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NORTH-SOUTH TYPE DYNAMICS OF RELATIVE ATOROIDAL

AUTOMORPHISMS OF FREE GROUPS ON A RELATIVE

SPACE OF CURRENTS

YASSINE GUERCH

Abstract. This paper, which is the second of a series of three papers, studies
dynamical properties of elements of OutpFnq, the outer automorphism group
of a nonabelian free group Fn. We prove that, for every exponentially growing
outer automorphism of Fn, there exists a preferred compact topological space,
the space of currents relative to a malnormal subgroup system, on which φ
acts by homeomorphism with a North-South dynamics behavior.

1. Introduction

Let n ě 2. This paper is the second of a sequence of three papers where we study
the growth of the conjugacy classes of elements of Fn under iterations of elements
of OutpFnq, the outer automorphism group of a nonabelian free group of rank n.
An outer automorphism φ P OutpFnq is exponentially growing if there exist g P Fn,
a free basis B of Fn and a constant K ą 0 such that, for every m P N

˚, we have

�Bpφm
prgsqq ě eKm,

where �Bpφmprgsqq denotes the length of a cyclically reduced representative of
φmprgsq in the basis B. Such an element g is said to be exponentially growing
under iteration of φ and the set of elements of Fn which have exponential growth
under iteration of φ is the pure exponential part of φ. It is known, using for instance
the train track technology of Bestvina and Handel (see [BH]), that every element g
of Fn which is not exponentially growing under iteration of φ is polynomially grow-
ing under iteration of φ, that is, there exists an integer K P N such that, for every
m P N

˚, we have
�Bpφm

prgsqq ď pm ` 1q
K .

Initiated by Švarc, Milnor and Wolf, and particularly developed by Guivarc’h,
Gromov and Grigorchuk, growth problems in groups are a major field of study in
geometric and dynamical group theory, see for instance [LS,Man,Hel]. Many works
study the subfield of the element growths under iteration of group automorphisms
(see for instance [BFH1,Lev,CU]), for instance in the context of hyperbolic groups.
See in particular [Cou] for examples of intermediate growth rates. As another exam-
ple, Dahmani and Krishna [DS] found a sufficient condition for the suspension of an
automorphism of a hyperbolic group to be relatively hyperbolic, and this condition
is linked with the structure of the set of all elements of the hyperbolic group which
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have polynomial growth under iterations of the considered automorphism. Such
exponentially growing outer automorphisms of Fn were already studied in distinct
contexts. For instance, Bestvina, Feighn and Handel [BFH1] used them to prove
the Tits alternative for OutpFnq.

If φ P OutpFnq, we denote by Polypφq the set of elements g of Fn such that g is
polynomially growing under iteration of φ. Let PolypHq “

Ş

φPH Polypφq. The aim
of this series of papers is to prove Theorem 1.1.

Theorem 1.1. Let n ě 3 and let H be a subgroup of OutpFnq. There exists φ P H
such that Polypφq “ PolypHq.

Informally, Theorem 1.1 shows that the exponential growth of a subgroup H of
OutpFnq is encaptured by the exponential growth of a single element of H. Indeed,
if g P Fn has exponential growth for some element ψ P H, then g has exponential
growth for an element φ P H given by Theorem 1.1. The proof relies on dynamical
properties of the action of outer automorphisms on some preferred topological space.
In this article, we study the dynamical properties of the elements of the subgroup
H of Fn that will be used in [Gue2] in order to construct an element φ P H given
by Theorem 1.1.

Let φ P OutpFnq be an exponentially growing outer automorphism. In this
article, we construct natural (compact, metrizable) topological spaces X on which
a subgroup of OutpFnq containing φ acts by homeomorphisms with the additional
property that φ acts with North-South dynamics : there exist two proper disjoint
closed subsets of X such that every point of X which is not contained in these
subsets converges to one of the two subsets under positive or negative iteration of
φ. North-South dynamics are preferred tools to apply ping-pong arguments similar
to the ones of Tits [Tit] and are used to obtain structural properties of some groups.

The topological space X that we use in the proof of Theorem 1.1 is constructed
in such a way that it allows us to create a dictionary between dynamical properties
of the action of φ on X and growth properties of elements of Fn under iteration of φ.
In order to constructX, we first need to detect all the elements g of Fn such that the
length of rgs with respect to any basis of Fn grows at most polynomially fast under
iteration of φ. Levitt [Lev] proved that there exist finitely many finitely generated
subgroupsH1, . . . , Hk of Fn such that the conjugacy class of an element g of Fn is not
exponentially growing under iteration of φ if and only if g is contained in a conjugate
of some Hi for i P t1, . . . , ku. Moreover, the set Apφq “ trH1s, . . . , rHksu is a
malnormal subgroup system: for every i P t1, . . . , ku, the group Hi is a malnormal
subgroup of Fn and for all distinct subgroups A and B such that rAs, rBs P Apφq,
we have A X B “ teu. Every element of Fn which is contained in a conjugate of
some Hi with i P t1, . . . , ku has polynomial growth under iteration of φ. Moreover,
we have Polypφq “

Ťr
i“1

Ť

gPFn
gHig

´1.

In [Gue1], we constructed a compact, metrizable space, called the space of pro-
jectivised currents relative to Apφq, denoted by PCurrpFn,Apφqq, which is the
space of projectivised Radon measures on the double boundary of Fn relative to
Apφq, equipped with the weak-˚ topology (see Section 2.4 for precise definitions).
In [Gue1], we proved that the set of currents associated with Apφq-nonperipheral
conjugacy classes of elements of g of Fn, that is, such that g is not contained in
the conjugacy class of some Hi with i P t1, . . . , ku, is dense in PCurrpFn,Apφqq.
Thus, the set of conjugacy classes of elements of Fn whose length grows expo-
nentially fast under iteration of φ is dense in PCurrpFn,Apφqq. If we denote by
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OutpFn,Apφqq the subgroup of OutpFnq consisting of every element ψ P OutpFnq

such that ψpApφqq “ Apφq, the group OutpFn,Apφqq acts by homeomorphisms on
PCurrpFn,Apφqq by pushing forward the measures. In this article, we prove Theo-
rem 1.2.

Theorem 1.2 (See Theorem 5.1). Let n ě 3 and let φ be an exponentially growing
outer automorphism. The outer automorphism φ acts with North-South dynamics
on the space PCurrpFn,Apφqq.

In fact, we prove a slightly stronger result since we prove a uniform North-South
dynamics result, that is, the convergence in the North-South dynamics statement
can be made uniform on compact subsets of PCurrpFn,Apφqq. As explained above,
North-South dynamics results given by Theorem 1.2 will be a key point in the proof
of Theorem 1.1.

Such dynamical results already appear in similar contexts. For instance, Tits
proved in [Tit] its alternative for linear groups using North-South dynamics and
ping-pong arguments. In the context of the mapping class group ModpSq of a com-
pact connected orientable surface S of genus at least 2, pseudo-Anosov elements
act with North-South dynamics on the space of projectivised measured foliations
([Thu], see also the work of Ivanov [Iva]) or the curve complex [MM]. Using this
North-South dynamics, Ivanov [Iva] (see also the work of McCarthy [McC]) later
proved a Tits alternative for subgroups of ModpSq. Similarly, North-South dy-
namics results were obtained for certain classes of outer automorphisms of Fn.
For instance, fully irreducible outer automorphisms act on the compactified Outer
space [LL] or the space of projectivised currents ([Mar], see also the work of Uyanik
[Uya1]) with a North-South dynamics and atoroidal outer automorphisms act on
the space of projectivised currents with a North-South dynamics [LU2,Uya2]. Clay
and Uyanik [CU] applied this result in the proof of the fact that, for every subgroup
H of OutpFnq, either H contains an atoroidal outer automorphism or there exists
a nontrivial element g of Fn such that, for every element φ P H, there exists k P N

˚

such that we have φkprgsq “ rgs. Such dynamical results were later extended to
relative contexts by Gupta [Gup1,Gup2]. We note that if F is a nonsporadic free
factor system and if φ P OutpFn,Fq is fully irreducible and atoroidal relative to F ,
then Theorem 5.1 implies [Gup1, Theorem A]. Moreover, the North-South dynam-
ics result proved by Gupta is not sufficient to prove Theorem 1.2 since we also need
to deal with sporadic free factor systems.

In order to prove Theorem 1.1, we will need a slightly stronger result than The-
orem 1.2. Indeed, let φ P OutpFnq and let Apφq “ trH1s, . . . , rHksu. Suppose
that φ preserves the conjugacy class of a corank one free factor A of Fn. Let
Apφq ^ A be the malnormal subgroup system consisting in the conjugacy classes
of the intersection of the conjugates of the subgroups Hi with i P t1, . . . , ku with
A. By Theorem 1.2, there exist closed disjoint subsets Δ˘pφ|Aq such that the
outer automorphism φ|A P OutpA,Apφq ^ Aq acts with North-South dynamics on
PCurrpA,Apφq ^ Aq with respect to Δ˘pφ|Aq. There is a canonical embedding
PCurrpA,Apφq ^ Aq ãÑ PCurrpFn,Apφq ^ Aq, and we denote by Δ˘pφq the image
of Δ˘pφ|Aq in PCurrpFn,Apφq ^ Aq. We will need to understand the dynamics of
φ on the space PCurrpFn,Apφq ^ Aq. As there might exist elements in Fn which
have polynomial growth under iterations of φ and which are not contained in a
conjugate of A, one cannot apply Theorem 1.2 to obtain a North-South dynamics
result. However, we obtain the following result.
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Theorem 1.3 (See Theorem 6.4). Let n ě 3 and let φ P OutpFnq be an expo-
nentially growing outer automorphism which preserves a corank one free factor A.

There exist two closed compact subsets pΔ˘pφq of PCurrpFn,Apφq ^Aq such that the
following holds. Let U˘ be open neighborhoods of Δ˘pφq in PCurrpFn,Apφq^Aq and
pV˘ be open neighborhoods of pΔ˘pφq in PCurrpFn,Apφq ^ Aq. There exists M P N

˚

such that for every n ě M , we have

φ˘n
pPCurrpFn,Apφq ^ Aq ´ pV¯q Ď U˘.

In [CU, Theorem 4.15], Clay and Uyanik proved an analogue of Theorem 1.3
in the context of atoroidal outer automorphisms of Fn. In Theorem 1.3, the two

closed subsets pΔ˘pφq have nonempty intersection, so that Theorem 1.3 is not a
North-South dynamics result as defined above. However, Theorem 1.3 gives a
sufficiently precise description of the dynamics of φ for our considerations. The

intersection pΔ`pφq X pΔ´pφq corresponds informally to the polynomial growth part
of φ. This intersection, denoted by KPG in the rest of the article, is the closure in
PCurrpFn,Apφq ^ Aq of the pApφq ^ Aq-nonperipheral elements of Fn which have
polynomial growth under iteration of φ. In Section 3.3, we present a complete study
of the subspace KPG in a more general context.

In fact, Section 3 is devoted to the study of the polynomial growth of an exponen-
tially growing outer automorphism. Following the works of Bestvina, Feighn and
Handel [BFH1,BFH2], of Feighn and Handel [FH] and of Handel and Mosher [HM],
we use appropriate relative train track representatives of a power of an exponen-
tially growing outer automorphism φ in order to describe Apφq geometrically. It
gives rise to a (not necessarily connected) topological graph G˚ such that the fun-
damental group of every connected component G˚

c of G˚ injects into Fn and such
that the set trπ1pG˚

c qsuG˚
c Pπ0pG˚q where π1pG˚

c q is viewed as a subgroup of Fn is

equal to Apφq (see Proposition 3.14). We then use this characterization of Apφq in
Section 3.3 in order to describe the subset KPG.

We now sketch a proof of Theorem 1.2. The proofs of Theorem 1.2 and Theo-
rem 1.3 given in this paper are long and quite technical, this is why we postpone
the proof of Theorem 1.1 in [Gue2]. Let φ P OutpFnq be exponentially growing.
The first step is to construct the closed subsets Δ˘pφq associated with φ as de-
fined in Theorem 1.2. This is done in Section 4. In order to construct them,
we use as inspiration the construction given by Lustig and Uyanik in [LU2] (see
also [Uya2, Gup1]). We choose an appropriate relative train track representative
f : G Ñ G of a power of φ, where G is a graph whose fundamental group is isomor-
phic to Fn. A current of Δ`pφq is then constructed by considering occurrences of
paths in limmÑ8 fmpeq, where e is an edge in G whose length grows exponentially
fast under iteration of f (see Proposition 4.4). Currents of Δ´pφq are then defined
similarly using a representative of a power of φ´1. We then prove Theorem 1.2 in
Section 5. Let rμs P PCurrpFn,Apφqq ´ Δ˘pφq be the current associated with a
Apφq-nonperipheral conjugacy class rws P Fn. Then rws is represented by a circuit
γw in the graph G. In order to show that we have limmÑ8 φmprμsq P Δ`pφq, we
prove that the proportion of the path fmpγwq which grows exponentially fast under
iteration of f tends to 1 as m goes to infinity. This fact is sufficient to prove that

lim
mÑ8

φm
prμsq P Δ`pφq
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(see Lemma 5.20). We then conclude the proof using the density of currents as-
sociated with nonperipheral elements in Fn proved in [Gue1]. Theorem 1.3 is then
proved in Section 6 using a combination of Theorem 1.2 and the description of the
space KPG.

2. Preliminaries

2.1. Malnormal subgroup systems of Fn. Let n be an integer greater than 1
and let Fn be a free group of rank n. A subgroup system of Fn is a finite (possibly
empty) set A whose elements are conjugacy classes of nontrivial (that is distinct
from t1u) finite rank subgroups of Fn. There exists a partial order on the set of
subgroup systems of Fn, where A1 ď A2 if for every subgroup A1 of Fn such that
rA1s P A1, there exists a subgroup A2 of Fn such that rA2s P A2 and A1 is a
subgroup of A2. The stabilizer in OutpFnq of a subgroup system A, denoted by
OutpFn,Aq, is the subgroup of OutpFnq consisting of all elements φ P OutpFnq such
that φpAq “ A.

Recall that a subgroup A of Fn is malnormal if for every element x P Fn ´ A,
we have xAx´1 X A “ teu. A subgroup system A is said to be malnormal if every
subgroup A of Fn such that rAs P A is malnormal and, for all subgroups A1, A2 of
Fn such that rA1s, rA2s P A, if A1 X A2 is nontrivial then A1 “ A2. An element
g P Fn is A-peripheral (or simply peripheral if there is no ambiguity) if it is trivial
or conjugate into one of the subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by
the free factor systems. A free factor system of Fn is a (possibly empty) set F
of conjugacy classes trA1s, . . . , rArsu of nontrivial subgroups A1, . . . , Ar of Fn such
that there exists an integer k P N with Fn “ A1˚. . .˚Ar ˚Fk. The free factor system
F is sporadic if pk ` r, kq ď p2, 1q for the lexicographic order, and is nonsporadic
otherwise. Therefore, the sporadic free factor systems are those of the form trCsu

where C has rank at least equal to n ´ 1 and those of the form trAs, rBsu with
Fn “ A ˚ B. An ascending sequence of free factor systems F1 ď . . . ď Fi “ trFnsu

of Fn is called a filtration of Fn.
Given a free factor system F of Fn, a free factor of pFn,Fq is a subgroup A of

Fn such that there exists a free factor system F 1 of Fn with rAs P F 1 and F ď F 1.
When F “ ∅, we say that A is a free factor of Fn. A free factor of pFn,Fq is proper
if it is nontrivial, not equal to trFnsu and if its conjugacy class does not belong to
F .

Another class of examples of malnormal subgroup systems is the following one.
An outer automorphism φ P OutpFnq is exponentially growing if there exists g P Fn

such that the length of the conjugacy class rgs of g in Fn with respect to some basis of
Fn grows exponentially fast under iteration of φ. If φ P OutpFnq is not exponentially
growing, then φ is polynomially growing. For an automorphism α P AutpFnq, we say
that α is exponentially growing if there exists g P Fn such that the length of g grows
exponentially fast under iteration of α. Otherwise, α is polynomially growing.

Let φ P OutpFnq be exponentially growing. A subgroup P of Fn is a polynomial
subgroup of φ if there exist k P N

˚ and a representative α of φk such that αpP q “ P
and α|P is polynomially growing.
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By [Lev, Proposition 1.4], there exist finitely many conjugacy classes rH1s, . . . ,
rHks of maximal polynomial subgroups of φ. Moreover, the proof of [Lev, Propo-
sition 1.4] implies that the set H “ trH1s, . . . , rHksu is a malnormal subgroup sys-
tem. Indeed, Levitt shows that there exists a nontrivial R-tree T in the boundary of
Culler and Vogtmann Outer space [CV] on which Fn acts with trivial arc stabilizers,
such that φ preserves the homothety class of T and such that the groups H1 . . . , Hk

are elliptic in T . If two distinct subgroups A,B of Fn such that rAs, rBs P H fix
distinct points in T , then their intersection is trivial. If A and B fix the same point
x in T , then, up to taking a power of φ, the element φ preserves rStabpxqs and an
inductive argument on the rank using φ|Stabpxq (the rank of Stabpxq is less than
n by a result of Gaboriau-Levitt [GL]) shows that the intersection of A and B is
trivial. We denote this malnormal subgroup system by Apφq.

Note that if H is a subgroup of Fn such that rHs P Apφq, there exists a repre-
sentative Φ´1 of φ´1 such that Φ´1pHq “ H and Φ´1|H is polynomially growing.
Hence we have Apφq ď Apφ´1q. By symmetry, we have

(1) Apφq “ Apφ´1
q.

LetA be a malnormal subgroup system and let φ P OutpFn,Aq be a relative outer
automorphism. We say that φ is atoroidal relative to A if, for every k P N

˚, the
element φk does not preserve the conjugacy class of any A-nonperipheral element.
We say that φ is expanding relative to A if Apφq ď A. Note that an expanding
outer automorphism relative to A is in particular atoroidal relative to A. When
A “ ∅, then the outer automorphism φ is expanding relative to A if and only if
for every nontrivial element g P Fn, the length of the conjugacy class rgs of g in
Fn with respect to some basis of Fn grows exponentially fast under iteration of φ.
Therefore, by a result of Levitt [Lev, Corollary 1.6], the outer automorphism φ is
expanding relative to A “ ∅ if and only if φ is atoroidal relative to A “ ∅.

Let A “ trA1s, . . . , rArsu be a malnormal subgroup system and let F be a free
factor system. Let i P t1, . . . , ru. By [SW, Theorem 3.14] for the action of Ai on

one of its Cayley graphs, there exist finitely many subgroups A
p1q

i , . . . , A
pkiq

i of Ai

such that:

(1) for every j P t1, . . . , kiu, there exists a subgroup B of Fn such that rBs P F
and A

pjq

i “ B X Ai;
(2) for every subgroup B of Fn such that rBs P F and B X Ai ‰ teu, there

exists j P t1, . . . , kiu such that A
pjq

i “ B X Ai;

(3) the subgroup A
p1q

i ˚ . . . ˚ A
pkiq

i is a free factor of Ai.

Thus, one can define a new subgroup system as

F ^ A “

r
ď

i“1

trA
p1q

i s, . . . , rA
pkiq

i su.

Since A is malnormal, and since, for every i P t1, . . . , ru, the group A
p1q

i ˚ . . . ˚A
pkiq

i

is a free factor of Ai, it follows that the subgroup system F ^ A is a malnormal
subgroup system of Fn. We call it the meet of F and A.

