Scalar flat compactifications of Poincaré-Einstein manifolds and applications
HTML articles powered by AMS MathViewer
- by Simon Raulot
- Conform. Geom. Dyn. 26 (2022), 46-66
- DOI: https://doi.org/10.1090/ecgd/371
- Published electronically: June 28, 2022
- PDF | Request permission
Abstract:
We derive an integral inequality between the mean curvature and the scalar curvature of the boundary of any scalar flat conformal compactifications of Poincaré-Einstein manifolds. As a first consequence, we obtain a sharp lower bound for the first eigenvalue of the conformal half-Laplacian of the boundary of such manifolds. Secondly, a new upper bound for the renormalized volume is given in the four dimensional setting. Finally, some estimates on the first eigenvalues of Dirac operators are also deduced.References
- Lars Andersson and Mattias Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Global Anal. Geom. 16 (1998), no. 1, 1–27. MR 1616570, DOI 10.1023/A:1006547905892
- Bernd Ammann, A spin-conformal lower bound of the first positive Dirac eigenvalue, Differential Geom. Appl. 18 (2003), no. 1, 21–32. MR 1951070, DOI 10.1016/S0926-2245(02)00095-5
- Bernd Ammann, The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions, Comm. Anal. Geom. 17 (2009), no. 3, 429–479. MR 2550205, DOI 10.4310/CAG.2009.v17.n3.a2
- Michael T. Anderson, $L^2$ curvature and volume renormalization of AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001), no. 1-2, 171–188. MR 1825268, DOI 10.4310/MRL.2001.v8.n2.a6
- Christian Bär, Lower eigenvalue estimates for Dirac operators, Math. Ann. 293 (1992), no. 1, 39–46. MR 1162671, DOI 10.1007/BF01444701
- Christian Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), no. 3, 509–521. MR 1224089, DOI 10.1007/BF02102106
- Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR 2371700
- Helga Baum, Thomas Friedrich, Ralf Grunewald, and Ines Kath, Twistor and Killing spinors on Riemannian manifolds, Seminarberichte [Seminar Reports], vol. 108, Humboldt Universität, Sektion Mathematik, Berlin, 1990. MR 1084369
- Jean-Pierre Bourguignon, Oussama Hijazi, Jean-Louis Milhorat, Andrei Moroianu, and Sergiu Moroianu, A spinorial approach to Riemannian and conformal geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR 3410545, DOI 10.4171/136
- Piotr T. Chruściel, Erwann Delay, John M. Lee, and Dale N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 (2005), no. 1, 111–136. MR 2169584
- Sun-Yung Alice Chang and María del Mar González, Fractional Laplacian in conformal geometry, Adv. Math. 226 (2011), no. 2, 1410–1432. MR 2737789, DOI 10.1016/j.aim.2010.07.016
- Xuezhang Chen, Mijia Lai, and Fang Wang, Escobar-Yamabe compactifications for Poincaré-Einstein manifolds and rigidity theorems, Adv. Math. 343 (2019), 16–35. MR 3880687, DOI 10.1016/j.aim.2018.11.005
- Sun-Yung A. Chang, Jie Qing, and Paul Yang, On the topology of conformally compact Einstein 4-manifolds, Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., vol. 350, Amer. Math. Soc., Providence, RI, 2004, pp. 49–61. MR 2082390, DOI 10.1090/conm/350/06337
- P. Yang, Dzh. King, and S.-Yu. A. Chang, Renormalized volumes for conformally compact Einstein manifolds, Sovrem. Mat. Fundam. Napravl. 17 (2006), 129–142 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 149 (2008), no. 6, 1755–1769. MR 2336463, DOI 10.1007/s10958-008-0094-0
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- Daguang Chen, Fang Wang, and Xiao Zhang, Eigenvalue estimate of the Dirac operator and rigidity of Poincare-Einstein metrics, Math. Z. 293 (2019), no. 1-2, 485–502. MR 4002287, DOI 10.1007/s00209-018-2210-2
- José F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), no. 7, 857–883. MR 1072395, DOI 10.1002/cpa.3160430703
- José F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math. (2) 136 (1992), no. 1, 1–50. MR 1173925, DOI 10.2307/2946545
- José F. Escobar, The Yamabe problem on manifolds with boundary, J. Differential Geom. 35 (1992), no. 1, 21–84. MR 1152225
- José F. Escobar, Addendum: “Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary” [Ann. of Math. (2) 136 (1992), no. 1, 1–50; MR1173925 (93e:53046)], Ann. of Math. (2) 139 (1994), no. 3, 749–750. MR 1283876, DOI 10.2307/2118578
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- Charles Fefferman and C. Robin Graham, $Q$-curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), no. 2-3, 139–151. MR 1909634, DOI 10.4310/MRL.2002.v9.n2.a2
- Thomas Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke. MR 1777332, DOI 10.1090/gsm/025
- Colin Guillarmou and Laurent Guillopé, The determinant of the Dirichlet-to-Neumann map for surfaces with boundary, Int. Math. Res. Not. IMRN 22 (2007), Art. ID rnm099, 26. MR 2376211, DOI 10.1093/imrn/rnm099
