)$ is reflection in the circle perpendicular to $|z| = 1$ and passing through the points $1, e^{2\pi i/3}$.

Let us denote $\tau(z) := M^{-1} \circ \rho \circ M(z)$ for $z \in \mathbb{D} \setminus M^{-1}(U)$. From (1), (2), and (3) it follows that τ is precisely the reflection map defined in Section 3.1 of [LLMM18a] (note that the map τ is denoted in [LLMM18a] by ρ). In Theorem 1.1 of [LLMM18a], it is proven that the Schwarz reflection map of $f_0(\mathbb{D})$ (where $f_0(z) := z/(1 + z^2/2)$) is a conformal mating of $z \mapsto \overline{z}$ and τ. Since the Schwarz function of $f_0(\mathbb{D})$ is the complex conjugate of the Schwarz reflection map of $f_0(\mathbb{D})$, one expects that the Schwarz function of $f_0(\mathbb{D})$ is a conformal mating of $z \mapsto z^2$ and ρ. Indeed, this is demonstrated in the course of the proof of Theorem A and corresponds to the “base case” $c = 0$ of Theorem A as mentioned in the Introduction.

Proposition 4.6. Let $g \in \Gamma$, and let n be the length of the word defining g with respect to the symmetric generating set $\{\alpha, \beta\}$. Then $\rho^n \circ g(D) = D$.

Proof. We induct on the length of the word defining $g \in \Gamma$. In the base case (if $g = \alpha, \beta, \text{ or } \beta^{-1}$) then the statement is clear (with $n = 1$) from the definition of ρ. In the inductive case, we let $g = g_1 \ldots g_n$ with each $g_i \in \{\alpha, \beta, \beta^{-1}\}$. Suppose $g_1 = \beta$. Then $g_2 \ldots g_n(D) \not\in \{z \in \mathbb{H} : \text{Re}(z) < -1\}$, and so $g(D) \in \{z \in \mathbb{H} : \text{Re}(z) > 1\}$. Then $\rho \circ g(D) := \beta^{-1} \circ g(D) = g_2 \ldots g_n(D)$, whence the inductive hypothesis applies to show that $\rho^n \circ g(D) = D$. The proof in the case that $g_1 = \beta^{-1}$ or $g_1 = \alpha$ is similar. \qed

Definition 4.7. Let $f = (f, (c_1, c_2, c_3)) \in \mathcal{R}$. We say f is regular if

1. $c_1 = 1$,
2. $D_{c_1, c_2, c_3} = \mathbb{D}$,
3. $f \circ M(c_f) \not\in I(\sigma_f)$, and
4. $f(\overline{z}) = \overline{f(z)}$.

Theorem 4.8. Let $f \in \mathcal{R}$ be regular. Then there exists a conformal map $\phi : \mathbb{H} \to I_f$ such that $\phi(\overline{D}) = T_f$ and

\[\rho(z) = \phi^{-1} \circ \sigma_f \circ \phi(z) \text{ for } z \in \mathbb{H} \setminus \overline{D}. \]

Proof. As f is regular, f has two non-real critical points on \mathbb{T} which are symmetric with respect to \mathbb{R}. We will denote these critical points c, \overline{c}, where $\text{Im}(c) > 0$. We first define, by application of the Riemann mapping theorem, a conformal map

\[\phi : U \cap \{z \in \mathbb{H} : \text{Re}(z) > 0\} \to \mathbb{H} \setminus \overline{T_f(\mathbb{D})} \]

We note that a definition of ϕ may be computed explicitly in terms of sinh and f^{-1}.

1. We note that a definition of ϕ may be computed explicitly in terms of sinh and f^{-1}.

Figure 6. Illustrated is the definition of the map ϕ in Theorem 4.8. Words in α, β on the right indicate images under ϕ of the corresponding tiles in \mathbb{H}.

with

$$\phi(\infty) = f(1), \phi(1) = f(c) \text{ and } \phi(i) = f(-1).$$

Next, we extend the definition of ϕ to U as follows (see Figure 6). Let $\iota: \mathbb{C} \to \mathbb{C}$ denote reflection in the imaginary axis. Then using the Schwarz reflection principle (in the imaginary axis in the z-plane, and the real-axis in the w-plane), we may extend the definition of ϕ to a conformal map

$$\phi: U \to \mathbb{C} \setminus \overline{f(\mathbb{D})} \text{ satisfying } \phi \circ \iota(z) = \overline{\phi(z)} \text{ for } z \in U.$$

It follows then that $\phi(\overline{D}) = \overline{T_f}$, as needed.

