A metric that better approximates the hyperbolic metric
HTML articles powered by AMS MathViewer
- by William Ma
- Conform. Geom. Dyn. 26 (2022), 1-9
- DOI: https://doi.org/10.1090/ecgd/368
- Published electronically: February 1, 2022
- PDF | Request permission
Abstract:
We introduce a metric, called the star metric, that gives us better upper bound of the hyperbolic metric than the Möbius invariant metric. We present various examples, and comparisons among the hyperbolic metric, the Möbius invariant metric and the star metric.References
- A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 9–56. MR 2492498
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Reuven Harmelin and David Minda, Quasi-invariant domain constants, Israel J. Math. 77 (1992), no. 1-2, 115–127. MR 1194789, DOI 10.1007/BF02808014
- Barbara B. Flinn and David A. Herron, Uniform estimates for the hyperbolic metric and Euclidean distance to the boundary, Michigan Math. J. 46 (1999), no. 1, 13–27. MR 1682884, DOI 10.1307/mmj/1030132355
- Dennis A. Hejhal, Universal covering maps for variable regions, Math. Z. 137 (1974), 7–20. MR 349989, DOI 10.1007/BF01213931
- David A. Herron, Zair Ibragimov, and David Minda, Geodesics and curvature of Möbius invariant metrics, Rocky Mountain J. Math. 38 (2008), no. 3, 891–921. MR 2426525, DOI 10.1216/RMJ-2008-38-3-891
- David A. Herron, William Ma, and David Minda, A Möbius invariant metric for regions on the Riemann sphere, Future trends in geometric function theory, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 92, Univ. Jyväskylä, Jyväskylä, 2003, pp. 101–118. MR 2058115
- David A. Herron, William Ma, and David Minda, Estimates for conformal metric ratios, Comput. Methods Funct. Theory 5 (2005), no. 2, 323–345. MR 2205417, DOI 10.1007/BF03321101
- David A. Herron, William Ma, and David Minda, Möbius invariant metrics bilipschitz equivalent to the hyperbolic metric, Conform. Geom. Dyn. 12 (2008), 67–96. MR 2410919, DOI 10.1090/S1088-4173-08-00178-1
- Ravi S. Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89–129. MR 1273468, DOI 10.1007/BF02572311
- Wan Cang Ma and David Minda, Euclidean linear invariance and uniform local convexity, J. Austral. Math. Soc. Ser. A 52 (1992), no. 3, 401–418. MR 1151295, DOI 10.1017/S1446788700035114
- C. David Minda, The Hahn metric on Riemann surfaces, Kodai Math. J. 6 (1983), no. 1, 57–69. MR 698327, DOI 10.2996/kmj/1138036663
- Christian Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), no. 2, 108–154 (German). For a review of this paper see [MR0168751]. MR 1513275, DOI 10.1007/BF01344077
Bibliographic Information
- William Ma
- Affiliation: Department of Mathematics, School of Business, Arts and Sciences, Pennsylvania College of Technology, Williamsport, Pennsylvania 17701
- MR Author ID: 232636
- Email: wma@pct.edu
- Received by editor(s): March 29, 2021
- Published electronically: February 1, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 1-9
- MSC (2020): Primary 30F45; Secondary 30C55, 30C20
- DOI: https://doi.org/10.1090/ecgd/368
- MathSciNet review: 4374952