2.2. Graphs, markings and filtrations. Let n ě 2. A marked graph is a pointed
(at a vertex ˚), connected, finite graph G (in the sense of [Ser]) whose fundamental
group is isomorphic to Fn which is equipped with a marking, that is an isomorphism
ρ : Fn Ñ π1pG, ˚q.
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We denote by V G (resp. 	EG) the set of vertices (resp. edges) of G. Given an
edge e of G, we denote by opeq the origin of e, by tpeq the terminal point of e and
by e´1 the edge of G such that ope´1q “ tpeq and tpe´1q “ opeq. An edge path
γ of length m is a concatenation of m edges γ “ e1e2 . . . em such that for every
i P t1, . . . ,m´1u, we have tpeiq “ opei`1q. The length of γ is denoted by �pγq. The
edge path γ is reduced if for every i P t1, . . . ,m´ 1u, we have ei ‰ e´1

i`1. A reduced

edge path is cyclically reduced if tpemq “ ope1q and em ‰ e´1
1 . A cyclically reduced

edge path is also called a circuit. For any edge path γ, there exists a unique reduced
edge path homotopic to γ relatively to endpoints, we denote it by rγs.

Let G and G1 be two marked graphs. A graph map is a pointed homotopy
equivalence f : G Ñ G1 such that fpV Gq Ď V G1 and such that the restriction of

f to the interior of an edge is an immersion. Thus, for every edge e P 	EG, the
image fpeq determines a reduced edge path rfpeqs. Given φ P OutpFnq and pG, ρq

a marked graph, a topological representative of φ is a graph map f : G Ñ G such
that the outer automorphism class of ρ´1 ˝ f˚ ˝ ρ P AutpFnq is φ.

Let f : G Ñ G be a topological representative. Let w P Fn. We denote by γw
the unique circuit in G which represents the conjugacy class of w.

A filtration for G is an increasing sequence of f -invariant (not necessarily con-
nected) subgraphs ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G. Let r P t1, . . . , ku. The r-th
stratum in this filtration, denoted by Hr, is the (not necessarily connected) closure
of Gr ´ Gr´1. For every r P t1, . . . , ku, there exists a square matrix Mr associated
with the stratum Hr called the transition matrix of Hr. The rows and columns of
Mr are indexed by the undirected edges in Hr and the entry associated with the

pair of undirected edges defined by pe, e1q P pEHrq
2
is the number of occurrences

of e1 and e1´1 in rfpeqs.
Recall that a nonnegative square matrix M “ pMi,jqi,j is irreducible if for every

pi, jq, there exists p “ ppi, jq such that Mp
i,j ą 0 and that M is primitive if there

exists p P N
˚ such that every entry of Mp is positive. For r P t1, . . . , ku, we say

that the stratum Hr is irreducible if its associated matrix is irreducible and we
say that Hr is primitive if its associated matrix is primitive. Let r P t1, . . . , ku

and suppose that Mr is irreducible. Then it has a unique real eigenvalue λr ě 1
called the Perron-Frobenius eigenvalue. Let Hr be an irreducible stratum. Then
Hr is exponentially growing (EG) if λr ą 1 and is nonexponentially growing (NEG)
otherwise. Finally, if the matrix associated with the stratum Hr is the zero matrix,
then Hr is called a zero stratum.

Let G be a marked graph of Fn and let K be a (possibly disconnected) subgraph
of G. The subgraph K determines a free factor system FpKq of Fn as follows. Let
C1, . . . , Ck be the noncontractible connected components of K. Then, for every
i P t1, . . . , ku, the connected component Ci determines the conjugacy class rAis of
a subgroup Ai of π1pGq. Then the set trA1s, . . . , rAksu is a free factor system FpKq

of Fn.
Let F1 ď . . . ď Fi “ trFnsu be a filtration of Fn. A geometric realization of the

filtration is a marked graph G equipped with an increasing sequence

∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G

of subgraphs of G such that for every k P t1, . . . , iu there exists � P t1, . . . , ju such
that Fk “ FpG�q.
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2.3. Train tracks and CTs. In this section we introduce the technology of train
tracks. Train tracks are a type of graph maps introduced by Bestvina and Handel
[BH]. Even though there exist outer automorphisms of Fn which do not have a
topological representative which is a train track, every outer automorphism has a
power which has a topological representative called a completely split train track
map (CT). CT maps were introduced by Feighn and Handel [FH]. The definition of
a CT map being quite technical, we will only state the relevant properties needed
for the rest of the article. First we need some preliminary definitions.

Let G be a marked graph of Fn and let f : G Ñ G be a graph map. The map f

induces a derivative map Df : 	EG Ñ 	EG on the set of edges as follows. For every

e P 	EG, the map Dfpeq is equal to the first edge of the edge path fpeq. A turn in
G is an unordered pair te1, e2u of edges in G with ope1q “ ope2q. A turn te1, e2u

is degenerate if e1 “ e2, and is nondegenerate otherwise. A turn te1, e2u is illegal
if there exists k P N

˚ such that tpDfqkpe1q, pDfqkpe2qu is degenerate, and is legal
otherwise. An edge path γ “ e1e2 . . . ei is legal if for every j P t1, . . . , i ´ 1u, the
turn te´1

j , ej`1u is legal.
In order to deal with relative outer automorphisms, we also need a notion of

relative legal paths. Let ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G be the geometric realization
of some filtration of Fn which is f -invariant and let r P t1, . . . , ju. We say that a

turn te1, e2u is contained in the stratum Hr if te1, e2u Ď 	EHr. An edge path γ of
G is r-legal if every turn in γ that is contained in Hr is legal. A connecting path
for Hr is a nontrivial reduced path γ in Gr´1 whose endpoints are in Gr´1 X Hr.
A path γ in G is r-taken (or taken if γ is r-taken for some r) if it is contained in

the reduced image of an iterate of an edge e P 	EHr, where Hr is an irreducible
stratum. The height of a path γ is the maximal r such that γ contains an edge of
Hr. We can now define the notion of a relative train track map due to Bestvina
and Handel [BH].

Definition 2.1. Let n ě 3. Let G be a marked graph and let f : G Ñ G be a
graph map equipped with an f -invariant filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G.
The map f is a relative train track map if, for each exponentially growing stratum
Hr, the following holds:

(1) for every edge e P 	EHr and every k P N
˚, we have pDfqkpeq P 	EHr;

(2) for every connecting path γ for Hr, the reduced path rfpγqs is also a con-
necting path for Hr;

(3) if γ is a height r reduced edge path which is r-legal, then so is rfpγqs.

In order to explain the properties of CT maps that we will use in this paper, we
will need some further definitions regarding edge paths in a graph.

Definition 2.2. Let n ě 3 and let G be a marked graph of Fn equipped with an
f -invariant filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G. Let γ be an edge path of G.

(1) The path γ is a periodic Nielsen path if there exists k P N
˚ such that

rfkpγqs “ γ. The minimal such k is the period, and if k “ 1, then γ is a
Nielsen path.

(2) A (periodic) indivisible Nielsen path ((p)INP) is a (periodic) Nielsen path
that cannot be written as a nontrivial concatenation of (periodic) Nielsen
paths.

(3) The path γ is an exceptional path if there exist a cyclically reduced Nielsen

path w, edges e1, e2 P 	EG and integers d1, d2, p P Z
˚ such that for every
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i P t1, 2u, we have fpeiq “ eiw
di and γ “ e1w

pe´1
2 . The value |p| is called

the width of γ.

Definition 2.3. Let n ě 3, let G be a marked graph of Fn and let f : G Ñ G be a
relative train track map equipped with a filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G.
Let γ be a reduced edge path or a circuit of G.

(1) A splitting of γ is a decomposition of γ into edge subpaths γ “ γ1γ2 . . . γi
such that for every k P N

˚, we have

rfk
pγqs “ rfk

pγ1qs . . . rfk
pγiqs,

that is one can tighten the image of fkpγq by tightening the image of every
fkpγjq (where opγq is the base point in the case where γ is a circuit).

(2) Let γ be a circuit. A circuital splitting is a splitting γ “ γ1 . . . γi of γ such
that for every k P N

˚, the concatenation rfkpγ1qs . . . rfkpγiqs defines a path
whose initial and terminal directions are distinct.

(3) Let γ “ γ1γ2 . . . γi be a splitting of γ. The splitting is complete if for every
j P t1, . . . , iu, the subpath γj is one of the following:

‚ an edge in an irreducible stratum;
‚ an INP;
‚ an exceptional path;
‚ a connecting path in a zero stratum that is both maximal (for the
inclusion in γ) and taken.

Let n ě 2, let G be a marked graph of Fn and let f : G Ñ G be a relative train
track map with respect to a filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gj “ G. Let γ be an
edge path of G. Such paths in the above list are called splitting units. When γ has
a complete splitting, we say that γ is completely split.

Definition 2.4 ([HM, Fact 2.16]). Let p P t0, . . . , ju. Let γ “ γ1γ2 . . . γi be a
splitting of γ. This splitting is complete relatively to Gp, or relatively complete
if there is no ambiguity, if for every j P t1, . . . , iu, the subpath γj is one of the
following:

‚ a splitting unit of height at least equal to p ` 1;
‚ a subpath in Gp.

We now describe some properties of CT maps whose complete definition can be
found in [FH, Definition 4.7].

Proposition 2.5. Let n ě 3 and let G be a marked graph of Fn. Let f : G Ñ G be
a completely split train track (CT) map. Then f satisfies the following properties.

(1) The map f is a relative train track map and every stratum in G is either
irreducible or a zero stratum [FH, Definition 4.7].

(2) If Hr is an NEG stratum, then Hr consists of a single edge er. Moreover,
either er is fixed by f or fperq “ erur where ur is a nontrivial completely
split circuit in Gr´1. The terminal endpoint of each NEG stratum is fixed
[FH, Lemma 4.21].

(3) For every filtration element Gr, the stratum Hr is a zero stratum if and
only if Hr is a contractible component of Gr [FH, Lemma 4.15].

(4) For every zero stratum Hr, there exists a unique � ą r such that H� is an
EG stratum and, for every vertex v P V Hr, we have v P V Hr X V H� and
the link of v is contained in V Hr Y V H� [FH, Definition 4.7].
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(5) Every periodic Nielsen path has period one [FH, Lemma 4.13].
(6) For every edge e in an irreducible stratum, the reduced path fpeq is com-

pletely split. For every taken connecting path γ in a zero stratum, rfpγqs is
completely split [FH, Definition 4.7].

(7) Every completely split path or circuit has a unique complete splitting (see
[FH, Lemma 4.11]).

(8) If γ is an edge path, there exists k0 P N
˚ such that for every k ě k0, the

reduced path rfkpγqs is completely split [FH, Lemma 4.25].
(9) If Hr is an EG stratum, there is at most one INP ρr of height r. The initial

edges of ρr and ρ´1
r are distinct oriented edges in Hr [FH, Corollary 4.19].

(10) If Hr is a zero stratum, no Nielsen path intersects Hr in at least one edge
[HM, Fact I.1.43].

(11) Let Hr be an NEG stratum such that Hr “ teru, such that fperq “ erur

and such that ur is not trivial. There exists an INP σ which intersects Hr

nontrivially if and only if ur is a Nielsen path and there exists s P Z such
that σ “ eru

s
re

´1
r [FH, Definition 4.7].

Definition 2.6. Let n ě 2 and let G be a marked graph of Fn. Let f : G Ñ G be
a CT map. Let Hr be an NEG stratum and let er be the edge of Hr. Let ur be
such that fperq “ erur. The edge er is called a fixed edge if ur is trivial, a linear
edge if ur is a Nielsen path and a superlinear edge otherwise.

Lemma 2.7 ([HM, Fact 1.39]). Let n ě 2 and let G be a marked graph of Fn. Let
f : G Ñ G be a CT map. Let γ be a Nielsen path. Then γ is completely split, and
all terms in the complete splitting of γ are fixed edges and INPs.

Lemma 2.8 ([HM, Fact 1.41]). Let n ě 2 and let G be a marked graph of Fn. Let
f : G Ñ G be a CT map.

(1) Let Hr be a zero stratum and let H� be the EG stratum given by Proposi-
tion 2.5(4). There does not exist an INP of height �.

(2) Let Hr be an EG stratum and let ρr be an INP of height r. Then ρr has
a decomposition ρr “ a0b1a1 . . . bkak where, for every i P t0, . . . , ku, the
subpath ai is a nontrivial path contained in Hr and for every i P t1, . . . , ku,
the subpath bi is a Nielsen path contained in Gr´1.

An INP is an EG INP if the maximal stratum it intersects is an EG stratum
and is an NEG INP otherwise. Note that, by Proposition 2.5(9), there exist only
finitely many EG INPs.

Lemma 2.9. Let n ě 2. Let φ P OutpFnq. Suppose that there exists a CT map
f : G Ñ G representing a power of φ. Let γ1 be a nontrivial path in a zero stratum.
There does not exist a reduced edge path γ “ αγ1 where α is either an INP or a
fixed edge.

Proof. Suppose towards a contradiction that such a path γ “ αγ1 exists. Let Hr

be the zero stratum containing γ1. Note that, by Proposition 2.5(10), the path
α does not contain edges in Hr. By Proposition 2.5(4), there exists � ą r such
that H� is an EG stratum and such that any edge adjacent to a vertex in Hr and
not contained in Hr is in H�. Hence α has height at least �. Since H� is an EG
stratum, the path α is not a fixed edge. Hence α is an INP. By Lemma 2.8(1), the
height of α is not equal to �. Let j ą � be the height of α. We distinguish between
three cases according to the nature of the stratum Hj . By Proposition 2.5(10), the
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stratum Hj is not a zero stratum. Hence, by Proposition 2.5(1), the stratum Hj is
irreducible. By Proposition 2.5(11), if Hj is an NEG stratum, then α is of the form

α “ ejw
ke´1

j , where ej P Hj , k is an integer and w is a closed Nielsen path in Gj´1.

But then e´1
j is adjacent to a vertex in Hr. This contradicts Proposition 2.5(4)

since j ą �. If Hj is an EG stratum, then by Lemma 2.8(2), the path α is the
concatenation of subpaths in Hj and Nielsen paths of height at most j ´ 1, and α
ends with an edge in Hj . By Proposition 2.5(4), we see that j “ �. This contradicts
Lemma 2.8(1). �

Theorem 2.10 due to Feighn and Handel is the main existence theorem of the
CT maps.

Theorem 2.10 ([FH, Theorem 4.28, Lemma 4.42]). Let n ě 3. There exists a
uniform constant M “ Mpnq ě 1 such that for every φ P OutpFnq and every φM -
invariant filtration C of Fn, there exists a CT map f : G Ñ G that represents φM

and realizes C.

2.4. Relative currents. In this section, we define the notion of currents of Fn

relative to a malnormal subgroup system. The section follows [Gue1] (see the work
of Gupta [Gup1] for the particular case of free factor systems and Guirardel and
Horbez [GH] in the context of free products of groups). It is closely related to the
notion of conjugacy classes of A-nonperipheral elements of Fn.

Let B8Fn be the Gromov boundary of Fn. The double boundary of Fn is the
quotient topological space

B
2Fn “ pB8Fn ˆ B8FnzΔq { „,

where „ is the equivalence relation generated by the flip relation px, yq „ py, xq and
Δ is the diagonal, endowed with the diagonal action of Fn. We denote by tx, yu the
equivalence class of px, yq.

Let T be the Cayley graph of Fn with respect to a free basis B. The boundary
of T is naturally homeomorphic to B8Fn and the set B2Fn is then identified with
the set of unoriented bi-infinite geodesics in T . Let γ be a finite geodesic path in
T . The path γ determines a subset in B2Fn called the cylinder set of γ, denoted
by Cpγq, which consists of all unoriented bi-infinite geodesics in T that contain γ.
Such cylinder sets form a basis for a topology on B2Fn, and in this topology, the
cylinder sets are both open and closed, hence compact. The action of Fn on B2Fn

has a dense orbit.
For every nontrivial subgroup A of Fn, let TA be the minimal A-invariant sub-

tree of T . Let A “ trA1s, . . . , rArsu be a malnormal subgroup system of Fn. By
malnormality of A, there exists L P N

˚ such that for all distinct subgroups A,B
of Fn such that rAs, rBs P A, the diameter of the intersection TA X TB is at most
L (see for instance [HM, Section I.1.1.2]). Let i P t1, . . . , ru. Let Γi be the set of
subgroups B of Fn such that there exists gB P Fn such that B “ gBAig

´1
B and the

tree TB contains the base point e of T . Note that, by malnormality of A, for every
i P t1, . . . , ru, the set Γi is finite. For an element w P Fn, let xγw be the geodesic
path in T starting at e and labeled by w. Let Ci be the set of elements w of Fn

such that the length of xγw is equal to L ` 2 and, for every B P Γi, the path xγw is
not contained in TB . Let C “

Şr
i“1 Ci. Since we are looking at geodesic paths of

length equal to L ` 2, the set C is finite. Moreover, it only depends on the choice
of A, B and L.
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Lemma 2.11 ([Gue1, Lemma 2.3]). Let B, T , A “ trA1s, . . . , rArsu, L P N
˚,

Γ1, . . . ,Γr, C be as above. The finite set C “ C pA1, . . . , Akq is nonempty. More-
over, it satisfies the following properties:

(1) every A-nonperipheral cyclically reduced element g P Fn has a power which
contains an element of C as a subword;

(2) for every A-nonperipheral cyclically reduced element g P Fn, if cg is the
geodesic ray in T starting from e obtained by concatenating infinitely many
edge paths labeled by g, there exists an edge path in cg labeled by a word in
C at distance at most L ` 2 from

Ťr
i“1

Ť

BPΓi
TB;

(3) if γ is a path in T which contains a subpath labeled by an element of C ,
then for every i P t1, . . . , ru and every g P Fn, the path γ is not contained
in TgAig´1 .

Let A be a nontrivial subgroup of Fn of finite rank. The induced A-equivariant
inclusion B8A ãÑ B8Fn induces an inclusion B2A ãÑ B2Fn. Let

B
2A “

r
ď

i“1

ď

gPFn

B
2

`

gAig
´1

˘

.

Let B2pFn,Aq “ B2Fn ´B2A be the double boundary of Fn relative to A. This subset
is invariant under the action of Fn on B2Fn and inherits the subspace topology of
B2Fn.

Lemma 2.12 ([Gue1, Lemma 2.5]). Let CylpC q be the set of cylinder sets of the
form Cpγq, where the element of Fn determined by the geodesic edge path γ contains
an element of C as a subword. We have

B
2
pFn,Aq “

ď

CpγqPCylpC q

Cpγq.

In particular, the space B2pFn,Aq is an open subset of B2Fn.

Lemma 2.13 ([Gue1, Lemma 2.6, Lemma 2.7]). Let n ě 3 and let A be a malnor-
mal subgroup system of Fn. The space B2pFn,Aq is locally compact and the action
of Fn on B2pFn,Aq has a dense orbit.

We can now define a relative current. Let n ě 3 and let A be a malnormal
subgroup system of Fn. A relative current of pFn,Aq is a (possibly zero) Fn-invariant
Radon measure μ on B2pFn,Aq. The set CurrpFn,Aq of all relative currents on
pFn,Aq is equipped with the weak-˚ topology: a sequence pμnqnPN in CurrpFN ,AqN

converges to a current μ P CurrpFN ,Aq if and only if for every Borel subset B Ď

B2pFN ,Aq such that μpBBq “ 0 (where BB is the topological boundary of B), the
sequence pμnpBqqnPN converges to μpBq.

The group OutpFn,Aq acts on CurrpFn,Aq as follows. Let φ P OutpFn,Aq, let
Φ be a representative of φ, let μ P CurrpFn,Aq and let C be a Borel subset of
B2pFn,Aq. Then, since φ preserves A, we see that Φ´1pCq P B2pFn,Aq. Then we
set

φpμqpCq “ μpΦ´1
pCqq,

which is well-defined since μ is Fn-invariant.
Every conjugacy class of nonperipheral element g P Fn determines a relative

current ηrgs as follows. Suppose first that g is root-free, that is g is not a proper
power of any element in Fn. Let γ be a finite geodesic path in the Cayley graph
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T . Then ηrgspCpγqq is the number of axes in T of conjugates of g that contain the

path γ. If g “ hk with k ě 2 and h root-free, we set ηrgs “ kηrhs. Such currents are
called rational currents.