The maps

$$\rho: \rho^{-1}(U) \to U \text{ and } \sigma_f: \sigma_f^{-1}(\text{int} T_f) \to \text{int} T_f$$

are both degree 3 covers by Proposition 2.9 and property (3) of Definition 4.7 so that we can lift ϕ by the covers ρ, σ_f. Let $\hat{\phi}$ denote the unique such lift so that the extension of $\hat{\phi}$ to $\rho^{-1}(U)$ agrees with ϕ at the points 0, 1, ∞. Extend the definition of ϕ to $\rho^{-1}(U)$ by $\phi(z) := \hat{\phi}(z)$ for $z \in \rho^{-1}(U)$. In fact, we claim that ϕ and $\hat{\phi}$ agree on the lines $x = 1$ and $x = -1$: this follows directly from relation (17) and the fact that $\hat{\phi}$ is a lift of ϕ. Similar considerations show that $\phi, \hat{\phi}$ agree on the semi-circle $\mathbb{H} \cap \{z \in \mathbb{C} : |z| = 1\}$. Thus by removability of analytic arcs for conformal mappings, we have that:

$$\phi: D \cup \rho^{-1}(D) \to T_f \cup \sigma_f^{-1}(\text{int} T_f) \text{ is conformal.}$$

Recall that f is assumed to regular (Definition 4.7), and so in particular $c_f \notin I(\sigma_f)$. Thus

$$\rho: \rho^{-2}(U) \to \rho^{-1}(U) \text{ and } \sigma_f: \sigma_f^{-2}(\text{int} T_f) \to \sigma_f^{-1}(\text{int} T_f)$$

are both degree 2 coverings. Thus again there is a unique lift

$$\hat{\phi}: \rho^{-2}(U) \to \sigma_f^{-2}(\text{int} T_f) \text{ of } \phi: \rho^{-1}(U) \to \sigma_f^{-1}(\text{int} T_f)$$

such that $\hat{\phi}$ extends the definition of $\phi: \rho^{-1}(U) \to \sigma_f^{-1}(\text{int} T_f)$. Defining $\phi(z) := \hat{\phi}(z)$ for $z \in \rho^{-2}(U)$, we have that:

$$\phi: D \cup \bigcup_{n=1}^{2} \rho^{-n}(D) \to T_f \cup \bigcup_{n=1}^{2} \sigma_f^{-n}(\text{int} T_f) \text{ is conformal.}$$
Since $c_f \notin I(\sigma_f)$, we can repeat this procedure to obtain a conformal map:

$$\phi : D \cup \bigcup_{n=1}^{\infty} \rho^{-n}(D) \to T_f \cup \bigcup_{n=1}^{\infty} \sigma_f^{-n}(\text{int}T_f).$$

Since

$$D \cup \bigcup_{n=1}^{\infty} \rho^{-n}(D) = \mathbb{H} \text{ and } T_f \cup \bigcup_{n=1}^{\infty} \sigma_f^{-n}(\text{int}T_f) = I(\sigma_f),$$

by Proposition 4.3 and Definition 2.8, respectively, the proof is finished. \qed

5. Conformal mating definition

We now define the notion of conformal mating in Theorem A. Our definitions follow \textbf{PM12} loosely, to which we refer for a more extensive discussion of conformal mating in the polynomial setting.

Remark 5.1. Let $\hat{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$. The map $\rho : \hat{\mathbb{R}} \to \hat{\mathbb{R}}$ admits a Markov partition with three partition pieces:

1. $I_1 := \{\infty\} \cup (-\infty, -1]$,
2. $I_2 := [-1, 1]$ and
3. $I_3 := [1, \infty) \cup \{\infty\},$

such that:

1. $\rho(I_1) \subset I_1 \cup I_2,$
2. $\rho(I_2) \subset I_1 \cup I_3$ and
3. $\rho(I_3) \subset I_2 \cup I_3.$

The map $z \mapsto z^2$ on \mathbb{R} also admits a Markov partition with intervals at endpoints $0, e^{2\pi i/3}, e^{4\pi i/3}$ (see Figure 7). It is readily checked that this Markov partition yields the same transition matrix as for $\rho : \hat{\mathbb{R}} \to \hat{\mathbb{R}}$ given above. Since ρ is expansive (see (2') of \textbf{CR80}), one can define a homeomorphism $E : \hat{\mathbb{R}} \to \mathbb{R}$ such that $E(\infty) = 1$, $E(1) = e^{2\pi i/3}$, $E(-1) = e^{4\pi i/3}$, and

$$E^{-1} \circ (z \mapsto z^2) \circ E \equiv \rho.$$

Remark 5.2. Let $p \in \text{Pol}_2$ such that $\mathcal{J}(p)$ is connected and locally connected. Denote by $\phi_p : \mathbb{D}^* \to B_{\infty}(p)$ the Böttcher coordinate for p such that $\phi_p'(\infty) = 1$. We note that since $\partial K(p) = \mathcal{J}(p)$ is locally connected by assumption, it follows that ϕ_p extends to a semi-conjugacy between $z \mapsto z^2|_{\mathbb{T}}$ and $p|_{\mathcal{J}(p)}$.

