On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections
HTML articles powered by AMS MathViewer
- by Russell Lodge, Mikhail Lyubich, Sergei Merenkov and Sabyasachi Mukherjee;
- Conform. Geom. Dyn. 27 (2023), 1-54
- DOI: https://doi.org/10.1090/ecgd/379
- Published electronically: February 1, 2023
- PDF | Request permission
Abstract:
According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group $H$ whose limit set is a generalized Apollonian gasket $\Lambda _H$. We design a surgery that relates $H$ to a rational map $g$ whose Julia set $\mathcal {J}_g$ is (non-quasiconformally) homeomorphic to $\Lambda _H$. We show for a large class of triangulations, however, the groups of quasisymmetries of $\Lambda _H$ and $\mathcal {J}_g$ are isomorphic and coincide with the corresponding groups of self-homeomorphisms. Moreover, in the case of $H$, this group is equal to the group of Möbius symmetries of $\Lambda _H$, which is the semi-direct product of $H$ itself and the group of Möbius symmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when $\Lambda _H$ is the classical Apollonian gasket), we give a quasiregular model for the above actions which is quasiconformally equivalent to $g$ and produces $H$ by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle.References
- Dov Aharonov and Harold S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Analyse Math. 30 (1976), 39–73. MR 447589, DOI 10.1007/BF02786704
- Kari Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37–60. MR 1294669, DOI 10.1007/BF02392568
- Laurent Bartholdi and Dzmitry Dudko, Algorithmic aspects of branched coverings IV/V. Expanding maps, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7679–7714. MR 3852445, DOI 10.1090/tran/7199
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- Mario Bonk and Sergei Merenkov, Quasisymmetric rigidity of square Sierpiński carpets, Ann. of Math. (2) 177 (2013), no. 2, 591–643. MR 3010807, DOI 10.4007/annals.2013.177.2.5
- Mario Bonk and Daniel Meyer, Expanding Thurston maps, Mathematical Surveys and Monographs, vol. 225, American Mathematical Society, Providence, RI, 2017. MR 3727134, DOI 10.1090/surv/225
- Mario Bonk, Mikhail Lyubich, and Sergei Merenkov, Quasisymmetries of Sierpiński carpet Julia sets, Adv. Math. 301 (2016), 383–422. MR 3539379, DOI 10.1016/j.aim.2016.06.007
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580, DOI 10.1007/BF02684767
- Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170. MR 556585, DOI 10.1007/BF02684772
- B. V. Boyarskiĭ, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. (N.S.) 43(85) (1957), 451–503 (Russian). MR 106324
- Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014. With contributions by Xavier Buff, Shaun Bullett, Adam L. Epstein, Peter Haïssinsky, Christian Henriksen, Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei and Michael Yampolsky. MR 3445628, DOI 10.1017/CBO9781107337602
- Xavier Buff, Adam Epstein, Sarah Koch, and Kevin Pilgrim, On Thurston’s pullback map, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 561–583. MR 2508269, DOI 10.1201/b10617-20
- Shaun Bullett and Christopher Penrose, Mating quadratic maps with the modular group, Invent. Math. 115 (1994), no. 3, 483–511. MR 1262941, DOI 10.1007/BF01231770
- Danny Calegari and Koji Fujiwara, Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems 30 (2010), no. 5, 1343–1369. MR 2718897, DOI 10.1017/S0143385709000662
- Kristin Cordwell, Selina Gilbertson, Nicholas Nuechterlein, Kevin M. Pilgrim, and Samantha Pinella, On the classification of critically fixed rational maps, Conform. Geom. Dyn. 19 (2015), 51–94. MR 3323420, DOI 10.1090/S1088-4173-2015-00275-1
- Guizhen Cui, Wenjuan Peng, and Lei Tan, On a theorem of Rees-Shishikura, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 5, 981–993 (English, with English and French summaries). MR 3088264, DOI 10.5802/afst.1359
- Guy David, Solutions de l’équation de Beltrami avec $\|\mu \|_\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25–70 (French). MR 975566, DOI 10.5186/aasfm.1988.1303
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), no. 9, 586–601. MR 1524411, DOI 10.2307/2302799
- L. Geyer, Classification of critically fixed anti-rational maps, https://arxiv.org/abs/2006.10788v3, 2022.
