Completeness of $p$ -Weil-Petersson distance
HTML articles powered by AMS MathViewer
- by Masahiro Yanagishita
- Conform. Geom. Dyn. 26 (2022), 34-45
- DOI: https://doi.org/10.1090/ecgd/369
- Published electronically: May 10, 2022
- PDF | Request permission
Abstract:
Our goal of this paper is to research the completeness of the $p$ -Weil-Petersson distance, which is induced by the $p$ -Weil-Petersson metric on the $p$ -integrable Teichmüller space of hyperbolic Riemann surfaces. As a result, we see that the metric is incomplete for all the hyperbolic Riemann surfaces with Lehner’s condition except for the ones that are conformally equivalent to either the unit disk or the punctured unit disk. The proof is based on the one by Wolpert’s original paper, which is given in the case of compact Riemann surfaces.References
- Lars V. Ahlfors, Curvature properties of Teichmüller’s space, J. Analyse Math. 9 (1961/62), 161–176. MR 136730, DOI 10.1007/BF02795342
- Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171–191. MR 204641, DOI 10.2307/1970309
- Guizhen Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A 43 (2000), no. 3, 267–279. MR 1766456, DOI 10.1007/BF02897849
- Clifford J. Earle, Frederick P. Gardiner, and Nikola Lakic, Asymptotic Teichmüller space. II. The metric structure, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 187–219. MR 2145063, DOI 10.1090/conm/355/06452
- Irwin Kra, Automorphic forms and Kleinian groups, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0357775
- Joseph Lehner, On the boundedness of integrable automorphic forms, Illinois J. Math. 18 (1974), 575–584. MR 357777
- Katsuhiko Matsuzaki, Rigidity of groups of circle diffeomorphisms and Teichmüller spaces, J. Anal. Math. 140 (2020), no. 2, 511–548. MR 4093915, DOI 10.1007/s11854-020-0095-6
- Subhashis Nag and Alberto Verjovsky, $\textrm {Diff}(S^1)$ and the Teichmüller spaces, Comm. Math. Phys. 130 (1990), no. 1, 123–138. MR 1055689, DOI 10.1007/BF02099878
- K. V. Rajeswara Rao, On the boundedness of $p$-integrable automorphic forms, Proc. Amer. Math. Soc. 44 (1974), 278–282. MR 342693, DOI 10.1090/S0002-9939-1974-0342693-8
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Leon A. Takhtajan and Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119. MR 2251887, DOI 10.1090/memo/0861
- Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501–528. MR 657237, DOI 10.2307/2007011
- Scott Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), no. 4, 969–997. MR 796909, DOI 10.2307/2374363
- Scott Wolpert, Noncompleteness of the Weil-Petersson metric for Teichmüller space, Pacific J. Math. 61 (1975), no. 2, 573–577. MR 422692, DOI 10.2140/pjm.1975.61.573
- Masahiro Yanagishita, Introduction of a complex structure on the $p$-integrable Teichmüller space, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 2, 947–971. MR 3237061, DOI 10.5186/aasfm.2014.3952
- Masahiro Yanagishita, Kählerity and negativity of Weil-Petersson metric on square integrable Teichmüller space, J. Geom. Anal. 27 (2017), no. 3, 1995–2017. MR 3667418, DOI 10.1007/s12220-016-9748-1
- Masahiro Yanagishita, Smoothness and strongly pseudoconvexity of $p$-Weil-Petersson metric, Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 1, 15–28. MR 3919123, DOI 10.5186/aasfm.2019.4413
Bibliographic Information
- Masahiro Yanagishita
- Affiliation: Department of Applied Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube-shi, Yamaguchi 755-8611, Japan
- MR Author ID: 1029821
- ORCID: 0000-0002-5444-3507
- Email: myngsht@yamaguchi-u.ac.jp
- Received by editor(s): March 1, 2021
- Received by editor(s) in revised form: January 24, 2022
- Published electronically: May 10, 2022
- Additional Notes: This work was supported by JSPS KAKENHI 18K13410
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 34-45
- MSC (2020): Primary 30F60; Secondary 32G15, 30C62
- DOI: https://doi.org/10.1090/ecgd/369
- MathSciNet review: 4419576