Definition 5.3. Let notation be as in Remark 5.2. We define an equivalence relation \sim on $\mathbb{H} \cup K(p)$ by specifying \sim is generated by $t \sim \phi_p \circ E(t)$ for all $t \in \hat{\mathbb{R}}$.

Definition 5.4. Let $p \in \text{Pol}_2$ such that $\mathcal{J}(p)$ is connected and locally connected, and $f \in \mathcal{R}$. We say that σ_f is a conformal mating of Γ with p if there exist continuous mappings

$$\psi_p : K(p) \to K(\sigma_f) \text{ and } \psi_T : \mathbb{H} \to \mathcal{I}(\sigma_f)$$

conformal on $\mathcal{F}(p)$, \mathbb{H}, respectively, such that

1. $\psi_p \circ p(w) = \sigma_f \circ \psi_p(w)$ for $w \in K(p)$,
2. $\psi_T(U) = T_f$ with $\psi_T \circ \rho(z) = \sigma_f \circ \psi_T(z)$ for $z \in \mathbb{H} \setminus \text{int}U,$
3. $\psi_T(z) = \psi_p(w)$ if and only if $z \sim w$ where \sim is as in Definition 5.3.
Figure 7. Illustrated is the conjugacy $\mathcal{E} : \hat{\mathbb{R}} \to \mathbb{T}$ between $\rho : \hat{\mathbb{R}} \to \hat{\mathbb{R}}$ and the map $z \mapsto z^2$ on \mathbb{T}. Also marked are the relevant Markov partitions.

6. Topology of the filled Julia set

Notation 6.1. We will denote

$$f_0(z) := \frac{z}{1 + z^3/2},$$

and $\sigma_0 := \sigma_{f_0}$. We let A_0 denote the basin of attraction of 0 for σ_0.

Remark 6.2. One readily verifies the identity

$$\frac{1}{f_0(1/z)} = z + \frac{1}{2z^2}. \tag{18}$$

Let σ_{inv} denote the Schwarz function of \mathcal{S}_0. The Schwarz-reflection map of \mathcal{S}_0 is defined exactly as in Definition 2.5, but with the map $z \mapsto 1/z$ replacing the map M. It is straightforward to verify that the Schwarz-reflection map of \mathcal{S}_0 is

$$z \mapsto \sigma_{\text{inv}}(z). \tag{19}$$

The dynamics of (19) were studied in detail in [LLMM18a]. The proof of Theorem 6.4 follows directly from results of [LLMM18a]. The rest of the results in this Section can also be deduced directly from results in [LLMM18a], but we include proofs (mimicking those of [LLMM18a]) for the sake of the reader.

Proposition 6.3. A_0 is connected.

Proof. Suppose by way of contradiction that A_0 contains more than one component. It must be then that A_0 contains a Fatou component $U \neq A_0$ such that $\sigma(U) = A_0$. But 0 is a preimage of 0 (under σ) of multiplicity two, and 0 has only two preimages (counted with multiplicity) under σ_0 by Proposition 2.9. Thus we have reached a contradiction. \square

Theorem 6.4. $\partial I(\sigma_0)$ is locally connected.

Proof. Consider the Schwarz reflection map σ_{inv} as in Remark 6.2. We have the relation

$$I(\sigma_{\text{inv}}) = I(\sigma_{\text{inv}}).$$
Thus Lemma 5.12 of [LLMM18a] applies directly to show that \(\partial I(\sigma_{\text{inv}}) \), and hence \(\partial I(\sigma_{\text{inv}}) \), is locally connected. Since \(\partial I(\sigma_0) \) is the image of \(\partial I(\sigma_{\text{inv}}) \) under \(z \mapsto 1/z \), the theorem follows. \(\square \)

Proposition 6.5. \(\partial I(\sigma_0) = \partial A_0. \)

Proof. Let \(z \in \partial A_0. \) Suppose by way of contradiction that \(z \notin \partial I(\sigma_0) \). Then all iterates \(\sigma_0^n \) are defined, and normal, in some neighborhood \(U \) of \(z \). The family \(\sigma_0^n|_{U \cap A_0} \) converges uniformly on compact subsets to the constant 0, and so the same holds true of \(\sigma_0^n|_U \). Thus \(z \in U \subset A_0 \), and this is a contradiction.

