Maps on the Morse boundary
HTML articles powered by AMS MathViewer
- by Qing Liu
- Conform. Geom. Dyn. 26 (2022), 67-96
- DOI: https://doi.org/10.1090/ecgd/372
- Published electronically: August 11, 2022
- PDF | Request permission
Abstract:
For a proper geodesic metric space, the Morse boundary focuses on the hyperbolic-like directions in the space. The Morse boundary is a quasi-isometry invariant. That is, a quasi-isometry between two spaces induces a homeomorphism on their Morse boundaries. In this paper, we investigate additional structures on the Morse boundary which determine the space up to a quasi-isometry. We prove that a homeomorphism between the Morse boundaries of two proper, cocompact spaces is induced by a quasi-isometry if and only if both the homeomorphism and its inverse are bihölder, or quasi-symmetric, or strongly quasi-conformal.References
- Yago Antolín, Mahan Mj, Alessandro Sisto, and Samuel J. Taylor, Intersection properties of stable subgroups and bounded cohomology, Indiana Univ. Math. J. 68 (2019), no. 1, 179–199. MR 3922043, DOI 10.1512/iumj.2019.68.7592
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Marc Bourdon, Structure conforme au bord et flot géodésique d’un $\textrm {CAT}(-1)$-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63–102 (French, with English and French summaries). MR 1341941
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- Ruth Charney, Matthew Cordes, and Devin Murray, Quasi-Mobius homeomorphisms of Morse boundaries, Bull. Lond. Math. Soc. 51 (2019), no. 3, 501–515. MR 3964503, DOI 10.1112/blms.12246
- Ruth Charney, Matthew Cordes, and Alessandro Sisto, Complete topological descriptions of certain Morse boundaries, Preprint, arXiv:1908.03542, 2019.
- Matthew Cordes and Matthew Gentry Durham, Boundary convex cocompactness and stability of subgroups of finitely generated groups, Int. Math. Res. Not. IMRN 6 (2019), 1699–1724. MR 3932592, DOI 10.1093/imrn/rnx166
- Matthew Cordes and David Hume, Stability and the Morse boundary, J. Lond. Math. Soc. (2) 95 (2017), no. 3, 963–988. MR 3664526, DOI 10.1112/jlms.12042
- Christopher B. Croke and Bruce Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000), no. 3, 549–556. MR 1746908, DOI 10.1016/S0040-9383(99)00016-6
- Christopher H. Cashen and John M. Mackay, A metrizable topology on the contracting boundary of a group, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1555–1600. MR 3976570, DOI 10.1090/tran/7544
- Matthew Cordes, Morse boundaries of proper geodesic metric spaces, Groups Geom. Dyn. 11 (2017), no. 4, 1281–1306. MR 3737283, DOI 10.4171/GGD/429
- Matthew Cordes, Jacob Russell, Davide Spriano, and Abdul Zalloum, Regularity of Morse geodesics and growth of stable subgroups, Preprint, arXiv:2008.06379, 2020.
- Ruth Charney and Harold Sultan, Contracting boundaries of $\rm CAT(0)$ spaces, J. Topol. 8 (2015), no. 1, 93–117. MR 3339446, DOI 10.1112/jtopol/jtu017
- Étienne Ghys and Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French). MR 1086650, DOI 10.1007/978-1-4684-9167-8_{2}
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Merlin Incerti-Medici, Comparing topologies on the Morse boundary and quasi-isometry invariance, Geom. Dedicata 212 (2021), 153–176. MR 4251668, DOI 10.1007/s10711-020-00553-3
- Merlin Incerti-Medici and Abdul Zalloum, Sublinearly Morse boundaries from the viewpoint of combinatorics, Preprint, arXiv:2101.01037, 2021.
- Annette Karrer, Contracting boundaries of amalgamated free products of cat (0) groups with applications for right-angled Coxeter groups, Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), 2021.
- Qing Liu, Dynamics on the Morse boundary, Geom. Dedicata 214 (2021), 1–20. MR 4308266, DOI 10.1007/s10711-021-00600-7
- Sarah C. Mousley and Jacob Russell, Hierarchically hyperbolic groups are determined by their Morse boundaries, Geom. Dedicata 202 (2019), 45–67. MR 4001807, DOI 10.1007/s10711-018-0402-x
- Devin Murray, Topology and dynamics of the contracting boundary of cocompact $\rm CAT(0)$ spaces, Pacific J. Math. 299 (2019), no. 1, 89–116. MR 3947271, DOI 10.2140/pjm.2019.299.89
- Jean-Pierre Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992), no. 3, 441–456 (French). MR 1202417, DOI 10.4171/RMI/130
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
- Frédéric Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), no. 1, 50–74 (French, with French summary). MR 1395067, DOI 10.1112/jlms/54.1.50
- Abhijit Pal and Rahul Pandey, Acylindrical hyperbolicity of subgroups, New York J. Math. 26 (2020), 1213–1231. MR 4164179
- Yulan Qing and Kasra Rafi, Sublinearly Morse boundary I: $\textrm {CAT}(0)$ spaces. part B, Adv. Math. 404 (2022), no. part B, Paper No. 108442, 51. MR 4423805, DOI 10.1016/j.aim.2022.108442
- Yulan Qing and Abdul Zalloum, Rank one isometries in sublinearly Morse boundaries of CAT (0) groups, Preprint, arXiv:1911.03296, 2019.
- Hung Cong Tran, Divergence spectra and Morse boundaries of relatively hyperbolic groups, Geom. Dedicata 194 (2018), 99–129. MR 3798063, DOI 10.1007/s10711-017-0268-3
- Pekka Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 73–78. MR 595178, DOI 10.5186/aasfm.1980.0530
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- P. Tukia and J. Väisälä, Quasiconformal extension from dimension $n$ to $n+1$, Ann. of Math. (2) 115 (1982), no. 2, 331–348. MR 647809, DOI 10.2307/1971394
- Pekka Tukia and Jussi Väisälä, Bi-Lipschitz extensions of maps having quasiconformal extensions, Math. Ann. 269 (1984), no. 4, 561–572. MR 766014, DOI 10.1007/BF01450765
- Jussi Väisälä, Quasisymmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), no. 1, 191–204. MR 597876, DOI 10.1090/S0002-9947-1981-0597876-7
- Jussi Väisälä, Lectures on n-dimensional quasiconformal mappings, vol. 229, Springer, 2006.
- Abdalrazzaq Zalloum, A symbolic coding of the Morse boundary, Preprint, arXiv:1811.10383, 2018.
Bibliographic Information
- Qing Liu
- Affiliation: School of Mathematical Sciences & LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- ORCID: 0000-0002-2216-8029
- Email: qingliu@nankai.edu.cn
- Received by editor(s): May 2, 2020
- Received by editor(s) in revised form: March 2, 2022, and May 22, 2022
- Published electronically: August 11, 2022
- Additional Notes: This work was supported by the Fundamental Research Funds for the Central Universities, Nankai University (grant no. 63221034).
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 67-96
- MSC (2020): Primary 20F65, 57M07
- DOI: https://doi.org/10.1090/ecgd/372
- MathSciNet review: 4467305