The moduli space of marked generalized cusps in real projective manifolds
HTML articles powered by AMS MathViewer
- by Samuel A. Ballas, Daryl Cooper and Arielle Leitner
- Conform. Geom. Dyn. 26 (2022), 111-164
- DOI: https://doi.org/10.1090/ecgd/367
- Published electronically: August 17, 2022
- PDF | Request permission
Abstract:
ln this paper, a generalized cusp is a properly convex manifold with strictly convex boundary that is diffeomorphic to $M\times [0,\infty )$ where $M$ is a closed Euclidean manifold. These are classified by Ballas, Cooper, and Leitner [J. Topol. 13 (2020), pp. 1455-1496]. The marked moduli space is homeomorphic to a subspace of the space of conjugacy classes of representations of $\pi _1M$. It has one description as a generalization of a trace-variety, and another description involving weight data that is similar to that used to describe semi-simple Lie groups. It is also a bundle over the space of Euclidean similarity (conformally flat) structures on $M$, and the fiber is a closed cone in the space of cubic differentials. For $3$-dimensional orientable generalized cusps, the fiber is homeomorphic to a cone on a solid torus.References
- Michael Aschbacher, Chevalley groups of type $G_2$ as the group of a trilinear form, J. Algebra 109 (1987), no. 1, 193–259. MR 898346, DOI 10.1016/0021-8693(87)90173-6
- Samuel A. Ballas, Daryl Cooper, and Arielle Leitner, Generalized cusps in real projective manifolds: classification, J. Topol. 13 (2020), no. 4, 1455–1496. MR 4125754, DOI 10.1112/topo.12161
- Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), no. 3, 297–336 (German). MR 1511623, DOI 10.1007/BF01564500
- Wilhelm Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band I. Elementare Differentialgeometrie, Dover Publications, New York, N.Y., 1945 (German). 3d ed. MR 0015247
- Eugenio Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. MR 106487
- Leonard S. Charlap, Bieberbach groups and flat manifolds, Universitext, Springer-Verlag, New York, 1986. MR 862114, DOI 10.1007/978-1-4613-8687-2
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the Monge-Ampère equation $\textrm {det}(\partial ^{2}u/\partial x_{i}\partial sx_{j})=F(x,u)$, Comm. Pure Appl. Math. 30 (1977), no. 1, 41–68. MR 437805, DOI 10.1002/cpa.3160300104
- Suhyoung Choi, The convex real projective orbifolds with radial or totally geodesic ends: a survey of some partial results, In the tradition of Ahlfors-Bers. VII, Contemp. Math., vol. 696, Amer. Math. Soc., Providence, RI, 2017, pp. 51–85. MR 3715441, DOI 10.1090/conm/696/14016
- Daryl Cooper, Darren Long, and Stephan Tillmann, Deforming convex projective manifolds, Geom. Topol. 22 (2018), no. 3, 1349–1404. MR 3780436, DOI 10.2140/gt.2018.22.1349
- D. Cooper, D. D. Long, and S. Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015), 181–251. MR 3336086, DOI 10.1016/j.aim.2015.02.009
- Albrecht Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54–80. MR 97057, DOI 10.2307/1970043
- Skip Garibaldi and Robert M. Guralnick, Simple groups stabilizing polynomials, Forum Math. Pi 3 (2015), e3, 41. MR 3406824, DOI 10.1017/fmp.2015.3
- Ross Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008. MR 2365352, DOI 10.1007/978-0-387-74614-2
- A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 520490
- N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449–473. MR 1174252, DOI 10.1016/0040-9383(92)90044-I
- B. Klartag, Affine hemispheres of elliptic type, Algebra i Analiz 29 (2017), no. 1, 145–188; English transl., St. Petersburg Math. J. 29 (2018), no. 1, 107–138. MR 3660687, DOI 10.1090/spmj/1484
- François Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis., 1057–1099. MR 2402597, DOI 10.4310/PAMQ.2007.v3.n4.a10
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- John C. Loftin, Affine spheres and convex $\Bbb {RP}^n$-manifolds, Amer. J. Math. 123 (2001), no. 2, 255–274. MR 1828223, DOI 10.1353/ajm.2001.0011
- Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994. Geometry of affine immersions. MR 1311248
- A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972), no. 1, 33–46. MR 319126, DOI 10.1007/BF00147379
- Boris Reichstein, On expressing a cubic form as a sum of cubes of linear forms, Linear Algebra Appl. 86 (1987), 91–122. MR 870934, DOI 10.1016/0024-3795(87)90289-8
- Bruce Reznick, Some new canonical forms for polynomials, Pacific J. Math. 266 (2013), no. 1, 185–220. MR 3105781, DOI 10.2140/pjm.2013.266.185
- Tuong Ton That, Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc. 216 (1976), 1–46. MR 399366, DOI 10.1090/S0002-9947-1976-0399366-1
Bibliographic Information
- Samuel A. Ballas
- Affiliation: Florida State University
- MR Author ID: 1084949
- ORCID: 0000-0003-3340-3853
- Email: ballas@math.fsu.edu
- Daryl Cooper
- Affiliation: University of California, Santa Barbara
- MR Author ID: 239760
- Email: cooper@math.ucsb.edu
- Arielle Leitner
- Affiliation: Afeka College of Engineering
- MR Author ID: 907776
- Email: ariellel@afeka.ac.il
- Received by editor(s): March 6, 2021
- Published electronically: August 17, 2022
- Additional Notes: The first author was partially supported by the NSF grant DMS-1709097. The second author was partially supported by the University of Sydney Mathematics Research Institute (SMRI). The third author was partially supported by ISF grant 704/08.
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 111-164
- MSC (2020): Primary 22-02, 51-02, 57-02
- DOI: https://doi.org/10.1090/ecgd/367
- MathSciNet review: 4470161