We now prove that \(\partial I(\sigma_0) \subset \partial A_0 \). Let \(0 < x < 1 \), and note that:

\[
\sigma_0 \left(\frac{x}{1 + x^3/2} \right) = \frac{x^2}{x^3 + 1/2} < \frac{x}{1 + x^3/2},
\]

where the inequality is easily checked. It follows that \(f((0,1)) \subset A_0 \). Thus \(f(1) \in \partial I(\sigma_0) \). Let \(\phi : \mathbb{H} \to I_0 \) denote the conformal map of Theorem 4.8. By Theorem 6.4 and Carathéodory’s Theorem (see Theorem 17.14 of [Mil06]), \(\phi \) extends continuously to a surjective map \(\phi : \mathbb{R} \to \partial I_0. \) One has \(\phi(\infty) = f(1) \) by definition of \(\phi \), and \(\rho(x) = \phi^{-1} \circ \sigma_f \circ \phi(x) \) for \(x \in \mathbb{R} \). Thus if \(x \in \mathbb{R} \) is such that \(\rho^n(x) = \infty \) for \(n > 0 \), then \(\sigma_f^n \circ \phi(x) = f(1) \), and so we also have \(\phi(x) \in \partial A_0. \) As \(\{x \in \mathbb{R} : \rho^n(x) = \infty \text{ for some } n > 0\} \) is dense in \(\mathbb{R} \), it follows that \(\partial I(\sigma_0) \subset \partial A_0. \) \(\square \)

Proposition 6.6. \(\partial I(\sigma_0) \) is a Jordan curve.

Proof. By Theorem 6.4, \(\partial I(\sigma_0) \) is locally connected. Thus any Riemann map \(\phi : \hat{\mathbb{C}} \setminus \mathbb{D} \to I(\sigma_0) \) extends continuously to a surjective map \(\phi : \mathbb{T} \to \partial I(\sigma_0) \) by Carathéodory’s Theorem. Suppose by way of contradiction that \(\phi(z_1) = \phi(z_2) \) for \(z_1 \neq z_2 \) where \(z_1, z_2 \in \mathbb{T} \). Then \(\phi(z_1) = \phi(z_2) \) is a cut-point of \(I(\sigma_0) \), and the curve

\[
\{\phi(tz_1) : t \geq 1\} \cup \{\phi(tz_2) : t \geq 1\} \cup \{\phi(z_1)\}
\]

separates \(\partial I(\sigma_0) \setminus \{\phi(z_1)\} \). If \(z \in \partial I(\sigma_0) \setminus \{\phi(z_1)\} \), then any neighborhood of \(z \) intersects \(A_0 \) by Proposition 6.5. Thus (20) also constitutes a separation of \(A_0 \), which contradicts connectivity of \(A_0 \) (Proposition 6.3). \(\square \)

Corollary 7.1. \(\mathcal{J}(\sigma_0) \) is a Jordan curve, and \(\mathcal{J}(\sigma_0) = \partial I(\sigma_0) = \partial A_0. \)

Proof. Since \(\mathcal{J}(\sigma_0) := \partial K(\sigma_0) \) and \(K(\sigma_0) = \hat{\mathbb{C}} \setminus I(\sigma_0) \), it follows that \(\mathcal{J}(\sigma_0) = \partial I(\sigma_0) \) and so \(\mathcal{J}(\sigma_0) \) is a Jordan curve by Proposition 6.6. That \(\partial I(\sigma_0) = \partial A_0 \) is the statement of Proposition 6.5. \(\square \)

7. Quasiconformal Surgery

Remark 7.1. In this remark, we summarize the discussion in Section 4.2.1 of [Bf14], to which we refer for more details. We let

\[
B_\lambda(z) := z + \frac{\lambda}{1 + \lambda z}, \text{ where } \lambda \in \mathbb{D}.
\]
Let $\lambda \in \mathbb{D} \setminus \{0\}$, and choose $r > |\lambda|$. Let h_λ be a quasiregular interpolation defined on $\mathbb{D}_\sqrt{r} \setminus \mathbb{D}_r$ between the degree 2 maps $B_\lambda|_{z = r}$ and $z \mapsto z^2|_{z = \sqrt{r}}$. We define

$$g_\lambda(z) := \begin{cases} z^2 & \text{if } z \in \mathbb{D}_\sqrt{r}, \\ h_\lambda(z) & \text{if } z \in \mathbb{D}_\sqrt{r} \setminus \mathbb{D}_r, \\ B_\lambda(z) & \text{if } z \in \mathbb{D}_r. \end{cases}$$ (21)

We define $\mu_\lambda \in L^\infty(\mathbb{D}_\sqrt{r})$ by $\mu_\lambda(z) = 0$ for $z \in \mathbb{D}_r$ and $\mu_\lambda \equiv (h_\lambda)_{z}/(h_\lambda)_{z}$ in $\mathbb{D}_\sqrt{r} \setminus \mathbb{D}_r$. Lastly, we extend μ_λ to \mathbb{D} by pulling back $\mu_\lambda|_{\mathbb{D}_\sqrt{r}}$ under the map $z \mapsto z^2$ on $\mathbb{D} \setminus \mathbb{D}_\sqrt{r}$. Thus $\mu_\lambda \in L^\infty(\mathbb{D})$, and it is readily verified that μ_λ is g_λ-invariant.