- Étienne Ghys and Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French). MR 1086650, DOI 10.1007/978-1-4684-9167-8_{2}
- Peter Haïssinsky and Kevin M. Pilgrim, Quasisymmetrically inequivalent hyperbolic Julia sets, Rev. Mat. Iberoam. 28 (2012), no. 4, 1025–1034. MR 2990132, DOI 10.4171/RMI/701
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Atsushi Kameyama, On Julia sets of postcritically finite branched coverings. I. Coding of Julia sets, J. Math. Soc. Japan 55 (2003), no. 2, 439–454. MR 1961295, DOI 10.2969/jmsj/1191419125
- Jan Kiwi, Rational laminations of complex polynomials, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) Contemp. Math., vol. 269, Amer. Math. Soc., Providence, RI, 2001, pp. 111–154. MR 1810538, DOI 10.1090/conm/269/04331
- Alex Kontorovich, From Apollonius to Zaremba: local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 2, 187–228. MR 3020826, DOI 10.1090/S0273-0979-2013-01402-2
- Alex Kontorovich and Kei Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 (2019), no. 2, 436–441. MR 3904690, DOI 10.1073/pnas.1721104116
- M. Lyubich, Conformal geometry and dynamics of quadratic polynomials, vol. I–II, http://www.math.stonybrook.edu/~mlyubich/book.pdf.
- Russell Lodge, Yusheng Luo, and Sabyasachi Mukherjee, Circle packings, kissing reflection groups and critically fixed anti-rational maps, Forum Math. Sigma 10 (2022), Paper No. e3, 38. MR 4365080, DOI 10.1017/fms.2021.81
- S.-Y. Lee, M. Lyubich, N. G. Makarov, and S. Mukherjee, Dynamics of Schwarz reflections: the mating phenomena, Ann. Sci. Éc. Norm. Supér. (4) (2022), To appear, https://arxiv.org/abs/1811.04979v3.
- S.-Y. Lee, M. Lyubich, N. G. Makarov, and S. Mukherjee, Schwarz reflections and the Tricorn, https://arxiv.org/abs/1812.01573v2, 2022.
- Seung-Yeop Lee, Mikhail Lyubich, Nikolai G. Makarov, and Sabyasachi Mukherjee, Schwarz reflections and anti-holomorphic correspondences, Adv. Math. 385 (2021), Paper No. 107766, 88. MR 4250610, DOI 10.1016/j.aim.2021.107766
- Mikhail Lyubich and Sergei Merenkov, Quasisymmetries of the basilica and the Thompson group, Geom. Funct. Anal. 28 (2018), no. 3, 727–754. MR 3816522, DOI 10.1007/s00039-018-0452-0
- M. Lyubich, S. Merenkov, S. Mukherjee, and D. Ntalampekos, David extension of circle homeomorphisms, welding, mating, and removability, https://arxiv.org/abs/2010.11256v2, 2020.