Let G be a pointed connected graph whose fundamental group is isomorphic to

Fn. Let rG be the universal cover of G. There exists a (nonunique, but fixed) Fn-

equivariant quasi-isometry rm : rG Ñ T which extends uniquely to a homeomorphism

pm : B8G Ñ B8Fn. Therefore, if rγ is a reduced edge path in rG, we can define the
cylinder set in B2Fn defined by rγ as

C
Ămprγq “ Cpr rmprγqsq.

Let γ be a reduced edge path in G and let rγ be a lift of γ in rG. Let μ P CurrpFn,Aq.
We define the number of occurrences of γ in μ as

(2) xγ, μy
Ăm “ μpC

Ămprγqq.

For every such graph G, we fix once and for all the quasi-isometry rm : rG Ñ T .
Therefore, when the graph G is fixed, we will generally omit the mention of rm. We
also define the simplicial length of μ as:

‖μ‖ “

ÿ

eP�EG

xe, μy .

For any given reduced edge path γ, the functions xγ, .y and ‖.‖ are continuous,
linear functions of CurrpFn,Aq.

Let μ P CurrpFn,Aq. The support of μ, denoted by Supppμq, is the support of
the Borel measure μ on B2pFn,Aq. We recall that Supppμq is a closed subset of
B2pFn,Aq.

In the rest of the article, rather than considering the space of relative currents
itself, we will consider the set of projectivised relative currents :

PCurrpFn,Aq “ pCurrpFn,Aq ´ t0uq{ „,

where μ „ ν if there exists λ P R
˚
` such that μ “ λν. The projective class of a

current μ P CurrpFn,Aq will be denoted by rμs. We have the following properties.

Lemma 2.14 ([Gue1, Lemma 3.3]). Let n ě 3 and let A be a malnormal subgroup
system of Fn. The space PCurrpFn,Aq is compact.

Proposition 2.15 ([Gue1, Theorem 1.1]). Let n ě 3 and let A be a malnormal
subgroup system of Fn. The set of projectivised rational currents about nonperipheral
elements of Fn is dense in PCurrpFn,Aq.

3. The polynomially growing subgraph of a CT map

In this section, let n ě 3 and let F be a free factor system of Fn. Let φ P

OutpFn,Fq. Let f : G Ñ G be a CT map with filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ

Gk “ G representing a power of φ and such that there exists p P t1, . . . , k´1u such
that FpGpq “ F .

We construct a subgraph of G, called the polynomially growing subgraph of G and
denoted by GPG, which encaptures the information regarding polynomial growth
in the graph G. We then define a notion of length relative to GPG, called the
exponential length, which measures the time spent by an edge path outside of GPG.
Finally, we construct a subspace of PCurrpFn,Fq which consists in the currents
whose support maps to GPG.
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3.1. Definitions and first properties. We define in this section the polynomially
growing subgraph GPG of G and prove some of its properties.

Definition 3.1.

(1) Let GPG be the (not necessarily connected) subgraph of G whose edges are
the edges e of G in an NEG stratum such that for every k P N

˚, the path
rfkpeqs does not contain a splitting unit which is an edge in an EG stratum.

(2) Let N 1
PG be the set of all Nielsen paths in G.

(3) Let NPG be the subset of N 1
PG consisting in all Nielsen paths which are

either EG INPs or concatenations of (at least 2) nonclosed EG INPs.
(4) Let Z be the subgraph of G whose edges are the edges contained in a zero

stratum.

Note that, by Lemma 2.7, every path in N 1
PG (and hence every path in NPG) has

a complete splitting consisting in fixed edges and INPs. Since a complete splitting
is unique by Proposition 2.5(7), if γ is a reduced path in NPG, then the splitting
of γ given in Definition 3.1(3) is the complete splitting of γ. Moreover, γ is either
an EG INP or the complete splitting of γ has at least two splitting units and all of
them are nonclosed EG INPs. In particular, the set NPG does not contain Nielsen
paths such that one of their splitting units is either a fixed edge or an NEG INP.
Moreover, a Nielsen path which is a concatenation of at least 2 splitting units and
such that one of them is a closed EG INP is not in NPG. Excluding such paths from
NPG ensures a finiteness result for NPG (see Lemma 3.5(1)). Informally, paths in
NPG play the role of low-dynamics bridges between connected components of GPG

(see Figure 1). We will see in Proposition 3.14 that a cycle in G has polynomial
growth under iteration of f if and only if it is a concatenation of paths in GPG and
paths in NPG.

‚ ‚

GPG GPG

γ

Figure 1. A path γ in NPG between two connected components of GPG

Note that, with p defined at the beginning of Section 3, one can similarly define
the polynomially growing subgraph of Gp, denoted by GPG,F , which is the subgraph
GPG XGp. We can also define similarly N 1

PG,F , NPG,F and ZF by considering the

paths of N 1
PG, NPG and Z contained in Gp.

We now recall a lemma due to Bestvina and Handel regarding r-legal paths.

Lemma 3.2 ([BH, Lemma 5.8]). Let f : G Ñ G be a relative train track map. Let
Hr be an EG stratum. Suppose that σ “ a1b1a2 . . . a�b� is the decomposition of
an r-legal path into subpaths aj Ď Hr and bj Ď Gr´1 (where a1 and b� might be
trivial). Then for every i P t1, . . . , �u, the path fpa�q is a reduced edge path and

rfpσqs “ fpa1qrfpb1qsfpa2q . . . fpa�qrfpb�qs.
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Note that if Hr is an EG stratum and if σ “ a1b1a2 . . . a�b� is an r-legal path
as in Lemma 3.2, then for every i P t1, . . . , �u, as ai Ď Hr, the path ai grows
exponentially fast under iteration of f . Hence, by Lemma 3.2 the path σ grows
exponentially fast under iteration of f . We now prove some results regarding paths
in NPG.

Lemma 3.3. Let σ be an EG INP.

(1) There do not exist nontrivial subpaths c, d of σ such that σ “ cdc.
(2) Let γ P tσ˘1u. There do not exist paths γ1, γ2, γ3 such that γ2 is nontrivial,

γ1 or γ3 is nontrivial and σ “ γ1γ2 and γ “ γ2γ3.

Proof. (1) Let r be the height of σ. Suppose towards a contradiction that such
a decomposition σ “ cdc exists. By [BH, Lemma 5.11], there exist two
distinct r-legal paths α and β such that σ “ αβ and such that the turn
tDfpα´1q, Dfpβqu is the only height r illegal turn. Moreover, there exists
a path τ such that rfpαqs “ ατ and rfpβqs “ τ´1β. Hence c is contained
in α and in β and is r-legal. Thus, there exist two paths d1 and d2 such
that α “ cd1 and β “ d2c.

First we claim that for every k P N
˚, there exists a path τk such that

rfkpαqs “ ατk and rfkpβqs “ τ´1
k β. The proof is by induction on k. The

base case follows from the existence of τ . Suppose now that τk´1 exists.
We have:

rfk
pαqs “ rfpατk´1qs “ rfpαqsrfpτk´1qs “ ατ rfpτk´1qs “ ατk,

where the second equality comes from the fact that α is r-legal, that α ends
with an edge in Hr and from Lemma 3.2. Similarly, we have rfkpβqs “

τ´1
k β. This proves the claim.
We now claim that, up to taking a power of f , there exists a cycle e such

that rfpcqs “ αeβ. Indeed, by Proposition 2.5(9), the path σ starts and
ends with an edge in Hr. Hence the path c starts and ends with an edge in
Hr. Since c is r-legal, we see that the length of rfkpcqs goes to infinity as k
goes to infinity by Lemma 3.2. But, for every k P N

˚, there exists a path τk
such that rfkpαqs “ ατk and rfkpβqs “ τ´1

k β. By Lemma 3.2, since c is the
initial segment of α and since α is r-legal, there is no identification between
rfpcqs and rfpd1qs. Thus, there exists k1 P N

˚ such that rfk1pcqs starts with
α. Similarly, there exists k2 P N

˚ such that rfk2pcqs ends with β. Thus, up
to taking a power of f , and since the paths α and β are r-legal, we may
suppose that there exists a (reduced) cycle e such that rfpcqs “ αeβ.

Finally, we claim that the cycle e is trivial. Indeed, since the paths α
and β are r-legal, and since c starts and ends with an edge in Hr, we see
that

rfpαqs “ rfpcqsrfpd1qs “ αeβrfpd1qs

and

rfpβqs “ rfpd2qsrfpcqs “ rfpd2qsαeβ.

Recall that there exists k P N
˚ such that rfpαqs “ ατk and rfpβqs “ τ´1

k β.

This implies that τk “ eβrfpd1qs and that τ´1
k “ rfpd2qsαe, that is τk “

e´1α´1rfpd2qs´1. This shows that e “ e´1, that is, e is trivial. This proves
the claim.
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Therefore, we see that rfpcqs “ αβ “ σ. But σ contains a height r illegal
turn, whereas c is an r-legal path. This contradicts Proposition 2.5(1) and
Definition 2.1(3). This concludes the proof of p1q.

(2) Let σ, γ be as in the assertion of the lemma. Suppose towards a con-
tradiction that there exist three paths γ1, γ2, γ3 such that γ2 is nontriv-
ial and σ “ γ1γ2 and γ “ γ2γ3. Suppose first that γ “ σ. Then ei-
ther the two copies of γ2 in σ overlap or there exists a path γ4 such that
σ “ γ2γ4γ2. The first case is not possible as otherwise σ would contain two
illegal turns. This contradicts the fact that σ contains a unique illegal turn
(see [BH, Lemma 5.11]). The second case is not possible by Lemma 3.3(1).
Suppose now that γ “ σ´1. But σ´1 “ γ´1

2 γ´1
1 . Therefore we see that

γ´1
2 “ γ2, that is, γ2 is trivial. This leads to a contradiction. This concludes

the proof. �

We now recall a result, due to Feighn and Handel which will be used in the proof
of Lemma 3.5.

Lemma 3.4 ([FH, Corollary 4.12]). Let f : G Ñ G be a CT map and let σ “

σ1 . . . σs be the complete splitting of a path σ of G. If τ is an initial segment of σ
with terminal endpoint in some σj with j P t1, . . . , su, then τ “ σ1 . . . σj´1μj is a
splitting of τ , where μj is the initial segment of σj contained in τ .

In particular, if τ is a nontrivial Nielsen path, then, for every i P t1, . . . , ju, the
path σi is a Nielsen path and if σj is not a single fixed edge then μj “ σj.

Lemma 3.5.

(1) There are only finitely many paths in NPG.
(2) Let γ, γ1 be paths in NPG. Suppose that γ has a decomposition γ “ γ1γ2

such that γ2 is an initial segment of γ1. Then γ1, γ2 P NPG and γ1γ
1 P NPG.

(3) Let γ, γ1 be paths in NPG. Suppose that γ1 Ď γ. Then one of the following
holds:
(a) there exist (possibly trivial) paths γ1, γ2 P NPG such that γ “ γ1γ

1γ2;
(b) there exists an INP σ in the complete splitting of γ such that γ1 Ĺ σ

and γ1 is not an initial or a terminal segment of σ.
(4) Let γ, γ1 be two paths in NPG. Suppose that there exist three paths γ1, γ2

and γ3 such that γ “ γ1γ2, γ
1 “ γ´1

2 γ3 and the path γ1γ3 is reduced. Then
γ2 P NPG and γ1γ3 P NPG.

Proof. (1) First note that, since there are only finitely many EG strata in G,
there are only finitely many EG INPs by Proposition 2.5(9). Let γ be a
path in NPG which is a concatenation of at least 2 nonclosed EG INPs.
Let γ “ σ1 . . . σk be the complete splitting of γ given by Lemma 2.7. As
γ is a concatenation of nonclosed EG INPs, every splitting unit of γ is a
nonclosed EG INP.

By Proposition 2.5(9), an INP contained in the complete splitting of
γ is entirely determined by its height. For every i P t1, . . . , ku, let ri
be the height of σi. Let i P t2, . . . , ku. Since σi is not closed, by [HM,
Fact 1.42(1)(a)], one of the endpoints of σi is not contained in Gri´1. Since
there exists a unique INP of height ri by Proposition 2.5(9), either ri´1 ă ri
or ri ă ri´1.
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We treat the case r1 ă r2, the case r2 ă r1 being similar. We claim that,
for every i P t1, . . . , k ´ 1u, we have ri`1 ą ri. The proof is by induction
on i. The base case is true by hypothesis. Let i P t2, . . . , k ´ 1u. Since
ri´1 ă ri, the origin of σi is contained in Gri´1 and the terminal point of
σi is not contained in Gri´1. Thus, the first edge of σi`1 is contained in
G ´ Gri´1. Since there exists a unique INP of height ri we necessarily have
ri ă ri`1. Thus, the sequence of maximal heights of INPs in γ is (strictly)
monotonic. Since there are only finitely many EG strata, there are only
finitely many paths in NPG. This concludes the proof of p1q.

(2) Let γ, γ1 P NPG and let γ “ γ1γ2 be as in the assertion of the lemma. We
claim that γ2 P NPG and that the splitting units of γ2 are splitting units
of both γ and γ1. This will conclude the proof of Assertion p2q because γ1
will be a concatenation of splitting units of γ, that is, it will be either an
EG INP or a concatenation of nonclosed EG INPs (cf. Definition 3.1(3)).
Hence we will have γ1 P NPG and γ1γ

1 P NPG.
We show that γ2 is a concatenation of INPs which are splitting units of γ1.

A similar proof will show that the splitting units of γ2 will also be splitting
units of γ. Indeed, the path γ1 has a splitting γ1 “ σ1

1σ
1
2 . . . σ

1
k which consists

in EG INPs. Let r1 be the height of σ1
1. By Proposition 2.5(9), there exists

a unique unoriented INP of height r1 and this INP starts and ends with an
edge in Hr1 .

Let σ be the INP of γ which has a decomposition σ “ σ1σ2, where σ2

is a nontrivial initial segment of γ1. As every splitting unit of γ is an EG
INP, so is σ. Let r be the height of σ. Since the first edge of σ1

1 is of height
r1, we cannot have r1 ą r.

If r “ r1, then by the uniqueness statement in Proposition 2.5(9), we see
that σ1

1 P tσ, σ´1u. Note that if σ1 is nontrivial, there exist reduced paths
τ1, τ2 such that σ “ σ1τ1 and σ1

1 “ τ1τ2. This contradicts Lemma 3.3(2)
applied to σ and σ1

1. Thus, we see that σ “ σ1
1 and σ1

1 Ď γ2.
If r1 ă r, then by Lemma 2.8(2), the path σ has a decomposition σ “

a1b1 . . . bk´1ak such that, for every i P t1, . . . , ku, the path ai is a path
contained in Hr and for every i P t1, . . . , k´1u, the path bi is a Nielsen path
in Gr´1. Hence there exists i P t1, . . . , k´1u such that σ1

1 is contained in bi.
Therefore, we see that σ1

1 Ď σ Ď γ. As σ1
1 Ď γ1, we see that σ1

1 Ď γXγ1 “ γ2.
If γ2 “ σ1

1, then we are done. Otherwise, the path γ2 contains an edge of
σ1
2. As σ1

2 is an EG INP, the same argument as for σ1
1 shows that σ1

2 Ď γ2,
and an inductive argument shows that γ2 is a concatenation of INPs in the
splitting of γ1. Hence γ2 is a Nielsen path. Therefore, we see that γ2 P NPG

and that γ2 is composed of splitting units of γ1. Similarly, we see that γ2
is composed of splitting units which are splitting units of both γ and γ1.
Hence γ1 is composed of splitting units of γ. This concludes the proof of
p2q.

(3) Let γ, γ1 be as in the assertion of the lemma. Let γ “ σ1 . . . σk be the
complete splitting of γ and let γ1 “ σ1

1 . . . σ
1
m be the complete splitting of

γ1, which exist by Lemma 2.7. Recall that every splitting unit of both γ
and γ1 is an EG INP. There exists i P t1, . . . , ku such that σi contains an
initial segment of σ1

1. We claim that σ1
1 is either equal to σi or γ

1 is strictly
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contained in σi. Indeed, let r be the height of σi and let r1 be the height of
σ1
1. Since the first edge of σ1

1 is of height r1, we cannot have r1 ą r.
Suppose first that r1 ă r. By Lemma 2.8(2), the path σi has a decompo-

sition σi “ a1b1 . . . bp´1ap such that, for every i P t1, . . . , pu, the path ai is
a path in Hr and for every j P t1, . . . , p ´ 1u, the path bj is a Nielsen path
in Gr´1. Hence there exists j P t1, . . . , p ´ 1u such that σ1

1 is contained in
bj .

We claim that, for every � P t1, . . . ,mu, the splitting unit σ1
� is contained

in bj . The proof is by induction on �. For the base case, we already know
that σ1

1 Ď bj . Suppose that for some � P t2, . . . ,mu, the path σ1
�´1 is

contained in bj . By Proposition 2.5(9), the path σi ends with an edge in
Hr. Hence the path ap is nontrivial. Since σ1

�´1 is contained in bj , the path
σ1
� intersects σi nontrivially. Let r� be the height of σ1

�. Recall that σ1
� is

an EG INP. By Proposition 2.5(9), the path σ1
� starts with an edge in Hr� .

Hence r� ď r. Suppose towards a contradiction that r� “ r. Then, by the
uniqueness statement of Proposition 2.5(9), we see that σ1

� P tσ˘1
i u. As σi

contains an initial segment of σ1
�, there exist three paths γ1, γ2 and γ3 of

G such that γ2 is nontrivial and σi “ γ1γ2 and σ1
� “ γ2γ3. Since σ1

�´1 is
contained in σi, the path γ1 is nontrivial. This contradicts Lemma 3.3(2).
Therefore we have r� ă r. But then σ1

� cannot intersect aj`1. This implies
that σ1

� is contained in bj . This proves the claim and the fact that γ1 Ĺ σi

and γ1 is not an initial or a terminal segment of σi.
Suppose now that r “ r1. By the uniqueness statement of Proposi-

tion 2.5(9), we see that σ1
1 P tσ˘1

i u. As σi contains an initial segment of
σ1
1, there exist three paths γ1, γ2 and γ3 of G such that γ2 is nontrivial

and σi “ γ1γ2 and σ1
1 “ γ2γ3. By Lemma 3.3(2), we necessarily have that

γ1 and γ3 are trivial. Thus, we see that σi “ σ1
1. Therefore, γ1 is an ini-

tial segment of σi . . . σk and is a Nielsen path. By Lemma 3.4, for every
j P t1, . . . ,mu, we have σi`j´1 “ σ1

j . Thus, there exist (possibly trivial)

paths γ1, γ2 P NPG such that γ “ γ1γ
1γ2. This concludes the proof of p3q.

(4) Let γ, γ1, γ1, γ2 and γ3 be as in the assertion of the lemma. Let γ “ α1 . . . αk

and γ1 “ β1 . . . β� be the complete splittings of γ and γ1 given by Lemma 2.7.
By definition of NPG, every splitting unit of γ and γ1 is an EG INP.

Let i P t1, . . . , ku be such that αi contains the first edge of γ2. Let j P

t1, . . . , �u be such that βj contains the last edge of γ
´1
2 . We claim that αi Ď

γ2 and that βj Ď γ´1
2 . By Lemma 3.4 applied to γ´1

2 and γ´1, there exists
a path δi contained in αi such that the decomposition γ2 “ δiαi`1 . . . αk

is a splitting of γ2. Similarly, there exists a path δ1
j in βj such that γ´1

2 “

β1 . . . βj´1δ
1
j is a splitting of γ´1

2 . By Proposition 2.5(9), an EG INP starts
with an edge of highest height and an EG INP is entirely determined by
its height. Hence αk “ β´1

1 . Note that the paths δiαi`1 . . . αk´1 and
β2 . . . βj´1δ

1
j satisfy the same hypotheses as δiαi`1 . . . αk and β1 . . . βj´1δ

1
j .