Proposition 7.2. Let $\lambda \in \mathbb{D}$ and g_λ, μ_λ, B_λ as in Remark 7.1. Then there exists a quasiconformal integrating map $\phi_\lambda : \mathbb{D} \rightarrow \mathbb{D}$ for μ_λ such that $\phi_\lambda \circ g_\lambda \circ \phi_\lambda^{-1} = B_\lambda$.

Proof. Let $\phi_\lambda : \mathbb{D} \rightarrow \mathbb{D}$ be an integrating map for μ_λ such that $\phi_\lambda(0) = 0$ and $\phi_\lambda(1) = (1-\lambda)/(1-\bar{\lambda})$. Then $\phi_\lambda \circ g_\lambda \circ \phi_\lambda^{-1}$ is a Blaschke product, and since $\phi_\lambda \circ g_\lambda \circ \phi_\lambda^{-1}$ fixes $(1-\lambda)/(1-\bar{\lambda})$, the conclusion follows. \hfill \square

Definition 7.3. Let $\Phi : A_0 \rightarrow \mathbb{D}$ be the Böttcher coordinate of Theorem 3.3 applied to $\sigma_0|_{A_0}$. Define ν_λ to be the pullback (under ϕ) of μ_λ:

$$\nu_\lambda(z) := \mu_\lambda(\Phi(z)) \frac{\partial f(z)}{\partial z}$$ for $z \in A_0$, and $\nu_\lambda(z) = 0$ for $z \notin A_0$. Thus $||\nu_\lambda||_{L^\infty(\mathbb{C})} < 1$.

Remark 7.4. Suppose $\lambda \in \mathbb{D} \cap \mathbb{R}$. Then the interpolation h_λ of Remark 7.1 can be chosen to satisfy $h(\bar{z}) = h(z)$, and hence the Beltrami coefficient μ_λ will satisfy the same relation. The Böttcher coordinate $\Phi : A_0 \rightarrow \mathbb{D}$ of $\sigma_0|_{A_0}$ can also be chosen to satisfy $\Phi(\bar{z}) = \Phi(z)$, and hence ν_λ will satisfy the same relation. Thus if we denote by $\psi_\lambda : \mathbb{C} \rightarrow \mathbb{C}$ an integrating map for μ_λ, we may ensure that

$$\psi_\lambda(z) = \frac{\partial f(z)}{\partial z}$$ for $z \in A_0$. \hfill (22)

Theorem 7.5. Let $\lambda \in (-1,1)$, and $\psi_\lambda : \mathbb{C} \rightarrow \mathbb{C}$ an integrating map for ν_λ satisfying (22). Then $\psi_\lambda \circ f_0(\mathbb{D})$ is a quadrature domain.

Proof. We define the function

$$F_\lambda(z) := \begin{cases} \sigma_0(z) & \text{if } z \in f_0(\mathbb{D}) \setminus A_0, \\ \Phi^{-1} \circ g_\lambda \circ \Phi(z) & \text{if } z \in A_0. \end{cases}$$ (23)

We claim that F_λ is quasiregular. Indeed, σ_0 and $\Phi^{-1} \circ g_\lambda \circ \Phi$ are both quasiregular in $f_0(\mathbb{D}) \setminus A_0$, A_0, respectively. Moreover, σ_0 and F_λ agree on a neighborhood of ∂A_0 (recall ∂A_0 is locally connected by Theorem 6.4) by definition of g_λ. Thus F_λ is quasiregular. Observing that ν_λ is F_λ-invariant (since μ_λ is g_λ-invariant), we see that $\psi_\lambda \circ F_\lambda \circ \psi_\lambda^{-1}$ is holomorphic in $\psi_\lambda \circ f_0(\mathbb{D})$. Let

$$\sigma_\lambda(z) := \psi_\lambda \circ F_\lambda \circ \psi_\lambda^{-1}(z)$$ for $z \in \psi_\lambda \circ f_0(\mathbb{D})$. By (22), we have the relation:

$$\sigma_\lambda(z) = \bar{z}$$ for $z \in \psi_\lambda \circ f_0(\mathbb{T})$.

Thus by Lemma 2.3 of [AS76], the domain $\psi_\lambda \circ f_0(\mathbb{D})$ is a quadrature domain and hence has a Schwarz function σ. Since $\sigma = \sigma_\lambda$ on $\psi_\lambda \circ f_0(\mathbb{D})$, we have $\sigma = \sigma_\lambda$. \hfill \square

Notation 7.6. Let ψ_λ be as in Theorem 7.5. As in the proof of Theorem 7.5 we will denote the Schwarz function of $\psi_\lambda \circ f_0(\mathbb{D})$ by σ_λ.

Corollary 7.7. Let $\lambda \in (-1, 1)$. Then $\psi_{\lambda}(0)$ is a fixed point of σ_{λ} with multiplier λ.