- Anthony Manning, A relation between Lyapunov exponents, Hausdorff dimension and entropy, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 451–459 (1982). MR 662737, DOI 10.1017/s0143385700001371
- Albert Marden, Hyperbolic manifolds, Cambridge University Press, Cambridge, 2016. An introduction in 2 and 3 dimensions. MR 3586015, DOI 10.1017/CBO9781316337776
- Sergei Merenkov, Local rigidity for hyperbolic groups with Sierpiński carpet boundaries, Compos. Math. 150 (2014), no. 11, 1928–1938. MR 3279262, DOI 10.1112/S0010437X14007490
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Carsten Lunde Petersen and Daniel Meyer, On the notions of mating, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 5, 839–876 (English, with English and French summaries). MR 3088260, DOI 10.5802/afst.1355
- Mahan Mj and Caroline Series, Limits of limit sets I, Geom. Dedicata 167 (2013), 35–67. MR 3128770, DOI 10.1007/s10711-012-9803-4
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324
- Dimitrios Ntalampekos, A removability theorem for Sobolev functions and detour sets, Math. Z. 296 (2020), no. 1-2, 41–72. MR 4140730, DOI 10.1007/s00209-019-02405-7
- Kevin Michael Pilgrim, Cylinders for iterated rational maps, ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–University of California, Berkeley. MR 2691488
- Kevin M. Pilgrim and Tan Lei, Combining rational maps and controlling obstructions, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 221–245. MR 1609463, DOI 10.1017/S0143385798100329
- Mark Pollicott and Richard Sharp, Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1749–1757. MR 3020860, DOI 10.1090/S0002-9939-2012-11447-9
- André Rocha, Meromorphic extension of the Selberg zeta function for Kleinian groups via thermodynamic formalism, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 179–190. MR 1356167, DOI 10.1017/S0305004100074065
- R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427–439. MR 7929, DOI 10.1090/S0002-9947-1943-0007929-6
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI 10.1017/S0143385700003722
- W. P. Thurston, The geometry and topology of three-manifolds, http://library.msri.org/books/gt3m/PDF/Thurston-gt3m.pdf.
- È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci., vol. 29, Springer, Berlin, 1993, pp. 139–248. MR 1254933, DOI 10.1007/978-3-662-02901-5_{2}
- K. Wildrick, Quasisymmetric parametrizations of two-dimensional metric planes, Proc. Lond. Math. Soc. (3) 97 (2008), no. 3, 783–812. MR 2448247, DOI 10.1112/plms/pdn023
- Malik Younsi, Removability, rigidity of circle domains and Koebe’s conjecture, Adv. Math. 303 (2016), 1300–1318. MR 3552551, DOI 10.1016/j.aim.2016.08.039
- Saeed Zakeri, On boundary homeomorphisms of trans-quasiconformal maps of the disk, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 241–260. MR 2386849
- Saeed Zakeri, David maps and Hausdorff dimension, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 121–138. MR 2041702
Bibliographic Information
- Russell Lodge
- Affiliation: Department of Mathematics and Computer Science, Indiana State University, Terre Haute, Indiana 47809
- MR Author ID: 1022713
- Email: russell.lodge@indstate.edu
- Mikhail Lyubich
- Affiliation: Mathematics Department and the Institute for Mathematical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794
- MR Author ID: 189401
- Email: mlyubich@math.stonybrook.edu
- Sergei Merenkov
- Affiliation: Department of Mathematics, City College of New York, New York, New York 10031; and Mathematics Program, CUNY Graduate Center, New York, New York 10016.
- MR Author ID: 663502
- ORCID: 0000-0002-6336-4640
- Email: smerenkov@ccny.cuny.edu
- Sabyasachi Mukherjee
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
- MR Author ID: 1098266
- ORCID: 0000-0002-6868-6761
- Email: sabya@math.tifr.res.in
- Received by editor(s): November 8, 2021
- Received by editor(s) in revised form: September 26, 2022
- Published electronically: February 1, 2023
- Additional Notes: The second author was supported by NSF grants DMS-1600519 and 1901357, and by a Fellowship from the Hagler Institute for Advanced Study. The third author was supported by NSF grant DMS-1800180. The fourth author was supported by the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500, an endowment of the Infosys Foundation, and SERB research project grant SRG/2020/000018. The first and last authors were supported by the Institute for Mathematical Sciences at Stony Brook University during part of the work on this project.
- © Copyright 2023 American Mathematical Society
- Journal: Conform. Geom. Dyn. 27 (2023), 1-54
- MSC (2020): Primary 37F10, 37F32, 30C62, 30C10, 30D05; Secondary 30F40, 30C45, 37F31
- DOI: https://doi.org/10.1090/ecgd/379
- MathSciNet review: 4567832