Applying the same arguments, we see that i “ j and for every s P t1, . . . , j´

1u, we have βs “ α´1
k´s`1. Hence we see that δi “ δ1´1

j .

Let r be the height of αi and let r1 be the height of βj . Note that by
Proposition 2.5(9) applied to αi and βj , the path δi ends with an edge in

Hr and δ1´1
j ends with an edge in Hr1 . Therefore, we see that r “ r1. By

uniqueness of EG INPs of height ri given by Proposition 2.5(9), and since
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γ1γ3 is reduced, we see that αi “ β´1
j , that αi Ď γ2 and that βj Ď γ´1

2 .

This shows that γ2 is a path in NPG. By Assertion p2q applied to γ and
γ2, the path γ1 is contained in NPG. Similarly, we see that the path γ3 is
contained in NPG. Since the path γ1γ3 is reduced, we see that γ1γ3 P NPG.
This concludes the proof. �

Lemma 3.6. Let γ and γ1 be two reduced edge paths in G which are concatena-
tions of paths in GPG and NPG. Suppose that there exist three paths γ1, γ2 and
γ3 such that γ “ γ1γ2, γ1 “ γ´1

2 γ3 and γ1γ3 is reduced. Then γ2 and γ1γ3 are
concatenations of paths in GPG and NPG.

Proof. Let γ “ b0a1b1 . . . akbk be the decomposition of the path γ such that for
every i P t0, . . . , ku, the path bi is in GPG and for every i P t1, . . . , ku, the path ai
is a maximal subpath of γ contained in NPG. The existence of the paths ai follows
from Lemma 3.5(2). Let γ1 “ d0c1d1 . . . c�d� be the similar decomposition of γ1.
Let e be the initial edge of γ2.

Claim. There exists i P t0, . . . , ku such that bi contains e if and only if there exists
j P t0, . . . , �u such that the edge e´1 is contained in dj .

Proof. The proof of the two directions being similar, we only prove one direction.
Suppose that there exists i P t0, . . . , ku such that bi contains e. Suppose towards
a contradiction that there exists j P t1, . . . , �u such that e´1 is contained in cj . It
follows that there exists an EG INP σ of cj such that e´1 is contained in σ. Let

r be the height of σ. Let δ´1 be the subpath of σ contained in γ´1
2 . Note that,

as γ´1
2 is an initial segment of γ1, the path δ´1 is an initial segment of σ. By

Proposition 2.5(9), the path δ´1 starts with an edge in Hr. As δ is contained in
γ, the terminal edge of δ is an edge in an EG stratum. Since every edge in GPG

is contained in an NEG stratum, there exists s P t1, . . . , ku such that as contains a
terminal segment of δ.

Since the initial edge e of γ2 is not contained in as by hypothesis, the path δ
contains the initial segment δ1 of as. Hence the terminal segment δ1´1 of a´1

s is the
initial segment δ1´1 of σ. By Lemma 3.5(2) applied to a´1

s and σ and Lemma 3.4,
the path δ1´1 is contained in NPG and is a concatenation of splitting units of σ. As
σ contains a unique splitting unit, this implies that δ1 “ σ. As δ1 Ď δ´1 Ď σ, we
see that δ´1 “ σ.

Note that the edge δ´1 ends with e´1. But σ ends with an edge in an EG stratum
by Proposition 2.5(9), that is, e´1 is an edge in an EG stratum. But every edge in
bi is contained in an NEG stratum by definition of GPG. This contradicts the fact
that e Ď bi. This concludes the proof of the claim. �

Suppose first that there exists i P t1, . . . , ku, such that e is contained in bi. By
the above claim, there exists j P t0, . . . , �u such that e´1 is contained in dj . Let

τ and τ 1 be such that γ “ b0a1b1 . . . aiτγ2 and γ1 “ γ´1
2 τ 1cj`1 . . . d�. Note that

τ Ď bi and τ 1 Ď dj . Then we have γ1 “ b0a1b1 . . . aiτ and γ3 “ τ 1cj`1 . . . d�.
Since the path γ1γ3 is reduced, so is ττ 1. Moreover the reduced edge path ττ 1 is
contained in GPG and γ1γ3 “ b0a1b1 . . . aiττ

1cj`1 . . . d� is a concatenation of paths
in GPG and in NPG. Let δ2 be the maximal subpath of bi contained in γ2. Then
γ2 “ δ2ai`1 . . . bk is a concatenation of paths in GPG and in NPG.

Suppose now that there exists i P t1, . . . , ku such that the initial edge e of γ2
is contained in ai. By the above claim, there exists j P t1, . . . , �u such that e´1
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is contained in cj . Let δ1 be the terminal segment of ai contained in γ2. By
Proposition 2.5(9), the terminal edge e1 of δ1 is an edge in an EG stratum. Since
GPG does not contain any edge in an EG stratum, there exists s ď j such that cs
contains e1´1.

We claim that s “ j. Indeed, suppose towards a contradiction that s ă j. Let
δ´1 be the terminal segment of cs whose first edge is e1´1. Then δ is a terminal
segment of ai and δ is an initial segment of c´1

s . By Lemma 3.5(2) applied to ai
and c´1

s , the path δ is a concatenation of splitting units of ai and c´1
s . If δ is

properly contained in δ1, there exists an EG INP σ which is a splitting unit of ai
and such that the last edge of σ is the last edge of δ1 not contained in δ. But, by
Proposition 2.5(9), the terminal edge eσ of σ is in an EG stratum. However, the
first edge of ds (which is the edge e´1

σ ) is in GPG. This leads to a contradiction.
Hence δ “ δ1. But δ intersects cj nontrivially. Hence we have s “ j.

Therefore, δ1´1 is contained in cj . We claim that δ1´1 is an initial segment of
cj . Indeed, otherwise let ε

1 be the initial segment of cj whose endpoint is the origin
of δ1´1. By Proposition 2.5(9), the first edge of ε1 is an edge in an EG stratum.
Hence there exists p ą i such that ap contains the terminal edge of ε1´1. Let ε´1

be the subpath of ε1´1 contained in ap. Then ε´1 is an initial segment of ap and ε
is an initial segment of cj . By Lemma 3.5(2) applied to a´1

p and cj , the path ε is

a concatenation of splitting units of a´1
p and cj . But since ε is properly contained

in cj as it does not intersect δ1´1, the path ε is adjacent to a splitting unit of cj .
Since an EG INP starts with an edge in an EG stratum by Proposition 2.5(9), the
path bp´1 ends with an edge in an EG stratum. This contradicts the fact that bp´1

is contained in GPG.
Hence δ1´1 is an initial segment of cj and δ1 is a terminal segment of ai. Let τ and

τ 1 be two paths such that ai “ τδ1 and cj “ δ1´1τ 1. By Lemma 3.5(4) applied to ai
and cj , the path δ1 is in NPG and the path ττ 1 is in NPG. Hence γ2 “ τbiai`1 . . . bk
and γ1γ3 “ b0a1b1 . . . aiττ

1cj`1 . . . d� are concatenations of paths in GPG and in
NPG. �

Lemma 3.7. Let γ be a closed Nielsen path of G. Then γ is a concatenation of
paths in GPG and in NPG.

Proof. Let γ be a closed Nielsen path of G. We prove the result by induction on
the height r of γ. If r “ 0, there is nothing to prove. Assume that r ě 1. By
Lemma 2.7, the path γ is completely split, and every splitting unit in its complete
splitting is either an INP or a fixed edge. Let γ “ σ1 . . . σk be the complete splitting
of γ. For every i P t1, . . . , ku, let ri be the height of σi. We prove that for every
i P t1, . . . , ku, the path σi is a concatenation of paths in GPG and in NPG.

Let i P t1, . . . , ku. If σi is a fixed edge, it is contained in GPG. Suppose that σi

is an NEG INP. By Proposition 2.5(11), there exist an edge eri P 	EHri , a Nielsen
path w in Gri´1 and an integer s P Z

˚ such that σi “ eriw
se´1

ri . Moreover, we have

fperiq “ eriw. Hence for every j P N
˚, we have rf jperiqs “ eriw

j . Since w is a
Nielsen path, by Lemma 2.7, the path w is completely split and its complete splitting
consists of fixed edges and INPs. Thus, for every j P N

˚, the complete splitting of
rf jperiqs does not contain splitting units which are edges in EG strata. By definition

of GPG, we have eri P 	EGPG. Moreover, by the induction hypothesis, the path
ws is a concatenation of paths in GPG and in NPG. Hence σi is a concatenation
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of paths in GPG and in NPG. Finally, if σi is an EG INP, then it is contained in
NPG. Hence γ is a concatenation of paths in GPG and in NPG. �

Lemma 3.8. Let γ be either an NEG INP or an exceptional path. Then γ is a
concatenation of paths in GPG and in NPG.

Proof. We claim that there exist edges e1, e2 and a closed Nielsen path w such that
γ “ e1we

´1
2 and, for every i P t1, 2u, we have fpeiq “ eiw

di for some di P Z
˚. If γ

is an exceptional path, it follows from the definition. If γ is an NEG INP, let r be
the height of γ. Then Hr is an NEG stratum. As γ is a Nielsen path, we can apply
Proposition 2.5(11) to conclude the proof of the claim. Since e1 and e2 are linear
edges, for every k P N

˚, the paths rfkpe1qs and rfkpe1qs do not contain splitting
units which are edges in EG strata. Thus e1 and e2 are contained in GPG. By
Lemma 3.7, the path w is a concatenation of paths in GPG and in NPG. Hence γ
is a concatenation of paths in GPG and in NPG. �

Lemma 3.9. Let γ be a Nielsen path in G. Then γ is a concatenation of paths in
GPG and in NPG.

Proof. By Lemma 2.7, the path γ is completely split, and every splitting unit in
its complete splitting is either an INP or a fixed edge. Let γ “ σ1 . . . σk be the
complete splitting of γ. Let i P t1, . . . , ku. If σi is a fixed edge, then σi is contained
in GPG. If σi is an NEG INP then, by Lemma 3.8, the path σi is a concatenation
of paths in GPG and in NPG. If σi is an EG INP then, by definition, we have
σi P NPG. Hence γ is a concatenation of paths in GPG and in NPG. �

Lemma 3.10.

(1) Let γ be an edge in GPG (resp. an edge in GPG,F). The path rfpγqs is a
concatenation of paths in GPG and in NPG (resp. a concatenation of paths
in GPG,F and in NPG,F ).

(2) Let γ be an edge path contained in GPG (resp. an edge path in GPG,F).
The path rfpγqs is a concatenation of paths in GPG and in NPG (resp. a
concatenation of paths in GPG,F and in NPG,F).

(3) Let γ be an edge path which is a concatenation of paths in GPG and in NPG

(resp. a concatenation of paths in GPG,F and in NPG,F). The path rfpγqs

is a concatenation of paths in GPG and in NPG (resp. a concatenation of
paths in GPG,F and in NPG,F ).

Proof. We prove Assertions p1q, p2q, p3q for paths in GPG and in NPG, the proofs
for paths in GPG,F and NPG,F being similar, using the fact that fpGpq “ Gp.

(1) Let γ be an edge of GPG. By definition of GPG, the edge γ is an edge in an
NEG stratum. By Proposition 2.5(6), the path rfpγqs is completely split.
Let rfpγqs “ γ1 . . . γm be the complete splitting of rfpγqs. Since γ is an
edge in an NEG stratum, by Proposition 2.5(2), we have γ1 “ γ.

Suppose towards a contradiction that rfpγqs is not a concatenation of
paths in GPG and in NPG. It follows that there exists i P t1, . . . ,mu and
an edge e of γi which is not contained in GPG and is not contained in a
subpath of rfpγqs contained in NPG. Hence γi is not an EG INP nor a fixed
edge. By Lemma 3.8, the path γi cannot be an NEG INP or an exceptional
path. Hence γi is either an edge in an irreducible stratum or a maximal
taken connecting path in a zero stratum.
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Suppose first that γi is a maximal taken connecting path in a zero stra-
tum. By Proposition 2.5(4), the path γi cannot be adjacent to an edge in
an NEG stratum nor an edge in a zero stratum. As γ1 “ γ, we see that
i ě 3 and that γi´1 ends with an edge in an EG stratum. By Lemma 2.9
(applied to γ “ γi´1γi), the path γi´1 is not an EG INP. Therefore we see
that γi´1 is an edge in an EG stratum. This contradicts the definition of
the edges in GPG.

Hence we are reduced to the case where γi is an edge in an irreducible

stratum. Therefore, we have γi “ e. By definition ofGPG and as e R 	EGPG,
there exists k P N

˚ such that rfkpγiqs contains a splitting unit which is an
edge in an EG stratum. This contradicts the fact that γ is contained in
GPG. This concludes the proof of p1q.

(2) Let γ be a path in GPG. We prove by induction on the length of γ that
rfpγqs is a concatenation of paths in GPG and in NPG. The case where γ
is an edge follows from Assertion p1q. Suppose now that the length of γ is
at least equal to 2. Let e be the last edge of γ and let γ1 be an edge path
such that γ “ γ1e. Hence γ1 and e are paths in GPG. By the induction
hypothesis, the paths rfpγ1qs and rfpeqs are concatenations of paths in GPG

and in NPG. It remains to show that identifications between rfpγ1qs and
rfpeqs do not create paths which are not concatenations of paths inGPG and
in NPG. Let α, β and σ be paths such that rfpγ1qs “ ασ, rfpe1qs “ σ´1β
and αβ is reduced. By Lemma 3.6 applied to rfpγ1qs and rfpe1qs, the path
rfpγqs is a concatenation of paths in GPG and in NPG. This concludes the
proof of p2q.

(3) Let γ be a concatenation of paths inGPG and inNPG. Let γ“γ1
0γ1γ

1
1 . . . γkγ

1
k

be a decomposition of γ such that for every i P t1, . . . , ku, the path γi is
a maximal subpath of γ in NPG and for every i P t0, . . . , ku, the path
γ1
i is a path in GPG. Such a decomposition is possible by Lemma 3.5(2).

We prove the result by induction on k. If k “ 0, the proof follows from
Assertion p2q. Suppose that the result is true for k1 ă k. Then the paths
γ1 “ γ1

0γ1γ
1
1 . . . γk´1γ

1
k´1 and γ2 “ γkγ

1
k satisfy the induction hypothesis.

Hence the paths rfpγ1qs and rfpγ2qs are concatenations of paths in GPG

and in NPG. Let α, β and σ be three paths such that rfpγ1qs “ αβ,
rfpγ2qs “ β´1σ and αβ is reduced. By Lemma 3.6, the path rfpγqs “ ασ
is a concatenation of paths in GPG and in NPG. This concludes the proof.

�

For Lemma 3.11, we recall a definition due to Bestvina, Feighn and Handel
([BFH1, Section 6], see also [HM, Definition III.1.2]). LetHr` be the EG stratum of
G of maximal height r`. By Proposition 2.5(9), there exists at most one unoriented
INP ρr` of height r` (we suppose that ρr` is a point if such a nontrivial INP
does not exist). Following [HM, Definition III.1.2], let Zr` be the subgraph of G
consisting of all edges e1 such that for every m P N

˚ and every splitting unit σ of
rfmpe1qs, the path σ is not an edge in Hr` . Let

@

Zr` , ρr`

D

be the set consisting of
the following paths:

(i) paths in Zr` ;

(ii) paths in tρr` , ρ
´1
r` u;

(iii) concatenations of paths in Zr` and in tρr` , ρ
´1
r` u.
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Note that
@

Zr` , ρr`

D

contains every path in Gr`´1.

Lemma 3.11. The set
@

Zr` , ρr`

D

contains every path which is a concatenation of
paths in GPG and in NPG.

Proof. It suffices to prove that
@

Zr` , ρr`

D

contains every edge of GPG and every
EG INP. Let e be an edge in GPG. By definition of GPG, for every k P N

˚, the
complete splitting of rfkpeqs does not contain a splitting unit which is an edge in an
EG stratum. In particular, for every k P N

˚, the complete splitting of rfkpeqs does
not contain a splitting unit which is an edge in Hr` . Hence e Ď Zr` and GPG is a
subgraph of Zr` . Let ρ be an EG INP and let r be the height of ρ. By definition

of r`, we have r ď r`. If r “ r`, by Proposition 2.5(9), we have ρ P tρr` , ρ
´1
r` u,

hence we have ρ P
@

Zr` , ρr`

D

. If r ă r`, then ρ is contained in Gr`´1. Hence ρ is

contained in
@

Zr` , ρr`

D

by the above remark. �

We now define a graph which will be used in the proof of Lemma 3.13. Let G˚

be the finite, not necessarily connected, graph defined as follows:

(a) vertices of G˚ are the vertices in GPG and the endpoints of EG INPs in G
which are not in GPG;

(b) we add one edge between two vertices corresponding to vertices in GPG if
there exists an edge in GPG between them;

(c) we add one edge between two vertices corresponding to the endpoints of an
EG INP.

Note that we have a natural continuous application pG˚ : G˚ Ñ G which sends
an edge as defined in (b) to the corresponding edge in GPG and which sends an
edge as defined in (c) to the corresponding EG INP in G. Let x P V G˚.

Lemma 3.12.

(1) If γ is a nontrivial reduced path in G˚, so is pG˚ pγq.
(2) The homomorphism

p1
G˚ : π1pG˚, xq Ñ π1pG, pG˚pxqq

induced by pG˚ is injective.

Proof. (1) Let γ be a reduced path in G˚. Suppose towards a contradiction

that pG˚ pγq is not a reduced path in G. Thus, there exist an edge e P 	EG
and two paths a and b such that pG˚ pγq “ aee´1b. Let e˚ be an arc in γ
such that pG˚ pe˚q “ ee´1. Note that, by definition of pG˚ , the application
pG˚ sends edges of G˚ to reduced edge paths in G. In particular, the path
e˚ is not contained in a single edge of G˚. As the image of an edge in G˚

by pG˚ is either an edge in G or an edge path, we see that the path e˚ is
contained in at most two edges of G˚.

Let e1, e2 P G˚ be such that e˚ Ď e1e2. Suppose first that pG˚ pe1q and
pG˚ pe2q are edges in GPG. Then pG˚ pe1q “ e and pG˚ pe2q “ e´1. But, as
γ is reduced, we have e1 ‰ e´1

2 . This implies that pG˚ pe1q ‰ pG˚ pe2q´1.
Suppose now that pG˚ pe1q is an edge in GPG and pG˚ pe2q is an EG

INP. By Proposition 2.5(9), the first edge of pG˚ pe2q is an edge in an EG
stratum. By definition, every edge in GPG is an edge in an NEG stratum.
Hence the turn tpG˚ pe1q´1, pG˚ pe2qu is nondegenerate. Therefore, we see
that pG˚ pe˚q ‰ ee´1.
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Finally, suppose that pG˚ pe1q and pG˚ pe2q are EG INPs. for every i P

t1, 2u, let ri be the height of pG˚ peiq. By Proposition 2.5(9), the last edge
of pG˚ pe1q is in Hr1 whereas the first edge of pG˚ pe2q is in Hr2 . Hence if
r1 ‰ r2, there is no identification between pG˚ pe1q and pG˚ pe2q. Therefore,
we have pG˚ pe˚q ‰ ee´1. If r1 “ r2, then by the uniqueness statement in
Proposition 2.5(9), we have pG˚ pe2q P tpG˚ pe1q, pG˚ pe1q´1u. Hence e2 P

te1, e
´1
1 u. As γ is a reduced path, we see that e2 “ e1. Hence e1 is a

loop and pG˚ pe1q is a closed EG INP. By Proposition 2.5(9), the initial and
terminal edges of pG˚ pe1q are distinct unoriented edges. Hence the path
pG˚ pe1qpG˚ pe2q is a reduced path and pG˚ pe˚q ‰ ee´1. As we have ruled
out every case, we see that such a path e˚ does not exist. This concludes
the proof of Assertion p1q.