Proof. We continue with notation as in the proof of Theorem 7.5. Unravelling the definitions, we have

$$\sigma_{\lambda} \circ \psi_{\lambda}(0) = \psi_{\lambda} \circ \Phi^{-1} \circ B_{\lambda} \circ \Phi \circ \psi_{\lambda}^{-1}(0).$$

From (24) it is evident that $\psi_{\lambda}(0)$ is fixed under σ_{λ}. Noting that ψ_{λ} and Φ are both conformal in a neighborhood of 0, it follows that $\sigma'_{\lambda}(\psi_{\lambda}(0)) = \lambda$ since $B'_{\lambda}(0) = \lambda$. \qed

Proof of Theorem A. Let $c \in (-.75, 25)$. Then p_c has a fixed point of multiplier $\lambda_c \in (-1, 1)$. Let $\sigma := \sigma_{\lambda_c}$ be the Schwarz function of the quadrature domain $\psi_{\lambda_c} \circ f_0(D)$ as in Theorem 7.5. We will show that σ is a conformal mating of p_c and Γ, namely we will verify Conditions (1)–(3) in Definition 5.4 starting with Condition (1).

By Corollary 7.7, σ has a fixed point of multiplier λ_c. Then by Theorem 3.5 there is a conformal map $\psi_p : F(p) \to F(\sigma)$ satisfying

$$\psi_p \circ p(z) = \sigma_f \circ \psi_p(z) \text{ for } z \in F(p).$$

Note $F(\sigma)$ is a Jordan curve since it is a quasiconformal image of the Jordan curve $\partial I(\sigma_0)$ (see Proposition 6.6). Thus since $F(p)$ is a Jordan curve, the relation (25) extends to $\psi_p : F(p) \to F(\sigma)$. Thus we have verified Condition (1).

Next we consider Condition (2) of Definition 5.4. As $\psi_{\lambda} \circ f_0(D)$ is a \mathbb{R}-symmetric quadrature domain, it is readily checked that there is a regular function (see Definition 4.7) f such that $\sigma = \sigma_f$. Let $\psi_{\Gamma} : \mathbb{H} \to I(\sigma)$ be the map obtained by applying Theorem 4.8 to the regular map f. Then by Theorem 4.8 we have that $\psi_{\Gamma}(U) = \overline{F(f)}$ and

$$\psi_{\Gamma} \circ \rho(z) = \sigma_f \circ \psi_{\Gamma}(z) \text{ for } z \in \mathbb{H} \setminus \mathrm{int} U.$$

Since $\partial I(\sigma) = F(\sigma)$ is a Jordan curve by Proposition 6.6, the conformal map ψ_{Γ} extends to a homeomorphism $\psi_{\Gamma} : \mathbb{R} \to F(f)$ satisfying (26) for $z \in \mathbb{R}$.

Lastly, we verify Condition (3) of Definition 5.4. We first show that

$$\psi_{\Gamma}(t) = \psi_p(\phi_p \circ \mathcal{E}(t)) \text{ for all } t \in \mathbb{R}.$$

We record the relations

$$\mathcal{E} \circ \psi_{\Gamma}^{-1} \circ \sigma(w) = (z \mapsto z^2) \circ \mathcal{E} \circ \psi_{\Gamma}^{-1}(w) \text{ for } w \in F(\sigma), \quad \text{and}$$

$$\psi_p \circ \phi_p(z^2) = \sigma \circ \psi_p \circ \phi_p(z) \text{ for } z \in \mathbb{T}.$$

Using (28) and (29) we compute

$$\mathcal{E} \circ \psi_{\Gamma}^{-1} \circ \psi_p \circ \phi_p(z^2) = (z \mapsto z^2) \circ \mathcal{E} \circ \psi_{\Gamma}^{-1} \circ \psi_p \circ \phi_p(z) \text{ for } z \in \mathbb{T}.$$

In other words,

$$\mathcal{E} \circ \psi_{\Gamma}^{-1} \circ \psi_p \circ \phi_p : \mathbb{T} \to \mathbb{T}$$

is an orientation-preserving homeomorphism of \mathbb{T}, which conjugates $z \mapsto z^2$ to itself. The only such map is the identity, and so we have:

$$\mathcal{E} \circ \psi_{\Gamma}^{-1} \circ \psi_p \circ \phi_p(s) = s \text{ for } s \in \mathbb{T}.$$

Thus, the relation (27) follows by taking $s = \mathcal{E}(t)$ in (32).
Figure 8. Illustrated is a fundamental domain U of the group Γ_3, together with several images under U of elements of Γ_3. The group Γ_3 is shown acting on \mathbb{H} rather than on \mathbb{D} (as in Definition 8.1) in order to be consistent with the convention for $\Gamma \equiv \Gamma_2$. Labels are affixed to those “tiles” arising from words of length 1.