- Matthew J. Gursky and Qing Han, Non-existence of Poincaré-Einstein manifolds with prescribed conformal infinity, Geom. Funct. Anal. 27 (2017), no. 4, 863–879. MR 3678503, DOI 10.1007/s00039-017-0414-y
- Nicolas Ginoux, The Dirac spectrum, Lecture Notes in Mathematics, vol. 1976, Springer-Verlag, Berlin, 2009. MR 2509837, DOI 10.1007/978-3-642-01570-0
- C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557–565. MR 1190438, DOI 10.1112/jlms/s2-46.3.557
- C. Robin Graham and John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186–225. MR 1112625, DOI 10.1016/0001-8708(91)90071-E
- Colin Guillarmou and Jie Qing, Spectral characterization of Poincaré-Einstein manifolds with infinity of positive Yamabe type, Int. Math. Res. Not. IMRN 9 (2010), 1720–1740. MR 2643579, DOI 10.1093/imrn/rnp188
- C. Robin Graham, Volume and area renormalizations for conformally compact Einstein metrics, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), 2000, pp. 31–42. MR 1758076
- Matthew J. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys. 207 (1999), no. 1, 131–143. MR 1724863, DOI 10.1007/s002200050721
- C. Robin Graham and Maciej Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89–118. MR 1965361, DOI 10.1007/s00222-002-0268-1
- Oussama Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), no. 1, 151–162. MR 834486, DOI 10.1007/BF01210797
- Oussama Hijazi, Première valeur propre de l’opérateur de Dirac et nombre de Yamabe, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 12, 865–868 (French, with English summary). MR 1138566
- Oussama Hijazi and Sebastián Montiel, Supersymmetric rigidity of asymptotically locally hyperbolic manifolds, Internat. J. Math. 25 (2014), no. 3, 1450020, 25. MR 3189777, DOI 10.1142/S0129167X14500207
- Oussama Hijazi, Sebastián Montiel, and Antonio Roldán, Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys. 231 (2002), no. 3, 375–390. MR 1946443, DOI 10.1007/s00220-002-0725-0
- Oussama Hijazi, Sebastián Montiel, and Simon Raulot, The Cheeger constant of an asymptotically locally hyperbolic manifold and the Yamabe type of its conformal infinity, Comm. Math. Phys. 374 (2020), no. 2, 873–890. MR 4072232, DOI 10.1007/s00220-019-03545-x
- Oussama Hijazi, Sebastián Montiel, and Xiao Zhang, Conformal lower bounds for the Dirac operator of embedded hypersurfaces, Asian J. Math. 6 (2002), no. 1, 23–36. MR 1902645, DOI 10.4310/AJM.2002.v6.n1.a2
- M. Henningson and K. Skenderis, The holographic Weyl anomaly, J. High Energy Phys. 7 (1998), Paper 23, 12. MR 1644988, DOI 10.1088/1126-6708/1998/07/023
- John M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), no. 1-2, 253–271. MR 1362652, DOI 10.4310/CAG.1995.v3.n2.a2
- André Lichnerowicz, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13 (1987), no. 4, 331–344. MR 895296, DOI 10.1007/BF00401162
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5
- Martin Mayer and Cheikh Birahim Ndiaye, Proof of the remaining cases of the Yamabe boundary problem, arXiv:1505.06114, 2015.
- Martin Mayer and Cheikh Birahim Ndiaye, Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differential Geom. 107 (2017), no. 3, 519–560. MR 3715348, DOI 10.4310/jdg/1508551224
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 303464
- Simon Raulot, The Hijazi inequality on manifolds with boundary, J. Geom. Phys. 56 (2006), no. 11, 2189–2202. MR 2248870, DOI 10.1016/j.geomphys.2005.11.013
- Simon Raulot, On a spin conformal invariant on manifolds with boundary, Math. Z. 261 (2009), no. 2, 321–349. MR 2457302, DOI 10.1007/s00209-008-0327-4
- Simon Raulot, A remark on the rigidity of Poincaré-Einstein manifolds, Lett. Math. Phys. 109 (2019), no. 5, 1247–1256. MR 3946492, DOI 10.1007/s11005-018-01146-8
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- McKenzie Y. Wang, Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), no. 1, 59–68. MR 1029845, DOI 10.1007/BF00137402
- Changyu Xia, Rigidity of compact manifolds with boundary and nonnegative Ricci curvature, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1801–1806. MR 1415343, DOI 10.1090/S0002-9939-97-04078-1
Bibliographic Information
- Simon Raulot
- Affiliation: Laboratoire de Mathématiques R. Salem, UMR 6085 CNRS-Université de Rouen, Avenue de l’Université, BP.12, Technopôle du Madrillet, 76801 Saint-Étienne-du-Rouvray, France
- MR Author ID: 771773
- ORCID: 0000-0003-3608-8115
- Email: simon.raulot@univ-rouen.fr
- Received by editor(s): February 28, 2020
- Received by editor(s) in revised form: November 29, 2021
- Published electronically: June 28, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 46-66
- MSC (2020): Primary 53C24, 53C27, 53C80, 58J50
- DOI: https://doi.org/10.1090/ecgd/371
- MathSciNet review: 4445715