Symmetries of Julia sets for rational maps
HTML articles powered by AMS MathViewer
- by Gustavo Rodrigues Ferreira;
- Conform. Geom. Dyn. 27 (2023), 145-160
- DOI: https://doi.org/10.1090/ecgd/383
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
Since the 1980s, much progress has been done in completely determining which functions share a Julia set. The polynomial case was completely solved in 1995, and it was shown that the symmetries of the Julia set play a central role in answering this question. The rational case remains open, but it was already shown to be much more complex than the polynomial one. Here, we offer partial extensions to Beardon’s results on the symmetry group of Julia sets, and discuss them in the context of singularly perturbed maps.References
- I. N. Baker and A. Erëmenko, A problem on Julia sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 229–236. MR 951972, DOI 10.5186/aasfm.1987.1205
- A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc. 22 (1990), no. 6, 576–582. MR 1099008, DOI 10.1112/blms/22.6.576
- A. F. Beardon, Polynomials with identical Julia sets, Complex Variables Theory Appl. 17 (1992), no. 3-4, 195–200. MR 1147050, DOI 10.1080/17476939208814512
- François Berteloot, Bifurcation currents in holomorphic families of rational maps, Pluripotential theory, Lecture Notes in Math., vol. 2075, Springer, Heidelberg, 2013, pp. 1–93. MR 3089068, DOI 10.1007/978-3-642-36421-1_{1}
- T. K. Carne, Geometry and Groups, 2012. Available from https://www.dpmms.cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.pdf.
- Robert L. Devaney, Daniel M. Look, and David Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005), no. 6, 1621–1634. MR 2189680, DOI 10.1512/iumj.2005.54.2615
- Peter Doyle and Curt McMullen, Solving the quintic by iteration, Acta Math. 163 (1989), no. 3-4, 151–180. MR 1032073, DOI 10.1007/BF02392735
- Alexandre Eremenko and Sebastian van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6453–6463. MR 2833563, DOI 10.1090/S0002-9947-2011-05308-0
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 208–314 (French). MR 1504797, DOI 10.24033/bsmf.1008
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
- Jun Hu, Francisco G. Jimenez, and Oleg Muzician, Rational maps with half symmetries, Julia sets, and multibrot sets in parameter planes, Conformal dynamics and hyperbolic geometry, Contemp. Math., vol. 573, Amer. Math. Soc., Providence, RI, 2012, pp. 119–146. MR 2964076, DOI 10.1090/conm/573/11393
- Gaston Julia, Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) 39 (1922), 131–215 (French). MR 1509242, DOI 10.24033/asens.740
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- G. Levin and F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2179–2190. MR 1376996, DOI 10.1090/S0002-9939-97-03810-0
- M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Yûsuke Okuyama, Complex dynamics, value distributions, and potential theory, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 303–311. MR 2173366
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- W. Schmidt and N. Steinmetz, The polynomials associated with a Julia set, Bull. London Math. Soc. 27 (1995), no. 3, 239–241. MR 1328699, DOI 10.1112/blms/27.3.239
- Hexi Ye, Rational functions with identical measure of maximal entropy, Adv. Math. 268 (2015), 373–395. MR 3276598, DOI 10.1016/j.aim.2014.10.001
Bibliographic Information
- Gustavo Rodrigues Ferreira
- Affiliation: Institute of Mathematics and Statistics, University of São Paulo, Brazil
- Address at time of publication: Department of Mathematics, Imperial College London, United Kingdom
- MR Author ID: 1479174
- ORCID: 0000-0002-7330-0018
- Email: g.rodrigues-ferreira@imperial.ac.uk
- Received by editor(s): August 19, 2019
- Received by editor(s) in revised form: December 22, 2021, and June 7, 2022
- Published electronically: February 28, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Conform. Geom. Dyn. 27 (2023), 145-160
- MSC (2020): Primary 37F10
- DOI: https://doi.org/10.1090/ecgd/383
- MathSciNet review: 4553913