It remains to show that if $\psi_\Gamma(z) = \psi_p(w)$, then $z \sim w$. To this end, let us assume that z, w are such that $\psi_\Gamma(z) = \psi_p(w)$. Note then that this implies $z = t \in \mathbb{R}$ and $w = \phi_p(s)$ for $s \in T$. Thus $t = \psi_\Gamma^{-1} \circ \psi_p \circ \phi_p(s)$. By (32), we also have

$$\psi_\Gamma^{-1} \circ \psi_p \circ \phi_p(s) = E^{-1}(s).$$

We conclude that $s = E(t)$. Thus since $t \sim \phi_p \circ E(t)$ by definition of \sim, and $z = t$ and $w = \phi_p(s) = \phi_p \circ E(t)$, we conclude that $z \sim w$ as needed. □

8. Simultaneous uniformization

Definition 8.1. Let $d \geq 2$. We define a Fuchsian group Γ_d as follows. Let $(C_j)_{j=1}^{d+1}$ be the Euclidean circles such that C_j intersects $|z| = 1$ at right-angles at the points $\exp(2\pi i(j-1)/(d+1))$, $\exp(2\pi ij/(d+1))$. Denote the common radius of the circles (C_j) by r, and denote the center of C_j by z_j. The group Γ_d is defined by generators

$$\gamma_j(z) := \overline{z_j} + \frac{r^2}{z - z_j}$$

for $1 \leq j \leq d/2 + 1$ or $1 \leq j \leq (d + 1)/2$ according to whether d is even or odd, respectively.

Remark 8.2. When $d = 2$, the Fuchsian group Γ_2 defined in Definition 8.1 is Möbius conjugate to the group Γ of Theorem A. See Figure 8 for an illustration of the case $d = 3$.

Definition 8.3. Let U denote the component of $\mathbb{D} \setminus \cup_j C_j$ containing 0, and let $\text{int} C_j$ denote the bounded component of $\mathbb{C} \setminus C_j$. We note that $\mathbb{D} \setminus \overline{U} = \cup_j (\text{int} C_j \cap \mathbb{D})$. We define a map $\rho : \mathbb{D} \setminus U \to \mathbb{D}$ by $\rho(z) := \overline{z_j} + r^2/(z - z_j)$ if $z \in \text{int} C_j \cap \mathbb{D}$.
Remark 8.4. Definition 5.3 of conformal mating is restricted to the class R, but the definition is readily extended to maps of higher degree, or one which is quasiconformally conjugate to a map in class R. This is the setting in which we will work below.

Sketch of Proof of Theorem We fix p, β as in the statement of Theorem Let
\[f(z) := \frac{z}{1 + z^{d+1}/d}. \]
Then f is univalent in \mathbb{D}, and $\sigma := \sigma_f$ has a critical fixed point at 0 of degree d. Let A_σ denote the basin of attraction of 0 for σ. There is a Böttcher coordinate $\Phi : A_\sigma \to \mathbb{D}$ conjugating $\sigma : A_\sigma \to A_\sigma$ to the map $z \mapsto z^d$ on \mathbb{D}. As p is in the principal hyperbolic component in Pol_d, p has a single attracting fixed point, and all critical points of p are in the corresponding basin of attraction A_p. Thus letting $\phi_p : A_p \to \mathbb{D}$ denote a conformal map, we have that $\phi_p \circ p \circ \phi_p^{-1} : \mathbb{D} \to \mathbb{D}$ is an expanding Blaschke product of degree d. Denote this Blaschke product by B. By choosing an appropriate $r < 1$, we can mimic the definition of (21) and define a quasiregular interpolation h between the degree d maps $z \mapsto z^d$ on $|z| = \sqrt{r}$ and B on $|z| = r$, so that:

\[
\begin{align*}
g(z) := \begin{cases}
 z^d & \text{if } z \in \mathbb{D} \setminus \mathbb{D}^{\sqrt{r}}, \\
h(z) & \text{if } z \in \mathbb{D}^{\sqrt{r}} \setminus \mathbb{D}_r, \\
B(z) & \text{if } z \in \mathbb{D}_r.
\end{cases}
\end{align*}
\]

is a degree d quasiregular map of \mathbb{D}. As in Section 7, we may define a g-invariant Beltrami coefficient μ on \mathbb{D} by letting $\mu \equiv 0$ in \mathbb{D}_r, $\mu \equiv h_z/h_\bar{z}$ in $\mathbb{D}^{\sqrt{r}} \setminus \mathbb{D}_r$, and pulling back elsewhere. Next we define

\[
\begin{align*}
F(z) := \begin{cases}
\sigma(z) & \text{if } z \in f_0(\mathbb{D}) \setminus A, \\
\Phi^{-1} \circ g \circ \Phi(z) & \text{if } z \in A.
\end{cases}
\end{align*}
\]

Let ν be the Beltrami coefficient defined on A by pulling back μ under Φ.

