Skip to Main Content

Conformal Geometry and Dynamics

Published by the American Mathematical Society since 1997, the purpose of this electronic-only journal is to provide a forum for mathematical work in related fields broadly described as conformal geometry and dynamics. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4173

The 2020 MCQ for Conformal Geometry and Dynamics is 0.49.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Scalar flat compactifications of Poincaré-Einstein manifolds and applications
HTML articles powered by AMS MathViewer

by Simon Raulot
Conform. Geom. Dyn. 26 (2022), 46-66
Published electronically: June 28, 2022


We derive an integral inequality between the mean curvature and the scalar curvature of the boundary of any scalar flat conformal compactifications of Poincaré-Einstein manifolds. As a first consequence, we obtain a sharp lower bound for the first eigenvalue of the conformal half-Laplacian of the boundary of such manifolds. Secondly, a new upper bound for the renormalized volume is given in the four dimensional setting. Finally, some estimates on the first eigenvalues of Dirac operators are also deduced.
Similar Articles
  • Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2020): 53C24, 53C27, 53C80, 58J50
  • Retrieve articles in all journals with MSC (2020): 53C24, 53C27, 53C80, 58J50
Bibliographic Information
  • Simon Raulot
  • Affiliation: Laboratoire de Mathématiques R. Salem, UMR 6085 CNRS-Université de Rouen, Avenue de l’Université, BP.12, Technopôle du Madrillet, 76801 Saint-Étienne-du-Rouvray, France
  • MR Author ID: 771773
  • ORCID: 0000-0003-3608-8115
  • Email:
  • Received by editor(s): February 28, 2020
  • Received by editor(s) in revised form: November 29, 2021
  • Published electronically: June 28, 2022
  • © Copyright 2022 American Mathematical Society
  • Journal: Conform. Geom. Dyn. 26 (2022), 46-66
  • MSC (2020): Primary 53C24, 53C27, 53C80, 58J50
  • DOI:
  • MathSciNet review: 4445715