(2) Let γ be a nontrivial reduced closed path inG˚ based at x. By Assertion p1q,
the path pG˚ pγq is a nontrivial reduced closed path in G. Therefore, the
kernel of p1

G˚ is trivial. �

Lemma 3.13. The application rf s which sends a circuit α in G to rfpαqs preserves
the set of circuits which are concatenations of paths in GPG and in NPG. Moreover,
rf s restricts to a bijection on the set of circuits which are concatenations of paths
in GPG and in NPG.

Proof. The first part follows from Lemma 3.10(3). By [HM, Lemma III.1.6 p2q, p5q],
the application rf s preserves

@

Zr` , ρr`

D

and restricts to a bijection on the set of

circuits of
@

Zr` , ρr`

D

. By Lemma 3.11 concatenations of paths in GPG and in

NPG are contained in
@

Zr` , ρr`

D

. By Lemma 3.10, the application rf s preserves
concatenations of paths in GPG and in NPG. In particular, this shows that rf s is
injective when restricted to the set of paths which are concatenations of paths in
GPG and in NPG.

For surjectivity, let α be a circuit in G which is a concatenation of paths in GPG

and in NPG and let x be a vertex in α which is either an endpoint of an edge in
GPG or an endpoint of an EG INP contained in α. Note that by Proposition 2.5(2),
the endpoint of every edge in GPG is fixed by f . Moreover, the endpoint of every
EG INP is fixed by f . Therefore, f fixes x. The circuit α naturally corresponds to
a circuit α1 in G˚. Let x1 be the vertex of α1 corresponding to x (which exists by
the choices made on x). Since rf s preserves concatenations of paths in GPG and in
NPG by Lemma 3.10, the application rf s induces an application

rf sG˚ : π1pG˚, x1
q Ñ π1pG˚, x1

q.

Note that, by Lemma 3.12, the group π1pG˚, x1q is naturally identified with a
subgroup of π1pG, xq. By [BFH1, Lemma 6.0.6], the application rf sG˚ is a bijection.
Hence there exists a closed path β1 in G˚ such that rf sG˚ prβ1sq “ α1. Let β be the
circuit corresponding to β1 in G. Then β is a concatenation of paths in GPG and
in NPG and rfpβqs “ α. �

Proposition 3.14. Let n ě 3. Let φ P OutpFn,Fq be an exponentially growing
outer automorphism, let f : G Ñ G be a CT map representing a power of φ. Let
w P Fn. There exists a subgroup A of Fn such that rAs P Apφq and w P A if and
only if the circuit γw of G associated with w is a concatenation of paths in GPG

and in NPG.
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Proof. Suppose first that γw is a concatenation of paths in GPG and in NPG. We
claim that γw has polynomial growth under iteration of f . By Proposition 2.5(8),
there exists m P N

˚ such that rfmpγwqs is completely split. By Lemma 3.10(3), the
path rfmpγwqs is a concatenation of paths inGPG and inNPG. Hence every splitting
unit of rfmpγwqs is either an edge of GPG or an INP. Let rfmpγwqs “ γ1 . . . γk be
the complete splitting of rfmpγwqs. For every i ě m, we have

�rf i
pγwqsq “

k
ÿ

j“1

�prf i
pγjqsq.

Therefore, it suffices to prove that, for every j P t1, . . . , ku, there exists a polynomial
Pj P ZrXs such that for every i P N

˚, we have

�prf i
pγjqsq “ OpP piqq.

Claim. There exists a polynomial P P ZrXs such that for every edge e P 	EGPG

and every i P N
˚, we have

�prf i
peqsq “ OpP piqq.

Proof. As there are finitely many edges in GPG, it suffices to prove the claim for

a single edge e P 	EGPG. Let e P 	EGPG. By Proposition 2.5(2), there exists a
cyclically reduced, completely split circuit w of height less than the one of e and
such that fpeq “ ew. By Lemma 3.10(1), the path w is a concatenation of paths in
GPG and in NPG.

We prove the claim by induction on the height of e. Suppose first that e has
minimal height in GPG. By minimality of e, the path w does not contain a splitting
unit which is an edge in GPG. Hence w is either trivial or a path in NPG, that
is, a closed Nielsen path. If w is trivial then e is a fixed edge and P “ 1 satisfies
the claim. Suppose that w is a closed Nielsen path. For every i P N

˚, we have
rf ipeqs “ ewi. Hence �prf ipeqsq ď i�pwq ` 1. Then the polynomial P piq “ i�pwq ` 1
satisfies the assertion of the claim. This proves the base case.

Suppose now that e has height r. Let w “ w1 . . . wk be the complete splitting
of w. Recall that, for every reduced path x in G, we have rfprfpxqsqs “ rf2pxqs.
Thus, for every i P N

˚. we have

rf i
peqs “ ew1 . . . wkrfpw1qs . . . rfpwkqs . . . rf i´1

pw1qs . . . rf i´1
pwkqs.

Hence, for every i P N
˚, we have

�prf i
peqsq “ 1 `

k
ÿ

�“1

i´1
ÿ

j“0

�prf j
pw�qsq.

Hence it suffices, for every � P t1, . . . , ku, to find a polynomial P� P ZrXs such that,
for every i P N

˚, we have

�prf i
pw�qsq “ OpP�piqq.

Let � P t1, . . . , ku. As w is a concatenation of paths in GPG and in NPG, every
splitting unit of w is either an edge in GPG or an INP. If w� is an edge in GPG,
the polynomial P� exists using the induction hypothesis. If w� is an INP, then the
polynomial P�piq “ �pw�q satisfies the conclusion of the claim. This proves the
existence of the polynomial P . �
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Let j P t1, . . . , ku. If γk is an edge in GPG which is a splitting unit of rfmpγwqs,
by the above claim, the polynomial Pj exists. If γj is an INP, then the polynomial
P�pxq “ �pγjq satisfies the conclusion. Thus, the path γw has polynomial growth
under iteration of rf s. Therefore, rws has polynomial growth under iteration of φ.
By the definition of Apφq, there exists a subgroup A of Fn such that rAs P Apφq

and w P A.
Conversely, suppose that there exists a subgroup A of Fn such that rAs P Apφq

and w P A. Let m P N
˚ be such that rfmpγwqs is completely split, which exists

by Proposition 2.5(7). Since rws has polynomial growth under iteration of φ, there
does not exist a splitting unit of rfmpγwqs which is an edge in an EG stratum or a
superlinear edge with exponential growth.

Suppose towards a contradiction that a splitting unit σ of rfmpγwqs is contained
in a zero stratum. By Proposition 2.5(3), every zero stratum of G is contractible.
As rfmpγwqs is a cycle, it is not contained in a zero stratum. By Proposition 2.5(4),
every edge adjacent to σ and not contained in the same stratum as σ is in an EG
stratum. Thus, there exists a splitting unit σ1 of rfmpγwqs such that σσ1 Ď rfmpγwqs

and the first edge of σ1 is in an EG stratum. Hence σ1 is either an edge in an EG
stratum or an INP. But, by Lemma 2.9, the path σ1 is not an INP. This shows that
σ1 is an edge in an EG stratum. This contradicts the fact that rws has polynomial
growth under iteration of φ.

Therefore, every splitting unit of rfmpγwqs is either an INP, an exceptional path
or an edge in an NEG stratum whose iterates by f do not contain splitting units
which are edges in EG strata. Edges in the last category are precisely the edges
in GPG. By Lemma 3.8 and Lemma 3.9 every INP and every exceptional path
is a concatenation of paths in GPG and in NPG. Thus, the path rfmpγwqs is a
concatenation of paths in GPG and in NPG. By Lemma 3.13, the circuit γw is a
concatenation of paths in GPG and in NPG. �

Let F be a nonsporadic free factor system of Fn and let φ P OutpFn,Fq. We
say that φ is fully irreducible relative to F if no power of φ preserves a proper free
factor system F 1 of Fn such that F ă F 1. Corollary 3.15 will be used in [Gue2]. It
is a well-known result but we did not find a precise statement in the literature.

Corollary 3.15. Let n ě 3 and let F be a nonsporadic free factor system of Fn. Let
φ P OutpFn,Fq be a fully irreducible outer automorphism relative to F . There exists
at most one (up to taking inverse) conjugacy class rgs of root-free F-nonperipheral
element of Fn which has polynomial growth under iteration of φ. Moreover, the
conjugacy class rgs is φ-periodic.

Proof. Let f : G Ñ G be a CT map representing a power of φ and let G1 be a
subgraph of G such that FpG1q “ F . Since φ is irreducible relative to F and
since F is nonsporadic, we see that G ´ G1 is an EG stratum Hr. Let rgs be the
conjugacy class of a root-free F-nonperipheral element g of Fn. Then γg has height
r.

Suppose that rgs has polynomial growth under iteration of φ. By Proposi-
tion 3.14, the circuit γg is a concatenation of paths in GPG and in NPG. Since
γg has height r and since Hr is an EG stratum, every subpath α of γg contained
in Hr is contained in a concatenation of INPs of height r. By Proposition 2.5(9),
there exists at most one INP σ of height r. Moreover, one of its endpoints is not
contained in G1 “ Gr´1 (see [HM, I.Fact 1.42]). Hence σ is necessarily a closed
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EG INP. Since the endpoint of σ is not in Gr´1 and since γg is a concatenation of
paths in GPG and NPG, we see that γg is an iteration of the closed path σ. Since
g is root-free, we have γg “ σ˘1. This concludes the proof. �

3.2. The exponential length of a CT map. In this section, we define the expo-
nential length function �exp, and its relative version �F , of paths in CT maps. We
compute its value for some paths in G. Let G1

PG “ GPG Y Z (see Definition 3.1)
and let G1

PG,F “ GPG,F Y ZF .
Let γ be a reduced edge path in G. By Lemma 3.5(2), every path of NPG which

is contained in γ is contained in a unique maximal subpath of γ contained in NPG.
Thus, the path γ has a unique decomposition into edge paths γ “ γ0γ

1
1γ1 . . . γ

1
kγk

where:

(1) for every i P t0, . . . , ku, the path γi is a maximal path in NPG contained in
γ (where γ0 and γk might be trivial);

(2) for every γ1 P NPG contained in γ, there exists i P t1, . . . , ku such that
γ1 Ď γi.

Such a decomposition of γ is called the exponential decomposition of γ. Note that
the exponential decomposition of γ is not necessarily a splitting of γ. We denote
by Nmax

PG pγq the set consisting of all paths γi, with i P t0, . . . , ku. Similarly, γ has
a decomposition α “ α0α

1
1α1 . . . α

1
mαm, where for every i P t0, . . . ,mu, the path αi

is a maximal path in NPG,F and for every γ1 P NPG,F contained in γ, there exists
i P t1, . . . , ku such that γ1 Ď αi. Such a decomposition is called the F-exponential
decomposition of γ. We denote by Nmax

PG,F pγq the set consisting of all paths αi, with

i P t0, . . . ,mu.

Definition 3.16.

(1) Let γ be a reduced edge path in G. The exponential length of γ, denoted
by �exppγq, is:

�exppγq “ �
´

γ X G ´ G1
PG

¯

´

ÿ

αPNmax
PG pγq

�
´

α X G ´ G1
PG

¯

.

(2) Let γ be a reduced edge path in G. The F-exponential length of γ, denoted
by �F pγq, is:

�F pγq “ �
´

γ X G ´ G1
PG,F

¯

´

ÿ

αPNmax
PG,F pγq

�
´

α X G ´ G1
PG,F

¯

.

(3) Let γ be a reduced edge path in G and let γ “ γ0γ
1
1γ1 . . . γ

1
kγk be the

exponential decomposition of γ. A PG-relative complete splitting of the
path γ is a splitting γ “ δ1 . . . δm such that for every i P t1, . . . ,mu, the
path δi is one of the following paths:

‚ a splitting unit of positive exponential length not contained in some
γi for i P t0, . . . , ku;

‚ a maximal taken connecting path in a zero stratum;
‚ a subpath of γ which is a concatenation of paths in GPG and paths in
NPG.

We call the above paths PG-relative splitting units. If γ is a circuit,
a PG-relative circuital complete splitting of γ is a circuital splitting of γ
which is a PG-relative complete splitting of γ.
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(4) A factor of a PG-relative completely split edge path γ is a concatenation
of PG-relative splitting units of some given PG-relative complete splitting
of γ.

Note that if γ is an edge path of G, then �exppγq ě 0. Indeed, two paths γ1 and
γ2 contained in Nmax

PG pγq are either equal or disjoint. Let γ “ γ0γ
1
1γ1 . . . γ

1
kγk be

the exponential decomposition of γ. For every i P t1, . . . , ku, we have

�exppγ1
iq “ �pγ1

i X G ´ G1
PGq

and

�exppγq “

k
ÿ

i“1

�exppγ1
iq.

We prove the existence of PG-relative complete splittings in Lemma 3.20. Note
that a PG-relative complete splitting of a reduced edge path γ is not necessarily
unique. Indeed, it might be possible that one can split a PG-relative splitting unit
of γ which is a concatenation of paths in GPG and in NPG into two PG-relative
splitting units which are concatenations of paths in GPG and in NPG.

In the rest of the section, we describe some properties of the exponential length.

Lemma 3.17. Let γ be a reduced edge path in G and let γ “ γ1γ2 be a decomposition
of γ into two edge paths. We have:

�exppγq ď �exppγ1q ` �exppγ2q.

Proof. It is immediate that

�pγ X G ´ G1
PGq “ �pγ1 X G ´ G1

PGq ` �pγ2 X G ´ G1
PGq.

Let i P t1, 2u. Let γ1 P Nmax
PG pγiq. Then there exists γ2 P Nmax

PG pγq such that
γ1 Ď γ2. In particular, we have

ÿ

γ2PNmax
PG pγq

�pγ2
X G ´ G1

PGq

ě

ÿ

γ1PNmax
PG pγ1q

�pγ1
X G ´ G1

PGq `

ÿ

γ1PNmax
PG pγ2q

�pγ1
X G ´ G1

PGq.

By definition of the exponential length, this concludes the proof. �

Note that we do not necessarily have equality in Lemma 3.17. Indeed, let γ “

γ1γ2 be as in Lemma 3.17. Suppose that the endpoint of γ1 is contained in a path
γ1 of Nmax

PG pγq. Then γ1 is not necessarily a concatenation of paths in Nmax
PG pγ1q

and Nmax
PG pγ2q. Therefore, we might have:

ÿ

γ1PNmax
PG pγq

�pγ1
X G ´ G1

PGq

ą

ÿ

γ1PNmax
PG pγ1q

�pγ1
X G ´ G1

PGq `

ÿ

γ1PNmax
PG pγ2q

�pγ1
X G ´ G1

PGq,

and a strict inequality in Lemma 3.17. In particular, a proper subpath of γ might
have greater exponential length than γ itself. For instance, if γ is a reduced path
in G such that �exppγq “ 0, it is possible that there exists a proper subpath γ1 of γ
such that �exppγ1q ą 0. However, there exists a bound, depending only on G, on the
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difference of the exponential length of a subpath of γ and the exponential length of
γ (see Lemma 5.6).

If γ is a path inG such that �exppγq “ 0, we do not necessarily have �expprfpγqsq “

0. Indeed, if γ is an edge in a zero stratum such that rfpγqs contains a splitting unit
which is an edge in an EG stratum, we have �expprfpγqsq ą 0. However, Lemma
3.18 describes an important situation where the map f preserves the property of
having zero exponential length.

Lemma 3.18. Let γ be a reduced edge path which is a concatenation of paths in
GPG and in NPG. For every n P N, we have �expprfnpγqsq “ 0.

Proof. Since the rf s-image of a concatenation of paths in GPG and in NPG is a
concatenation of paths in GPG and in NPG by Lemma 3.10, it suffices to prove
the result for n “ 0. Let γ be a concatenation of paths in GPG and in NPG. Let
γ “ γ0γ

1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ: for every i P t1, . . . , ku,

the path γi is a maximal subpath of γ in NPG and for every i P t0, . . . , ku, the path
γ1
i is a path in GPG. Note that for every i P t1, . . . , ku, we have γi P Nmax

PG pγq. By

definition of the exponential length, we have �exppγq “
řk

i“0 �exppγ1
iq “ 0. �

Corollary 3.19. Let γ be a path of N 1
PG. Then �exppγq “ 0. In particular, if

γ is either a closed Nielsen path, an NEG INP or an exceptional path, we have
�exppγq “ 0.

Proof. By Lemma 3.9, the path γ is a concatenation of paths in GPG and in NPG.
By Lemma 3.18, we have �exppγq “ 0. The second assertion follows from Lem-
mas 3.7 and 3.8. �
Lemma 3.20. Let γ be a completely split edge path and let γ “ γ1 . . . γm be its
complete splitting. Let γ1 P Nmax

PG pγq. Then either γ1 is a concatenation of splitting
units of γ or there exists i P t1, . . . ,mu such that γ1 Ĺ γi. Moreover, the complete
splitting of γ is a PG-relative complete splitting of γ.

Proof. Let e be the first edge of γ1 and let i P t1, . . . ,mu be such that e is contained
in γi. Let σ be the splitting unit of γ1 containing e. By Proposition 2.5(9), the edge
e is in an EG stratum. Hence γi is either an edge in an EG stratum, an exceptional
path or an INP. Since γ1 is a Nielsen path, and since γi is a splitting unit of γ,
we see that γi is not an edge in an EG stratum. If γi is either an NEG INP or
an exceptional path, then Proposition 2.5(11) implies that γi starts and ends with
edges in NEG strata whose height is strictly higher than the one of e. Since the
height of e is equal to the height of σ, we see that γi contains σ. An inductive
argument shows that γ1 is contained in γi.

Suppose now that γi is an EG INP. By Lemma 3.5(2) applied to γi and γ1, either
γ1 is contained in γi or γi is the initial segment of γ1. If γ1 is contained in γi, by
maximality of γ1, we see that γ1 “ γi. Suppose that γ1 is the initial segment of the
completely split edge path γi . . . γk. Then Lemma 3.4 implies that γ1 is a factor of
γ.

The last assertion of the lemma follows from the following observations. Every
splitting unit of γ which is either an INP or an exceptional path is a concatenation
of paths in GPG and in NPG by Lemma 3.8. Moreover, by the first assertion of
the lemma, every splitting unit of γ which is an edge in an irreducible stratum
not contained in GPG does not intersect a path in Nmax

PG pγq. Hence the complete
splitting of γ is a PG-relative complete splitting. �
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PG-relative completely split edge paths are well-adapted to the computation of
the exponential length as explained by Lemma 3.21.

Lemma 3.21. Let γ be a PG-relative completely split edge path and let γ “

α1 . . . α� be a PG-relative complete splitting.

(1) For every path γ1 P Nmax
PG pγq, there exists a minimal concatenation of PG-

relative splitting units δ of γ such that γ1 Ď δ; every PG-relative split-
ting unit of δ is a concatenation of paths in GPG and in NPG; for every
PG-relative splitting unit δ1 of δ, the intersection δ1 X γ1 is an element of
Nmax

PG pδ1q.

(2) We have �exppγq “
ř�

i“1 �exppαiq and �F pγq “
ř�

i“1 �F pαiq.

Proof. p1q Let γ “ γ0γ
1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ where,

for every i P t0, . . . , ku, we have γi P Nmax
PG pγq. Let i P t0, . . . , ku. Let j P t1, . . . , �u

be such that αj contains an initial segment of γi. By Proposition 2.5(10), the
splitting unit αj is not contained in a zero stratum. Moreover, by definition of the
PG-relative splitting units, if αj is an edge in an irreducible stratum of positive
exponential length, it is not contained in γi. Hence, by the description of PG-
relative splitting units, the path αj is a concatenation of paths in GPG and in
NPG.