Now we consider the group structure of σ on the escaping set $I = I_\sigma$ (see Definition 2.8). By mimicking the proof of Theorem 13, we can show there exists a conformal map $\phi_I : \mathbb{D} \to I$, such that $\phi_I(U) = \overline{U}$ and

\[
\rho(z) = \phi_I^{-1} \circ \sigma_f \circ \phi_I(z) \text{ for } z \in \mathbb{D} \setminus \overline{U}.
\]

Since $\beta \in \overline{\beta} (\Gamma_d)$, there is a quasiconformal mapping $\phi_\beta : \mathbb{C} \to \mathbb{C}$ which conjugates Γ_d to the quasi-Fuchsian group $\phi_\beta \circ \Gamma_d \circ \phi_\beta^{-1}$. Let μ_β be defined in I as the pullback of the standard conformal structure in $\phi_\beta (\mathbb{D})$ under $\phi_\beta \circ \phi_I^{-1} : I \to \phi_\beta (\mathbb{D})$. Extend ν (up to now defined only in A) to the escaping set I by defining $\nu \equiv \mu_\beta$ in I.

Lastly, we define $\nu(z) = 0$ for $z \in \mathbb{C} \setminus (A \cup \overline{I})$.

We have defined ν so that ν is F-invariant: this follows from (37), the fact that ϕ_β conjugates Γ_d to $\phi_\beta \circ \Gamma_d \circ \phi_\beta^{-1}$, and that μ is g-invariant. Let $\psi : \mathbb{C} \to \mathbb{C}$ denote a straightening map for ν. Define

\[
p_c \cup \beta(z) := \psi \circ F \circ \psi^{-1}(z) \text{ for } z \in \psi \circ f(\mathbb{D}).
\]

Then $p_c \cup \beta$ is holomorphic since ν is F-invariant. One readily checks that $p_c \cup \beta : \psi(A) \to \psi(A)$ and $p : \text{int}K(p) \to \text{int}K(p)$ are conformally conjugate. Likewise, $\phi_\beta \circ \phi_I^{-1} \circ \psi^{-1} : \psi(I) \to \phi_\beta(\mathbb{D})$ defines a conjugacy between $p_c \cup \beta : \psi(I \setminus T_f) \to \mathbb{C}$ and $\phi_\beta \circ \rho \circ \phi_\beta^{-1} : \phi_\beta (\mathbb{D}) \setminus \phi_\beta (U) \to \phi_\beta(\mathbb{D})$. For f as in (14), one may mimic the proofs in Section 6 (or Lemma 4.10 of [LMM20]) to show that A and I share a common
boundary which is a Jordan curve. Thus the same holds for the common boundary between the filled Julia set and escaping set of $p_c \sqcup \beta$. The last verification in the definition of conformal mating thus proceeds as in the proof of Theorem A.

9. Remarks

We remark briefly on several questions arising from the present work. The first is that the phase transition of Figure 3 is conjectural: we have neither formulated nor proven a precise statement. One such statement would be that any family of (appropriately normalized) \mathbb{R}-symmetric, simply connected quadrature domains whose Schwarz functions have attracting fixed points with multipliers -1^+ converge (in the Hausdorff metric) to a quadrature domain of connectivity 2: the cardioid and circle (up to a Möbius transformation). Moreover, the Schwarz function of the limiting cardioid and circle should be a conformal mating of $z \mapsto z^2 - .75$ and Γ.

Another approach to the proof of Theorem A would be to formulate explicitly the uniformizing Riemann maps of the simply connected quadrature domains, and calculate the multiplier of the attracting fixed point. The difficulty would then be in proving univalence of the maps. Nevertheless, we record the formulas. Consider the maps

$$f_t(z) := \frac{z + t}{1 + z^3/2}.$$ (39)

Numerical evidence suggests that there exists $t_0 < 0$ such that for $t \in [t_0, 1)$, the map f_t is univalent on the interior of the circle passing through the three finite critical points of f_t. Moreover, $t = t_0$ yields a Schwarz function with a parabolic fixed point, and as $t \to 1^-$, one has the limiting behavior as discussed above and shown in Figure 3 (up to inversion). One can also give formulas for an analogous family of maps conformal in the fixed domain D.

We have focused on the holomorphic setting in this work, however there is also interest in studying the (anti-holomorphic) Schwarz reflection maps associated to the family (39). Let C_t denote the circle passing through the three finite critical points of f_t. Numerical evidence indicates that there is a natural homeomorphism of (1) the C-parameters t for which the maps (39) are univalent in the interior of C_t with (2) the principal hyperbolic component (the main deltoid) in the parameter space of the family $z \mapsto z^2 + c$: both are parametrized by the multiplier of the relevant attracting fixed point. The boundary is of particular interest: simple parabolics on the boundary of the main deltoid correspond to simply connected quadrature domains, whereas the three double parabolics correspond to the cardioid and circle.

References

Department of Computer and Mathematical Sciences, University of Toronto, Toronto, Canada

Email address: kylazebnik@gmail.com