Best possibility of the Fatou-Shishikura inequality for transcendental entire functions in the Speiser class
HTML articles powered by AMS MathViewer
- by Masashi Kisaka and Hiroto Naba
- Conform. Geom. Dyn. 26 (2022), 165-181
- DOI: https://doi.org/10.1090/ecgd/373
- Published electronically: October 11, 2022
- PDF | Request permission
Abstract:
The Speiser class $S$ is the set of all entire functions with finitely many singular values. Let $S_q\subset S$ be the set of all transcendental entire functions with exactly $q$ distinct singular values. The Fatou-Shishikura inequality for $f\in S_q$ gives an upper bound $q$ of the sum of the numbers of its Cremer cycles and its cycles of immediate attractive basins, parabolic basins, and Siegel disks. In this paper, we show that the inequality for $f\in S_q$ is best possible in the following sense: For any combination of the numbers of these cycles which satisfies the inequality, some $T\in S_q$ realizes it. In our construction, $T$ is a structurally finite transcendental entire function.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, DOI 10.1112/plms/s3-49.3.563
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014. With contributions by Xavier Buff, Shaun Bullett, Adam L. Epstein, Peter Haïssinsky, Christian Henriksen, Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei and Michael Yampolsky. MR 3445628, DOI 10.1017/CBO9781107337602
- Hubert Cremer, Zum Zentrumproblem, Math. Ann. 98 (1928), no. 1, 151–163 (German). MR 1512397, DOI 10.1007/BF01451586
- Hubert Cremer, Über die Schrödersche Funktionalgleichung und das Schwarzsche Eckenabbildungsproblem (German), Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 84 (1932), 291–324.
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- A. Ya. Khinchin, Continued fractions, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR 1451873
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337, DOI 10.1007/BFb0077071
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- Yûsuke Okuyama, Linearization problem on structurally finite entire functions, Kodai Math. J. 28 (2005), no. 2, 347–358. MR 2153922, DOI 10.2996/kmj/1123767015
- C. D. Olds, Continued fractions, Random House, New York, 1963. MR 0146146, DOI 10.5948/UPO9780883859261
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140, DOI 10.24033/asens.1522
- Ian Short, Ford circles, continued fractions, and rational approximation, Amer. Math. Monthly 118 (2011), no. 2, 130–135. MR 2795580, DOI 10.4169/amer.math.monthly.118.02.130
- Carl Ludwig Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607–612. MR 7044, DOI 10.2307/1968952
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Masahiko Taniguchi, Explicit representation of structurally finite entire functions, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 4, 68–70. MR 1829377
- Masahiko Taniguchi, Synthetic deformation space of an entire function, Value distribution theory and complex dynamics (Hong Kong, 2000) Contemp. Math., vol. 303, Amer. Math. Soc., Providence, RI, 2002, pp. 107–136. MR 1943529, DOI 10.1090/conm/303/05238
Bibliographic Information
- Masashi Kisaka
- Affiliation: Department of Mathematical Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- MR Author ID: 335457
- Email: kisaka@math.h.kyoto-u.ac.jp
- Hiroto Naba
- Affiliation: Department of Mathematical Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Email: naba.hiroto.78r@st.kyoto-u.ac.jp
- Received by editor(s): November 17, 2021
- Received by editor(s) in revised form: June 4, 2022
- Published electronically: October 11, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Conform. Geom. Dyn. 26 (2022), 165-181
- MSC (2020): Primary 37F10; Secondary 30D05, 37F31
- DOI: https://doi.org/10.1090/ecgd/373
- MathSciNet review: 4494582