By Proposition 2.5(9), the path γi starts with an edge in an EG stratum. Hence
there exists a path βj in Nmax

PG pαjq which contains an initial segment of γi. By
maximality of γi, we see that βj Ď γi. Suppose first that βj “ γi. Then setting
δ “ αj proves the first assertion. Suppose now that βj Ĺ γi. By Lemma 3.5(2)

applied to γ “ γ´1
i and γ1 “ β´1

j , the path rβ´1
j γis is a path in NPG. Therefore, by

Proposition 2.5(9), the path rβ´1
j γis starts with an edge in an EG stratum. Note

that, as αj is a concatenation of paths in GPG and in NPG, if αj contains the

first edge e of rβ´1
j γis, then e would be contained in an EG INP contained in αj .

Since βj is a maximal subpath of αj in NPG, we see that rβ´1
j γis is contained in

γ2 “ αj`1 . . . α� and is in Nmax
PG pγ2q. We can thus apply the same arguments to

the paths rβ´1
j γis and γ2. This concludes the proof of p1q.

The proof of p2q follows as the exponential length and the F-length are computed
by removing paths in GPG and in NPG. As all subpaths in GPG are contained in a
splitting unit of γ and as subpaths in NPG are obtained by concatenating paths in

>�
j“1Nmax

PG pαjq, we see that �exppγq “
ř�

i“1 �exppαiq and �F pγq “
ř�

i“1 �F pαiq. �

The following property of the exponential length allows us to pass, if needed, to
a further iterate of the CT map f .

Lemma 3.22. For every edge e of G ´ G1
PG, we have

lim
nÑ8

�expprfn
peqsq “ 8 and lim

nÑ8
�F prfn

peqsq “ 8.

Moreover, the sequences p�expprfnpeqsqqnPN and p�F prfnpeqsqqnPN grow exponentially
fast.

Proof. We prove the result concerning �exp, the proof of the result concerning �F
follows from the fact that for every reduced edge path γ in G, we have �exppγq ď

�F pγq. Let e be an edge of G ´ G1
PG. Since every iterate of e is completely split by

Proposition 2.5(6) and since there exists an iterate of e which contains a splitting
unit which is an edge in an EG stratum, we may suppose that e is an edge in an EG
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stratum Hr. Since Hr is an EG stratum, the number of edges in rfnpeqsXHr grows
exponentially fast as n goes to infinity. Therefore the number of splitting units of
rfnpeqs which are edges of Hr grows exponentially fast and limnÑ8 �expprfnpeqsq “

8. �

Lemma 3.23. There exists n0 P N
˚ such that for every k ě n0 and every PG-

relative completely split edge path γ, we have �expprfkpγqsq ě �exppγq.

Proof. Let γ “ γ1 . . . γk be a PG-relative complete splitting of γ. By Lemma 3.21,
it suffices to prove the assertion for every subpath γi, with i P t1, . . . , ku. Let i P

t1, . . . , ku. If γi is a concatenation of paths inGPG and inNPG, then �expprfpγiqsq “

�exppγiq “ 0 by Lemma 3.18. If γi is a maximal taken connecting path in a zero
stratum, we have �exppγiq “ 0. Hence �expprfpγiqsq ě �exppγiq. In the other cases, γi
is an edge in an irreducible stratum which is not contained in GPG. By Lemma 3.22,
we have limnÑ8 �expprfnpγiqsq “ 8. Hence there exists n0 P N

˚ such that, for every
k ě n0, we have �expprfkpγiqsq ě �exppγiq. Since there exist only finitely many edges
in irreducible strata, the integer n0 may be chosen to be independent of γi with
i P t1, . . . , ku. �

Lemma 3.24 in this section shows that the exponential length of a PG-relative
completely split edge path encaptures the splitting units which are edges with ex-
ponential growth under iteration of f .

Lemma 3.24. Let γ be a PG-relative completely split edge path, let γ “ γ1 . . . γk
be a PG-relative complete splitting and let i P t1, . . . , ku. Then �exppγiq ą 0 if and
only if γi is an edge in an irreducible stratum not contained in GPG. In particular,
the value �exppγq is the number of splitting units which are edges in G ´ G1

PG.

Proof. Suppose first that γi is either a concatenation of paths in GPG and in NPG

or a maximal taken connecting path in a zero stratum. By Lemma 3.18, we have
�exppγiq “ 0. Suppose that γi is an edge in an irreducible stratum which is not
contained in GPG. Since there does not exist an EG INP of length 1, by definition
of the exponential length, we have �exppγiq “ 1 ą 0. This concludes the proof of the
first part of the lemma. The computation of �exppγq follows from Lemma 3.21(2).

�

3.3. The space of polynomially growing currents. In this section, let F be
a free factor system and let φ P OutpFn,Fq be an exponentially growing outer
automorphism. Recall the definition of Apφq and F ^ Apφq from Section 2.1. We
define a subspace of PCurrpFn,F ^Apφqq, called the space of polynomially growing
currents. It consists of the currents whose support is contained in B2Apφq (see
Lemma 3.28). In order to define it, we first need to show that the exponential
length extends to a continuous function Ψ: PCurrpFn,F ^ Apφqq Ñ R. The space
of polynomially growing currents will then be defined as a level set of Ψ.

We first need some preliminary results concerning paths in NPG. For a path
γ P NPG, let N``

PG pγq be the subset of NPG which consists of all paths γ1 P NPG

such that γ Ĺ γ1 and γ1 is minimal for this property. Let γ1 P N``
PG pγq. By

Lemma 3.5(3), either γ is properly contained in an INP σ of the complete splitting
of γ1 or there exist (possibly trivial) paths γ1, γ2 P NPG such that γ1 “ γ1γγ2. By
minimality, either γ1 or γ2 is trivial. Moreover, Lemma 3.4 shows that, in this case,
splitting units of the complete splittings of γ1, γ2 and γ are splitting units of γ1.
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Thus the set N``
PG pγq can be partitioned into three disjoint subsets:

N``
PG pγq “ N``

PG,INP pγq > N``
PG,leftpγq > N``

PG,rightpγq,

where N``
PG,INP pγq is the set of paths in N``

PG pγq such that one of their splitting

units properly contains γ, N``
PG,leftpγq is the set of paths γ1 P N``

PG pγq such that

γ1 “ γ1γ and N``
PG,rightpγq is the set of paths γ1 P N``

PG pγq such that γ1 “ γγ2.

One can also define similarly the three sets N``
PG,INP,F pγq, N``

PG,left,F pγq and

N``
PG,right,F pγq as the restriction to the paths in N``

PG,INP pγq, N``
PG,leftpγq and

N``
PG,rightpγq contained in Gp. We emphasize on the fact that a path inN``

PG,INP pγq

might contain several occurrences of the path γ. However, a path in N``
PG,leftpγq or

in N``
PG,rightpγq contains a unique occurrence of γ. Indeed, let γ1 P N``

PG,leftpγq (the

proof for N``
PG,rightpγq being similar). Then γ1 “ γ1γ2 with γ1 P NPG and γ2 “ γ.

Let γ3 be an occurrence of γ which contains an edge of γ1. By Lemma 3.3(2), the
path γ3 cannot intersect γ2 nontrivially. Hence γ3 Ď γ1. Hence γ1 P NPG and γ1
contains an occurrence of γ. This contradicts the minimality of γ1.

Lemma 3.25. Let γ be a path in NPG. Let γ1, γ2 be two distinct paths in N``
PG pγq.

Suppose that there exist three paths μ1, μ2, μ3 such that γ1 “ μ1μ2, γ2 “ μ2μ3 and
γ is contained in μ2. Then γ1 P N``

PG,leftpγq, γ2 P N``
PG,rightpγq and μ2 “ γ.

Proof. By Lemma 3.5(2), the path μ2 belongs to NPG and contains γ. Since γ1
and γ2 are minimal paths of NPG for the property of properly containing γ, we
have μ2 “ γ. Therefore, we see that γ1 “ μ1γ and γ2 “ γμ3. This shows that
γ1 P N``

PG,leftpγq and that γ2 P N``
PG,rightpγq. �

Lemma 3.25 implies that an occurrence of γ in the intersection of paths in
N``

PG pγq is well-controlled. Following Lemma 3.25, we then define N``
PG,lrpγq to be

the set of paths of the form γ1γγ2, where γ1γ P N``
PG,leftpγq and γγ2 P N``

PG,rightpγq.

We define similarly the set N``
PG,lr,F pγq to be the set of all paths in N``

PG,lrpγq con-

tained in Gp. As for N``
PG,leftpγq and N``

PG,rightpγq, a path in N``
PG,lrpγq contains a

unique occurrence of γ.
Given two paths γ and γ1 of G let Npγ1, γq be the number of occurrences of γ and

γ´1 in γ1. Let e P 	EpG ´ G1
PGq. Using the finiteness of NPG (see Lemma 3.5(1)),

let

Ψ1
e : CurrpFn,F ^ Apφqq Ñ R

be the continuous function sending ν to

ÿ

γPNPG,eĎγ

´

xγ, νy ´

ÿ

γ1
PN``

PG pγq

@

γ1, ν
D

Npγ1, γq `

ÿ

γ1
PN``

PG,lrpγq

@

γ1, ν
D

¯

�
´

γ X G ´ G1
PG

¯

.

Let

Ψ1
0 : CurrpFn,F ^ Apφqq Ñ R

be the continuous function

Ψ1
0pνq “

ÿ

eP�EpG´G1
PGq

Ψ1
e,
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and let Ψ0 : CurrpFn,F ^ Apφqq Ñ R be the continuous linear function

Ψ0pνq “
1
2

´

ř

eP�EpG´G1
PGq

xe, νy ´ Ψ1
epνq

¯

“
1
2

´

ř

eP�EpG´G1
PGq

xe, νy

¯

´
1
2Ψ

1
0pνq.

Definition 3.26. The space of polynomially growing currents, denoted byKPGpfq,
is the compact subset of PCurrpFn,F ^ Apφqq consisting of all projective classes of
currents rνs P PCurrpFn,F ^ Apφqq such that:

Ψ0pνq “ 0.

Finally, we define the F-simplicial length function ‖.‖F : CurrpFn,F^Apφqq Ñ R

as

‖ν‖F “
1

2

´

ÿ

eP�EpG´G1
PG,F q

xe, νy

´

ÿ

γPNPG,F ,eĎγ

´

xγ, νy ´

ÿ

γ1PN``
PG,F pγq

@

γ1, ν
D

Npγ1, γq

`
ÿ

γ1PN``
PG,lr,F pγq

@

γ1, ν
D

¯

�
´

γ X G ´ G1
PG,F

¯ ¯

.

Lemma 3.27. Let w P Fn be a nonperipheral element with conjugacy class rws,
associated rational current ηrws and associated reduced edge path γw in G. Then

Ψ0pηrwsq “ �exppγwq;
‖ηrws‖F “ �F pγwq.

Therefore ηrws P KPGpfq if and only if

�exppγwq “ 0.

In particular, there exist a basis B of Fn and a constant C ą 0 such that, for every
F ^ Apφq-nonperipheral element g P Fn, we have ‖ηrgs‖F P N

˚ and

�Bprgsq ě C‖ηrgs‖F .

Proof. We prove the result for Ψ0, the proof for ‖ηrws‖F being similar. First note
that

ÿ

eP�EpG´G1
PGq

@

e, ηrws

D

“ 2�pγw X G ´ G1
PGq,

where the factor 2 follows from the fact that the sum on the left hand side is over
oriented edges. Therefore, it remains to prove that

(3) Ψ1
0pηrwsq “ 2

ÿ

γPNmax
PG pγwq

�
´

γ X G ´ G1
PG

¯

.

Let γ P NPG. Then the value
@

γ, ηrws

D

´
ÿ

γ1PN``
PG pγq

@

γ1, ηrws

D

Npγ1, γq `
ÿ

γ1PN``
PG,lrpγq

@

γ1, ηrws

D

measures the number of occurrences of γ or γ´1 in γw which are not induced by an
occurrence of a path γ1 P NPG containing properly γ or γ´1 and contained in γw.
Indeed, an occurrence of γ in a path γ1 P NPG containing properly γ will be counted
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in
ř

γ1PN``
PG pγq

@

γ1, ηrws

D

Npγ1, γq. Moreover, if an occurrence of γ is contained in

two distinct paths γ1, γ2 P N``
PG pγq, Lemma 3.25 ensures that this occurrence is

contained in a path γ3 P N``
PG,lrpγq. Therefore, the value

´

ÿ

γ1PN``
PG pγq

@

γ1, ηrws

D

Npγ1, γq `

ÿ

γ1PN``
PG,lrpγq

@

γ1, ηrws

D

measures an occurrence of γ or γ´1 in a larger path, and each such occurrence will
be counted exactly once. Therefore, the equation below Equation (3) measures the
number of occurrences of γ and γ´1 in Nmax

PG pγwq. Since the sum in the definition
of Ψ1

0 is over oriented edges, the value Ψ1
0pηrwsq is exactly twice the number of oc-

currences of γ and γ´1 in Nmax
PG pγwq. Thus, Equality (3) holds. The last assertions

of Lemma 3.27 then follow by definitions of KPGpfq and of �F . �

Note that the proof of Lemma 3.27 also shows that, for every edge

e P 	EpG ´ G1
PGq

and every nonperipheral element w P Fn, the value:

@

e, ηrws

D

´

ÿ

γPNPG,eĎγ

´

@

γ, ηrws

D

´

ÿ

γ1PN``
PG pγq

@

γ1, ηrws

D

Npγ1, γq

`

ÿ

γ1PN``
PG,lrpγq

@

γ1, ηrws

D

¯

Npγ, eq

measures the number of occurrences of e in γw which are not contained in a path of

Nmax
PG pγwq. Thus, for every nonperipheral element and every edge e P 	EpG ´ G1

PGq,
we have:

@

e, ηrws

D

´
ÿ

γPNPG,eĎγ

´

@

γ, ηrws

D

´
ÿ

γ1PN``
PG pγq

@

γ1, ηrws

D

Npγ1, γq

`

ÿ

γ1PN``
PG,lrpγq

@

γ1, ηrws

D

¯

Npγ, eq ě 0.

The density of rational currents given by Proposition 2.15 and the continuity of
xe, .y then show that for every current ν P CurrpFn,F ^ Apφqq and every edge

e P 	EpG ´ G1
PGq, we have :

xe, νy ´

ÿ

γPNPG,eĎγ

´

xγ, νy ´

ÿ

γ1PN``
PG pγq

@

γ1, ν
D

Npγ1, γq

`
ÿ

γ1PN``
PG,lrpγq

@

γ1, ν
D

¯

Npγ, eq ě 0.

Lemma 3.28. Let n ě 3 and let F be a free factor system. Let φ P OutpFn,Fq

be an exponentially growing outer automorphism. Let f : G Ñ G be a CT map
representing a power of φ.

(1) If rνs P KPGpfq, then Supppνq Ď B2pFn,F ^Apφqq X B2Apφq. In particular,
if φ is expanding relative to F , then KPGpfq “ ∅.
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(2) Conversely, if ν P CurrpFn,F ^ Apφqq is such that the support Supppνq of
ν is contained in B2pFn,F ^ Apφqq X B2Apφq, then rνs P KPGpfq. Thus we
have

KPGpfq “ trμs P PCurrpFn,F ^ Aq | Supppμq Ď B
2
pFn,F ^ Apφqq X B

2Apφqu.

(3) If ν P CurrpFn,F ^ Apφqq, we have ‖ν‖F “ 0 if and only if ν “ 0.

Proof. The proof of p3q being identical to the proof of p1q and p2q replacing G1
PG

and NPG by G1
PG,F and NPG,F , we only prove p1q and p2q. For the proof of

both p1q and p2q, let B be a free basis of Fn and let T be the Cayley graph of Fn

associated with B. Let C pApφqq be the set of elements of Fn associated with Apφq

given by Lemma 2.11. Recall that CylpC pApφqqq is the set of cylinder subsets of the
form Cpγq, where γ is a geodesic edge path in T starting at the base point whose
associated element w P Fn contains a word of C pApφqq as a subword.

(1) Let ν P CurrpFn,F^Apφqq nonzero be such that Supppνq is not contained in
B2pFn,F^ApφqqXB2Apφq. Then SupppνqXB2pFn,Apφqq ‰ ∅. Hence the re-
striction of ν to B2pFn,Apφqq induces a nonzero current ν 1 P CurrpFn,Apφqq.
By Lemma 2.12 applied to A “ Apφq and ν 1, there exists Cpγq P C pApφqq

such that νpCpγqq ą 0. Let w be the element of Fn associated with γ,
and let γ1

w be the reduced circuit in G associated with the conjugacy class
of w. Up to taking a larger geodesic edge path γ2 Ě γ in T such that
νpCpγ2qq ą 0 (which exists by additivity of ν), we may suppose that w is
cyclically reduced.

By Lemma 2.11(3), the path γ is not contained in any tree TA with
rAs P Apφq. As w is cyclically reduced, the translation axis in T of w
contains γ. This shows that tw`8, w´8u R B2Apφq and that w is not
contained in any subgroup A with rAs P Apφq. By Proposition 3.14, the
circuit γ1

w is not a concatenation of paths in GPG and in NPG. Therefore,

there exists an edge e P 	EpG ´ G1
PGq (contained in γ1

w) such that

xe, νy ´

ÿ

γPNPG,eĎγ

´

xγ, νy ´

ÿ

γ1PN``
PG pγq

@

γ1, ν
D

Npγ1, γq

`

ÿ

γ1PN``
PG,lrpγq

@

γ1, ν
D

¯

Npγ, eq ą 0.

Thus, we see that Ψ0pνq ą 0 and that rνs R KPGpfq. The second part of
p1q follows from the fact that if φ is expanding relative to F , then B2Apφq Ď

B2F . This proves p1q.
(2) Let ν P CurrpFn,F ^ Apφqq be such that Supppνq Ď B2pFn,F ^ Apφqq X

B2Apφq. Let e be an edge such that xe, νy ą 0. By Lemma 3.5(1), there
exists a constant C1 ą 0 such that, for every path γ1 P NPG, we have
�pγ1q ď C1. Recall the definition of the graph G˚ and the application
pG˚ : G˚ Ñ G. from Lemma 3.12. Let C2 be the length of a maximal path
in a maximal forest of pG˚ pG˚q. Let C “ maxt2C1, C2u.

Claim. Let γ, δ1 and δ2 be reduced paths such that γ “ δ1eδ2, �pδ1q, �pδ2q ě 2C and
xγ, νy ą 0. Let γ “ γ0γ

1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ (where,

for every i P t0, . . . , ku, the path γi is contained in NPG). Either e P 	EG1
PG or e is

contained in an EG stratum and there exists i P t0, . . . , ku such that e Ď γi.
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Proof. Since Supppνq Ď B2pFn,F ^Apφqq X B2Apφq, there exist a subgroup A of Fn

such that rAs P Apφq, and two elements a and b of A such that the geodesic path in
rG representing ta`8, b`8u P B2A contains a lift of γ. If b “ a´1, then γ is contained
in an iterate of a and, by Proposition 3.14, γ is contained in a concatenation of
paths in GPG and NPG. The claim follows in this case. So we may assume that
b ‰ a´1. Suppose first that the axes Axpaq and Axpbq of a and b are disjoint.
Then there exist k, � P N

˚ such that γ is contained in the axis of a´kb�. Thus, by
Proposition 3.14, γ is contained in a concatenation of paths in GPG and NPG and
the claim follows in this case.

Suppose now that Axpaq XAxpbq ‰ ∅. Let γ1
a and γ1

b be the reduced circuit in G
associated with a and b. Then γ is contained in the union of γ1

aYγ1
b. Recall that, by

Proposition 3.14, the paths γ1
a and γ1

b are concatenation of paths in GPG and NPG.
Hence there exist reduced circuits α and β in G˚ and reduced arcs τ, τe in G˚ such
that pG˚ pαq “ γ1

a and p˚pβq “ γ1
b and such that pG˚ pτ q “ γ and pG˚ pτeq “ e. By

the choice of C, and as �pδ1q, �pδ2q ě 2C, one can remove an initial and a terminal
segment of τ so that the resulting path τ 1 is nontrivial, is contained in a subgraph
of G˚ with no leaf and is such that �ppG˚ pτ 1qq ě 2C`1. Thus, there exist subpaths
τ 1
1, τ

2
1 , τ

1
2, τ

2
2 of τ and a reduced circuit δ of G˚ such that:

(i) �ppG˚ pτ 1
1qq, �ppG˚pτ 1

2qq ě C,
(ii) τ “ τ2

1 τ
1
1τeτ

1
2τ

2
2 ,

(iii) τ 1 “ τ 1
1τeτ

1
2 Ď δ.

By Lemma 3.12(1), the path pG˚ pδq is a reduced circuit which contains e. Since
�ppG˚ pτ 1

1qq, �ppG˚pτ 1
2qq ě C ě 2C1, if γ1 P Nmax

PG ppG˚ pδqq is such that e Ď γ1,
then γ1 Ď τ 1

1eτ
1
2. Hence it suffices to prove the claim for γ “ pG˚ pδq. As δ is a

concatenation of paths in GPG and in NPG, the claim follows. �

Suppose towards a contradiction that there exists an edge e P G ´ G1
PG such

that:

xe, νy ´

ÿ

γPNPG,eĎγ

´

xγ, νy ´

ÿ

γ1PN``
PG pγq

@

γ1, ν
D

Npγ1, γq

`

ÿ

γ1PN``
PG,lrpγq

@

γ1, ν
D

¯

Npγ, eq ą 0.

By additivity of ν, there exists a reduced path γ0 of length 4C ` 1 such that
the path γ0 has a decomposition γ0 “ γ1eγ2, where for every i P t1, 2u, the path γi
has length equal to 2C and we have νpCpγ0qq ą 0. By the above equation, we can
choose γ0 such that if γ1 P Nmax

PG pγ0q, then γ1 does not contain e. Thus we have
e R G1

PG and e is not contained in a subpath of Nmax
PG pγ0q. This contradicts the

above claim and this concludes the proof. �

Let F be a free factor system and let φ P OutpFn,Fq be an exponentially growing
outer automorphism. Note that, by Lemma 3.28 and since for every k P N

˚, we
have Apφq “ Apφkq, the space KPGpfq does not depend on the CT map f and
does not depend on the chosen power of φ. Therefore, we will simply write KPGpφq

instead. Moreover, since Apφq “ Apφ´1q, we see that KPGpφq “ KPGpφ´1q.
For Lemma 3.29, let C1 ą 0 be a constant such that for every γ P NPG, we

have �pγq ď C1. It exists since NPG is finite by Lemma 3.5(1). Let L be the
malnormality constant associated with Apφq as defined above Lemma 2.11 and let
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C0 “ maxtC1, Lu. Let C be the set of elements of Fn associated with F ^ Apφq

given above Lemma 2.11. Let PpF ^Apφqq be the set of reduced paths γ in G such
that Cpγq P CylpC q, �pγq ą C0 and γ is not contained in a concatenation of paths
in GPG,F and NPG,F .

Lemma 3.29. Let n ě 3, let F be a free factor system of Fn and let φ P OutpFn,Fq

be an exponentially growing outer automorphism. We have

B
2
pFn,F ^ Apφqq “

ď

γPPpF^Apφqq

Cpγq.

Proof. Let A1, . . . , Ar be subgroups of Fn such that F ^ Apφq “ trA1s, . . . , rArsu

and C “ C pA1, . . . , Arq. By Lemma 2.12, we have

B
2
pFn,F ^ Apφqq “

ď

CpγqPCylpC q

Cpγq.

Note that, for every path γ Ď G, we have

Cpγq “

ď

eP�EG,�pγeqą�pγq

Cpγeq.

Hence we have

B
2
pFn,F ^ Apφqq “

ď

CpγqPCylpC q,�pγqąC0

Cpγq.

So it suffices to prove that we can restrict our considerations to paths γ which
are not contained in a concatenation of paths in GPG,F and NPG,F . Let γ be
a path such that Cpγq P CylpC q and �pγq ą C0. By Lemma 2.11(3), the path
γ is not contained in any tree TgAig´1 with g P Fn and i P t1, . . . , ru. Thus, by
Proposition 3.14, there does not exist a circuit in Gp which contains γ and which
is a concatenation of paths in GPG,F and NPG,F . Moreover, it is not contained in
any path of NPG since �pγq ą C1.

Suppose that γ is contained in a concatenation of paths in GPG,F and NPG,F
(which is not a circuit by the above). Recall the definition of G˚ and pG˚ from
Lemma 3.12 and let G˚

F “ p´1
G˚ pGpq. By the above paragraph, either there does

not exist an immersed path (not necessarily an edge path) γ˚ in G˚
F such that

pG˚ pγ˚q “ γ or there exists an immersed path γ˚ in G˚
F such that pG˚ pγ˚q “ γ

and γ˚ is not contained in a circuit of G˚
F (recall that G˚

F might contain univalent
vertices). In the first case, we have �F pγq ą 0. In the second case, since G˚ is finite,
by Lemma 3.12, up to considering γ´1, there exists d P N

˚ such that for every path
of γ1 such that γγ1 is a reduced path in G and �pγγ1q “ �pγq `d, the path γγ1 is not
the image by pG˚ of an immersed path in G˚

F . Thus we have �F pγγ1q ą 0. Using
the fact that

Cpγq “
ď

eP�EG,�pγeqą�pγq

Cpγeq,

we can replace γ by paths γ2 such that γ Ď γ2 and γ2 is not contained in a
concatenation of paths in GPG,F and NPG,F . This concludes the proof. �

Let ν be a nonzero current in CurrpFn,F ^ Apφqq. By Lemma 3.28(3), we have
‖ν‖F ‰ 0. The following result characterizes limits in PCurrpFn,F ^ Apφqq. The
result is due to Kapovich [Kap, Lemma 3.5] for a nonrelative context.
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Lemma 3.30. Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq

be an exponentially growing outer automorphism. Let prμnsqnPN be a sequence of
projective relative currents in PCurrpFn,F ^ Apφqq and let rμs P PCurrpFn,F ^

Apφqq. Let G be a graph whose fundamental group is isomorphic to Fn and such
that there exists a subgraph Gp of G such that FpGpq “ F . Then lim

nÑ8
rμns “ rμs if

and only if, for every reduced edge path γ P PpF ^ Apφqq, we have

(4) lim
nÑ8

xγ, μny

‖μn‖F
“

xγ, μy

‖μ‖F
.

Proof. Suppose first that lim
nÑ8

rμns “ rμs. Thus there exists a sequence pλnqnPN˚

of positive real numbers such that lim
nÑ8

λnμn “ μ. By continuity of ‖.‖F , we have

lim
nÑ8

‖λnμn‖F “ ‖μ‖F . By linearity of ‖.‖F and x., .y in the second variable, for

every reduced edge path γ P PpF ^ Apφqq, we have

lim
nÑ8

xγ, λnμny

‖λnμn‖F
“ lim

nÑ8

xγ, μny

‖μn‖F
“

xγ, μy

‖μ‖F
.

Suppose now that for every reduced edge path γ P PpF ^ Apφqq, Equation (4)
holds. By Lemma 3.29, for every Borel subset B of B2pFn,F ^ Apφqq such that
μpBBq “ 0 (where BB is the topological boundary of B), we have

lim
nÑ8

μnpBq

‖μn‖F
“

μpBq

‖μ‖F
.

Hence we have lim
nÑ8

rμns “ rμs. �

4. Stable and unstable currents for relative atoroidal outer

automorphisms

Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be
an atoroidal outer automorphism relative to F . In this section, under additional
hypotheses on φ, we construct two φ-invariant convex subsets of PCurrpFn,Fq. We
will then show in the following section that, with respect to these convex subsets,
the outer automorphism φ acts with generalized north-south dynamics.

In order to define the extremal points of these simplices, we need some results
regarding substitution dynamics.

4.1. Substitution dynamics. Let A be a finite set with cardinality at least equal
to 2. Let ζ be a substitution on A, that is, a map from A to the set of nonempty
finite words on A. The substitution ζ induces a map on the set of all finite words
on A by concatenation, which we still denote by ζ. We can therefore iterate the
substitution ζ. For a word w on A, we will denote by |w| the length of w on the
alphabet A.

To the substitution ζ one can associate its transition matrix M , which is a square
matrix whose rows and columns are indexed by letters in A and, for all a, b P A,
the value Mpa, bq is the number of occurrences of a in ζpbq. Likewise, for n ě 1, the
matrixMn is the transition matrix for ζn. We say that a substitution ζ is irreducible
if its transition matrix is irreducible, and that the substitution is primitive if its
transition matrix is.
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Let � P N
˚ and let A� be the set of words on A of length �. As defined

in [Que, Section 5.4.1], the substitution ζ induces a substitution ζ� on A� as fol-
lows. Consider w “ x1 . . . x� P A�. Then ζ�pwq “ w1w2 . . . w|ζpx1q|, where, for every
i P t1, . . . , |ζpx1q|u, the word wi is the subword of ζpwq of length � starting at the
ith position of ζpx1q. Therefore, ζ� is the concatenation of the |ζpx1q| first subwords
of ζpwq of length �. Note that the number of i P t1, . . . , |ζpx1q|u such that wi is not
contained in ζpx1q is bounded by �´1. Let | ¨ |� be the length of words on A�. Then
|ζ�pwq|� “ |ζpx1q|. Denote by M� the transition matrix of ζ�. Note that, for every
n, � ě 1, we have pζnq� “ pζ�q

n as applications on the set of words on A� and thus
pMnq� “ pM�q

n.

Consider now a partition of the alphabet A “
šk

i“0 Bi. Suppose that the transi-
tion matrix associated with the substitution ζ is lower block triangular with respect
to this partition. Therefore, for every i P t0, . . . , ku, for every x P Bi and for every
j ă i, the word ζpxq does not contain letters in Bj . In the remainder of the article,
for every i P t0, . . . , ku the diagonal block in M corresponding to the block Bi will
be denoted by MBi

.
The partition of A induces a partition of A� as follows. For every i P t0, . . . , ku,

let rBi Ď A� be the set of all words on A of length � which start with a letter in Bi

and which, for every j ă i, do not contain a letter in Bj . Let Bi be the set of all
words w on A of length � which start with a letter in Bi and such that there exists

j ă i such that w contains a letter in Bj (note that B0 is empty). Then rBi Y Bi is
the set of all words on A of length � which start with a letter in Bi. The hypothesis
on the substitution ζ implies that the transition matrix M� is lower block triangular
with respect to the partition

rB0 > B1 > rB1 > . . . > Bk > rBk

of A�. As before, for every i P t0, . . . , ku, we will denote by M�,Bi
the diagonal block

in M� corresponding to Bi and by M�, rBi
the diagonal block in M� corresponding

to rBi.

Lemma 4.1 ([Gup1, Lemma 8.8]). Let A be a finite alphabet equipped with a
partition A “ >k

i“0Bi. Let ζ be a substitution and let M be its transition matrix.
Let � P N

˚.

(1) The eigenvalues of M�, rBi
are those of MBi

with possibly additional eigen-

values of absolute value at most equal to 1.
(2) The eigenvalues of M�,Bi

have absolute value at most equal to 1.

Fix an integer p P t0, . . . , ku. For every i ě p, let B
ppq

i be the subset of Bi

consisting of all words w of length � which start with a letter in Bi and such that
there exists j ă p such that w contains a letter in Bj . Then, for every i ě p, the
blockM�,Bi

decomposes into a lower triangular block matrix where the columns and

rows corresponding to B
ppq

i are on the top left. Let M
�,B

ppq
i

be the corresponding

block matrix. By Lemma 4.1(2), the eigenvalues of M
�,B

ppq
i

have absolute value at

most 1. Moreover, for every i, j ě p, for every word w contained in rBj YBj ´B
ppq

j ,

the word ζ�pwq considered as a word on A� does not contain any word of B
ppq

i . Let
M�ppq be the matrix obtained from M� by deleting, for every i ě p, all rows and

columns corresponding to elements in rBi, and all rows and columns corresponding
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to elements of Bi which do not belong to B
ppq

i . Note that, by Lemma 4.1(1),
the eigenvalues of M�ppq are those of every block MBj

with j ă p with possibly
additional eigenvalues of absolute value at most 1.

We can now prove a result concerning the number of occurrences of words in
iterates of a letter. For words w, v on A, we denote by pw, vq the number of occur-
rences of w in v, so that M “ ppa, ζpbqqa,bPA. For a word w on A, we denote by
||w||ppq the number of letters in w which are contained in some Bj for j ă p.

Proposition 4.2. Let A be an alphabet equipped with a partition A “ >k
i“0Bi. Let

ζ be a substitution on A and let M be its transition matrix. Suppose that M is lower
triangular by block with respect to the partition of A. Let p P N

˚. Let a P
Ť

tăp Bt

be such that ζpaq starts with a. Suppose that there exists j ă p such that MBj
is a

primitive block whose Perron-Frobenius eigenvalue is greater than 1 and such that
there exists nj ě 1 such that ζnj paq contains a letter of Bj. Let w be a word such
that w contains a letter in Bk for some k ă p. Then

lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq

exists and is finite. Furthermore there exists a word w containing a letter in some
Bk with k ă p such that this limit is positive.

Proof. The proof follows [Gup1, Lemma 8.9] (see also [LU1] for similar statements).
First, up to replacing A by the smallest ζ-invariant subalphabet of A containing
a (which still satisfies the hypotheses of Proposition 4.2), we may suppose that,
for every letter x P A, there exists nx ě 1 such that ζnxpaq contains the letter
x. Let α be a word on A with length � ě 1 that starts with a. Note that, since
a P YtăpBt, the word α defines a column and a row in M�ppq. Recall that for
every n the number of occurrences of a word w in ζnpaq differs from the number
of occurrences of the letter w P A� in ζn� pαq by at most � ´ 1. Moreover, we have
pw, ζn� pαqq “ Mn

� ppqpw,αq.
Let S be the set of all s ă p such that MBs

is a primitive block with associated
Perron-Frobenius eigenvalue greater than 1. By assumption, the set S is a nonempty
finite set. Let S1 be the subset of S consisting of all such Bs such that the associated
Perron-Frobenius eigenvalue is maximal. Call this eigenvalue λ. By Lemma 4.1,
the eigenvalue λ is also the maximal eigenvalue of the matrix M�ppq. Let dλ be
the size of the maximal Jordan block of M�ppq associated with λ. Then the growth

under iterates of the maximal Jordan block of M�ppq

λ is polynomial of degree dλ.
Therefore, we have

lim
nÑ8

pw, ζnpaqq

λnndλ
“ lim

nÑ8

pw, ζn� pαqq

λnndλ
“ lim

nÑ8

Mn
� ppqpw,αq

λnndλ
“ dw,a,

where dw,a is a real number. Moreover, the limit does not depend on the choice
of α since, for any n, and for any two columns of Mn

� ppq corresponding to words
starting with the same letter, the sum of the values of each column differ by at
most � ´ 1 (see [Gup1, Lemma 8.6]). Moreover, there exists a word w such that
the limit is positive since we quotiented by the growth of the iterates of the Jordan
block with maximal eigenvalue.
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Let }¨} be the L1-norm on R
|A�|. By [LU1, Remark 4.1], since limnÑ8

Mn
� ppqpw,αq

λnndλ

exists, so does

lim
nÑ8

Mn
� ppqpw,αq

}Mn
� ppqpαq}

,

where }Mn
� ppqpαq} is the norm of the column of Mn

� ppq corresponding to α.

Claim. Suppose that there exists C ě 1 such that for every n P N, we have

||ζnpaq||ppq ď ||Mn
� ppqpαq|| ď C||ζnpaq||ppq.

Then

lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq

exists for all words w on A and is positive for some word w.

Proof. Recall that two sequences punqnPN and pvnqnPN with values in R are equiv-
alent if there exists a sequence pεnqnPN tending to zero such that un “ p1 ` εnqvn.
Recall that there exists C 1 ą 0 such that the sequence p‖Mn

� ppqpαq‖qnPN is equiv-
alent to pC 1λnndλqnPN. Recall also that for every n, the value of ‖ζnpaq‖ppq is the
norm of Mnppqpvaq, where va is the vector whose coordinate is 1 on the coordinate
associated with a and 0 otherwise. Hence, since the matrix Mnppq is nonnegative
and not the zero matrix, there exist Ca, λa P R

˚
` and da P N such that the sequence

p‖ζnpaq‖ppqqnPN is equivalent to pCaλ
n
an

daqnPN. Thus, by the assumption of the
claim, since the limit

lim
nÑ8

Mn
� ppqpw,αq

||Mn
� ppqpαq||

exists, and is not equal to zero for some w, the same is true for

lim
nÑ8

pw, ζnpaqq

||ζnpaq||ppq

.

This proves the claim. �
Therefore, in order to conclude the proof of the proposition, it remains to prove

that the hypothesis of the claim is true in our context. Let ζnpaq “ x1 . . . x|ζnpaq|

and let
ζn� pαq “ w1 . . . w|ζnpaq|.

Let Xnpaq be the list x1, . . . , x|ζnpaq| and let Xn
ăppaq be the sublist of Xnpaq con-

sisting of all letters in Y
p´1
i“1Bi. Let Xp�,nqpαq be the list w1, . . . , w|ζnpaq| and let

X
p�,nq
ăp pαq be the sublist of Xp�,nqpαq which consists of all elements of Xp�,nqpαq that

do not belong to Yiďp
rBi Y Bi ´ B

ppq

i . Note that |X
p�,nq
ăp pαq| “ ||Mn

� ppqpαq|| and
that |Xn

ăppaq| “ ||ζnpaq||ppq. The fact that ||ζnpaq||ppq ď ||Mn
� ppqpαq|| follows from

the fact that we have an injection from Xn
ăppaq to X

p�,nq
ăp pαq by sending the letter

xi P Xn
ăppaq to wi P X

p�,nq
ăp pαq. Since every word of length � contained in X

p�,nq
ăp pαq

contains a letter in Xn
ăppaq, we have an application from X

p�,nq
ăp pαq to Xn

ăppaq de-

fined as follows. Let w P X
p�,nq
ăp pαq and let jw P t1, . . . , |ζnpaq|u be the minimal

integer such that xjw P Xn
ăppaq and xjw is a letter in w. Then the application sends

w to xjw . By construction, the cardinal of the preimage of any x P Xn
ăppaq is at

most equal to �. Therefore, we have

||ζnpaq||ppq ď ||Mn
� ppqpαq|| ď �||ζnpaq||ppq.
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This concludes the proof. �

4.2. Construction of the attractive and repulsive currents for relative
almost atoroidal automorphisms. Let n ě 3 and let F “ trA1s, . . . , rAksu

be a free factor system of Fn. We first define a class of outer automorphisms
of Fn which we will study in the rest of the article. If φ P OutpFn,Fq and φ
preserves the conjugacy class of every Ai with i P t1, . . . , ku, we denote by φ|F the
element prφ1|A1

s, . . . , rφk|Ak
sq, where, for every i P t1, . . . , ku, the element φi is a

representative of φ such that φipAiq “ Ai and rφi|Ai
s is an element of OutpAiq.

Note that the outer class of φi|Ai
in OutpAiq does not depend on the choice of φi.

Definition 4.3. Let n ě 3 and let F “ trA1s, . . . , rAksu be a free factor system of
Fn. Let φ P OutpFn,Fq be exponentially growing. The outer automorphism φ is
almost atoroidal relative to F if φ preserves the conjugacy class of every Ai with
i P t1, . . . , ku and if φ preserves a sequence of free factor systems F ď F1 ď tFnu

with F1 “ trB1s, . . . , rB�su such that:

(a) F1 ď tFnu is sporadic,
(b) for every i P t1, . . . , �u, φ preserves the conjugacy class of Bi, the element

rφi|Bi
s is an expanding outer automorphism relative to F ^ trBisu and φ is

not expanding relative to F (F might be equal to F1).

The main example of an almost atoroidal automorphism is the following. Sup-
pose that F1 “ rAs and let φ P OutpFn,Fq be such that φprAsq “ rAs. Then φ is
almost atoroidal if φ|rAs is expanding relative to F . Almost atoroidality allows us
to deal with sporadic extensions.

Let φ P OutpFn,Fq be an atoroidal or an almost atoroidal outer automorphism
relative to F . In this section, we construct a nontrivial convex compact subset in
PCurrpFn,F ^ Apφqq associated with φ. We follow the construction of [Uya2] in
the context of atoroidal automorphisms.

By Theorem 2.10, there exists M ě 1 such that φM is represented by a CT map
f : G Ñ G with filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G and such that there exists
p P t1, . . . , ku such that FpGpq “ F .

For a splitting unit σ in G, we say that σ is expanding if limmÑ8 �expprfmpσqsq “

`8. Note that, by Lemma 3.24, this is equivalent to saying that there existsN P N
˚

such that rfN pσqs contains a splitting unit which is an edge in an EG stratum.
Moreover, a splitting unit σ which is an expanding splitting unit is either an edge
in G ´ G1

PG or a maximal taken connecting path in a zero stratum such that a

reduced iterate of σ contains an edge in G ´ G1
PG as a splitting unit. In particular,

there are finitely many expanding splitting units by Proposition 2.5(3).
Let γ and γ1 be two finite reduced subpaths of G. We denote by #pγ, γ1q the

number of occurrences of γ in γ1 and by xγ, γ1y the sum

(5)
@

γ, γ1
D

“ #pγ, γ1
q ` #pγ´1, γ1

q.

Proposition 4.4 shows the existence of relative currents associated with relative
atoroidal outer automorphisms. Once we have constructed these currents for rel-
ative atoroidal outer automorphisms, we will also be able to construct attractive
and repulsive simplices for every almost atoroidal outer automorphism relative to
F . Proposition 4.4 and its proof are inspired by the same result in the absolute
context due to Uyanik [Uya2, Proposition 3.3] and by the proof due to Gupta in
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the relative fully irreducible context [Gup1, Proposition 8.13]. Recall the definition
of PpF ^ Apφqq before Lemma 3.29 and C before Lemma 2.11.

Proposition 4.4. Let n ě 3 and let F be a free factor system of Fn. Let φ P

OutpFn,Fq be an atoroidal outer automorphism relative to F . Let f : G Ñ G be a
CT map that represents a power of φ with filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G
and such that there exists p P t1, . . . , ku such that FpGpq “ F . Let γ P PpF ^Apφqq

and let σ be an expanding splitting unit with fixed initial direction.

(1) The limit

σγ “ lim
mÑ8

xγ, rfmpσqsy

�F prfmpσqsq

exists and is finite.
(2) There exists a unique current ησ P CurrpFn,F ^ Apφqq such that, for every

finite reduced edge path γ P PpF ^ Apφqq, we have:

ησpCpγqq “ σγ .

Proof. (1) We may suppose that γ occurs in a reduced iterate of σ as otherwise
σγ “ 0. Note that, since the initial direction of σ is fixed, the splitting unit
σ is not contained in a zero stratum. Thus, we see that σ is an expanding
splitting unit which is an edge in an irreducible stratum. Let r be the height
of σ.

In order to prove the proposition in this case, we want to apply Propo-
sition 4.2 to the CT map f seen as a substitution on the set of splitting
units contained in iterates of σ. However, the set of splitting units might be
infinite since exceptional paths and INPs may have arbitrarily large lengths.

Instead, we construct a finite alphabet Aγ depending on γ. The alpha-
bet is constructed as follows by associating a letter to every splitting unit
occurring in a reduced iterate of σ. However some letters will correspond
to infinitely many splitting units.
(a) We add one letter for each of the finitely many edges in irreducible

strata that are contained in a reduced iterate of σ.
(b) We add one letter for each reduced maximal taken connecting path in

a zero stratum contained in a reduced iterate of σ.
(c) We add one letter for each INP contained in a reduced iterate of σ

and such that the stratum of maximal height it intersects is an EG
stratum.

(d) Let δ be an INP such that the stratum of maximal height it intersects
is an NEG stratum and such that it appears in a reduced iterate of
σ. By Proposition 2.5(11), there exist an edge e, an integer s P Z

and a closed Nielsen path w such that δ “ ewse´1. Note that γ is
not contained in ws since γ P PpF ^ Apφqq and ws is a concatenation
of paths in GPG,F and NPG,F by Lemma 3.8 and the fact that φ is
atoroidal relative to F . Hence if γ is contained in δ, it is either an
initial or a terminal segment of δ. Let M1 be the maximal integer
|d| such that γ contains an INP of the form ewde´1. Let M2 be the
minimal integer |d| such that γ X pewde´1q is either a proper initial or
a proper terminal segment of ewde´1. Let M3 be the maximal integer
|d| such that ewde´1 is contained in rfpσ1qs with σ1 a splitting unit
which is either an edge in an irreducible stratum or a maximal taken
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connecting path in a zero stratum. Let M “ maxtM1,M2,M3u. We
add one letter for each ewde´1 with |d| ď M ` 1. We add exactly one
letter representing every ewde´1 with |d| ą M ` 1.

(e) Let δ be an exceptional path appearing in a reduced iterate of σ.
There exist edges e1, e2, a nonzero integer s and a closed Nielsen path
w such that δ “ e1w

se´1
2 . Note that γ is not contained in ws since

γ P PpF ^ Apφqq and ws is a concatenation of paths in GPG,F and
NPG,F by Lemma 3.8 and the fact that φ is atoroidal relative to F .
Let M4 be the maximal integer |d| such that γ contains an exceptional
path of the form e1w

de´1
2 . Let M5 be the minimal integer |d| such that

γ X e1w
de´1

2 is either a proper initial or terminal segment of e1w
de´1

2 .
Let M6 be the maximal integer |d| such that e1w

de´1
2 is contained in

rfpσ1qs with σ1 a splitting unit which is either an edge in an irreducible
stratum or a maximal taken connecting path in a zero stratum. Let
M 1 “ maxtM4,M5,M6u. We add one letter for each e1w

de´1
2 with

|d| ď M 1 ` 1. We add one letter representing every e1w
de´1

2 with
|d| ą M 1 ` 1.

We claim that the alphabet Aγ is finite. Indeed, since the graph G is finite, so
is the number of letters in the first category. By Proposition 2.5(3), the zero strata
of Gr´1 are exactly the contractible components of Gr´1. Hence the number of
letters in the second category is finite. The number of letters in the third category
is finite by Proposition 2.5(9). The remaining letters of Aγ are finite by definition.

Let ζ be the following substitution on Aγ . If a P Aγ represents a unique path in
G, we set ζpaq “ rfpaqs. If a P Aγ represents several paths in G, we set ζpaq “ a.

We claim that ζ is a well-defined substitution. Indeed, by Proposition 2.5(6),
if a is a letter in Aγ which represents a unique path in G, then rfpaqs is com-
pletely split and every splitting unit in rfpaqs is represented by a unique letter by
the construction of letters in the fourth and fifth category. Moreover, if a P Aγ

represents several paths, then the definition of ζ does not depend on the choice of
a representative of a. Hence ζ is a well-defined substitution.

We claim that if a P Aγ represents several paths in G, then, for every represen-
tative α of a, the path rfpαqs is represented by a. Indeed, the claim is immediate
when a represents several INPs, so we focus on the case where a represents several
exceptional paths.

Let e1, e2 be edges in G, let w be a closed Nielsen path in G and let d P Z be
such that e1w

de´1
2 is represented by the letter a. There exist a splitting unit σ1

of a reduced iterate of σ by rf s, an integer N P N
˚ and an integer d1 P Z such

that e1w
d1e´1

2 is a subpath of rfN pσ1qs. Thus, using the constants given in (e),
we have |d1| ď M6 ď M . By the construction of the alphabet Aγ , there exists a

letter a1 in Aγ corresponding to the path e1w
d1e´1

2 and a1 represents a unique path.

For every n P N, let dn P Z be such that rfnpe1w
d1e´1

2 qs “ e1w
dne´1

2 . Then the
sequence pdnqnPN is monotonic. Let m0 be the minimal integer such that the path
e1w

dm0 e´1
2 is represented by a. Note that m0 ą 1 as a1 represents a unique path.

By monotonicity, dm0
‰ d1. Thus, if dm0

ą d1, then for every m ě m0, we have
dm ě dm0

and if dm0
ă d1, then for every m ě m0, we have dm ď dm0

. Hence for
every m ě m0, the path e1w

dm`1e´1
2 is represented by a. This shows that if α P a

then rfpαqs P a. This concludes the proof of the claim. Hence ζ only depends on
the function rfp.qs.
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By reordering columns and rows, we may suppose that if M is the matrix asso-
ciated with ζ, then columns and rows of M with index greater than p are precisely
the letters in Aγ representing splitting units which are concatenations of paths in
GPG,F and NPG,F . By Lemma 3.10, iterates by ζ of letters of Aγ representing con-
catenations of paths in GPG,F and NPG,F are words on Aγ whose letters represent
concatenations of paths in GPG,F and NPG,F . Thus, the matrix M is a lower block
triangular matrix, where every block of index at most p corresponds to either edges
in a common stratum or the 0 matrix when the associated letter is a maximal taken
connecting path in a zero stratum.

Since σ is expanding, it has a reduced iterate which contains splitting units
which are edges in EG strata. Hence if aσ is the letter in Aγ corresponding to σ,
the iterates ζnpaσq contain letters of Aγ in a Perron-Frobenius block with eigenvalue
greater than 1. Since the initial direction of σ is fixed, by Proposition 4.2, for every
word w in the alphabet Aγ , the limit

lim
mÑ8

pw, rζmpσqsq

||ζmpσq||ppq

exists and is finite. Hence the limit

lim
mÑ8

xw, rζmpσqsy

||ζmpσq||ppq

exists and is finite.

Claim. There exists a matrixM 1 obtained fromM by multiplying rows and columns
by positive scalars and such that, for every m P N

˚, we have �F prfmpσqsq “

‖M 1mpσq‖ppq.

Proof. Remark that if e1w
se´1

2 is an exceptional path, and if e1w
de´1

2 is an excep-
tional path with distinct width, then their F-lengths are equal and at most equal
to 2. Indeed, since φ is an atoroidal outer automorphism relative to F , every closed
Nielsen path of G is contained in Gp. Since w is a closed Nielsen path, we see that
w is a concatenation of paths in GPG,F and NPG,F by Lemma 3.7. Hence we have

�F pe1w
se´1

2 q “ �F pe1q ` �F pe2q ď 2.

Similarly, if ewse´1 and ewde´1 are INP intersecting the same maximal NEG stra-
tum, then their F-lengths are equal and at most equal to 2. Let M 1 be the matrix
obtained from M by multiplying every row corresponding to either an exceptional
path not contained in Gp, an INP not contained in Gp, a collection of exceptional
paths not contained in Gp, a collection of INPs not contained in Gp or a maximal
taken connecting path not contained in Gp, by the corresponding F-length. Note
that, by the above remarks, this does not depend on the choice of a representative
when the letter corresponds to a collection of paths. Then for every m P N

˚, the
value ‖M 1mpσq‖ppq corresponds to the sum of the F-length of every splitting unit in
rfmpσqs not contained in Gp. By Lemma 3.20, complete splittings are PG-relative
complete splittings. By Lemma 3.21(2), we have �F prfmpσqsq “ ‖M 1mpσq‖ppq. This
proves the claim. �

By the claim, we see that for every m P N
˚, there exists a constant K such that

we have
1

K
||ζmpσq||ppq ď �F prfm

pσqsq ď K||ζmpσq||ppq.
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Using the claim in the proof of Proposition 4.2 (replacing ‖Mn
� ppqpαq‖ by

�F prfnpσqsq which is possible since �F prfnpσqsq is the norm of a matrix by the
claim), the limit

lim
mÑ8

xw, rfmpσqsy

�F prfmpσqsq

exists and is finite.
We now construct a finite set of words W pγq in the alphabet Aγ such that

for every m P N
˚, there exists a bijection between occurrences of γ in rfmpσqs

and occurrences of a word w P W pγq in rζmpσqs. This will conclude the proof of
Assertion p1q.

Let W pγq be the set of words in Aγ which have a representative consisting of
a path contained in a reduced iterate rfN pσqs of σ which contains γ, which is a
concatenation of splitting units of rfN pσqs and which is minimal for these properties.
By construction, every occurrence of γ in a reduced iterate of σ is contained in a
word in W pγq. The set W pγq is finite since γ is a finite path, since Aγ is finite and
since every path representing a letter of a word w P W pγq must contain an edge of
γ by minimality of w.

For every w P W pγq, let mw be the number of occurrences of γ in w. Since γ is
not contained in Gp, the value mw does not depend on the choice of a representative
of w if w represents a collection of paths. Therefore, for every m P N

˚, we have

xγ, fm
pσqy “

ÿ

wPW pγq

mw xw, fm
pσqy .

This shows that the limit

σγ “ lim
mÑ8

xγ, fmpσqy

�F pfmpσqq

exists and is finite. This concludes the proof of Assertion p1q.

(2) Let us prove that for every element γ P PpF ^ Apφqq, we have:
(i) 0 ď σγ ă 8;
(ii) σγ “ σγ´1 ;

(iii) σγ “
ř

ePE σγe, where E is the subset of 	EG consisting of all edges
that are incident to the endpoints of γ and distinct from the inverse
of the last edge of γ.

The point (i) follows from Assertion p1q. The second point follows from the
definition of xγ, fmpσqy. In order to prove the third point, remark that xγ, fmpσqy

and
ř

ePE xγe, fnpσqy differ only when rfmpσqs ends with γ or γ´1. Therefore the
difference between xγ, fmpσqy and

ř

ePE xγe, fmpσqy is at most 2. This implies that
∣
∣
∣
∣
∣

xγ, fmpσqy

�F pfmpσqq
´

ÿ

ePE

xγe, fmpσqy

�F pfmpσqq

∣
∣
∣
∣
∣

Ñ 0 as n Ñ 8.

This proves the third point. By [Gue1, Lemma 3.2], since the map γ ÞÑ σγ sat-
isfies the conditions (i)–(iii), it determines a projective relative current rnσs P

PCurrpFn,Fq. This current is unique since a relative current is entirely determined
by its set of values on cylinders of finite paths γ P PpF ^ Apφqq by Lemma 3.29.
This concludes the proof. �

Definition 4.5. Let n ě 3 and let F be a free factor system of Fn. Let φ P

OutpFn,Fq be an atoroidal or an almost atoroidal outer automorphism relative to
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F and let F1 be a free factor system such that F ď F1 and such that the extension
F1 ď tFnu is sporadic and such that φ|F1

is atoroidal relative to F . In the case
that φ is atoroidal relative to F , we assume that F1 “ trFnsu. Let f : G Ñ G be a
CT map representing a power of φ with filtration

∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G,

such that there exists i P t1, . . . , k ´ 1u with FpGiq “ F1. We define the simplex of
attraction of φ, denoted by Δ`pφq, as the set of projective classes of nonnegative
linear combinations of currents μσ obtained from Proposition 4.4 applied to φ|F1

and f and which correspond to splitting units σ whose exponential length grows
exponentially fast under iteration of f . The simplex of repulsion of φ, denoted by
Δ´pφq, is Δ`pφ´1q.

Remark 4.6. The definitions of attractive and repulsive currents given in Defini-
tion 4.5 rely on the choice of CT maps representing powers of the (almost) atoroidal
outer automorphisms φ and φ´1. However, it will be a consequence of Proposi-
tion 4.12 and Proposition 5.24 that the attractive and repulsive currents depend
only on φ.

We now prove properties of the subsets Δ˘pφq. As explained above Proposi-
tion 4.4, there are only finitely many expanding splitting units. Hence the subsets
Δ˘pφq are closed. Since PCurrpFn,F ^ Apφqq is a Hausdorff, compact space by
Lemma 2.14 and since Δ˘pφq are closed subsets, we have the following.

Lemma 4.7. Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq

be an (almost) atoroidal outer automorphism relative to F . The subsets Δ˘pφq are
compact and contain finitely many extremal points.

Note that one computes ‖μσ‖F by counting the number of occurrences of every
PG-relative splitting unit of positive F-length in a reduced iterate of σ and taking
the limit. This is precisely the limit of the F-length of reduced iterates of σ by
Lemma 3.21. Hence we have the following result.

Lemma 4.8. Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq

be an (almost) atoroidal outer automorphism relative to F . We have ‖μσ‖F “ 1.

We now prove that the subsets Δ˘pφq are φ-invariant. We first recall some
lemmas.

Lemma 4.9 ([Coo, Bounded Cancellation]). Let n ě 2 and let G be a marked graph
of Fn. Let f : G Ñ G be a graph map. There exists a constant Cf such that for any
reduced path ρ “ ρ1ρ2 in G we have

�prfpρqsq ě �prfpρ1qsq ` �prfpρ2qsq ´ 2Cf .

Lemma 4.10 ([LU2, Lemma 5.7]). For any graph G without valence 1 vertices
there exists a constant K ě 0 such that for any finite reduced edge path γ in G
there exists an edge path γ1 of length at most K such that the concatenation γγ1

exists and is a reduced circuit.

Lemma 4.11. Let f : G Ñ G be as in Proposition 4.4. Let K1 ě 0 be any constant,
let σ be an expanding splitting unit and let ησ be the current associated with σ given
by Proposition 4.4(2). Let m P N and let γ1

m be a reduced edge path of length at most
K1. Let γm “ rfmpσqs˚γ1

m, where rfmpσqs˚ is obtained from rfmpσqs by erasing an
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initial and a terminal subpath of length K1. For every element γ P PpF ^ Apφqq,
we have

lim
mÑ8

xγ, γmy

�F pγmq
“ xγ, ησy .

Proof. The proof follows [LU2, Lemma 5.8]. Note that �pγ1
mq ď K1 and that

�F prfm
pσqs

˚
q ě �F prfm

pσqsq ´ 2K1.

Since σ is expanding, we have limmÑ8 �F prfmpσqsq “ `8. Combining all these
facts, we see that

lim
mÑ8

xγ, γmy

xγ, rfmpσqsy
“ 1

and

lim
mÑ8

�F pγmq

�F prfmpσqsq
“ 1.

Hence the result follows from Proposition 4.4(1). �
Proposition 4.12. Let n ě 3 and let F be a free factor system of Fn. Let φ P

OutpFn,Fq be an atoroidal or an almost atoroidal outer automorphism relative to
F . Let f : G Ñ G be as in Proposition 4.4. Let σ be an expanding splitting unit
and let ησ be the current associated with σ given by Proposition 4.4(2). There exists
λσ ą 1 such that

φpησq “ λσησ.

Proof. The proof follows [LU2, Proposition 5.9]. Let K ě 0 be the constant asso-
ciated with G given by Lemma 4.10. Let m P N, and let γ1

m be the path of length
at most K given by Lemma 4.10 such that γm “ rfmpσqsγ1

m is a reduced circuit.
Since limtÑ8 �expprf tpσqsq “ `8, for large values of m, we have �exppγmq ą 0.
Let wm be an element of Fn whose conjugacy class is represented by γm. Note
that, by Lemma 3.27, we have �F pγmq “ ‖ηwm

‖F . By Proposition 3.14, since
�exppγmq ą 0, we see that wm is F ^ Apφq-nonperipheral, hence wm defines a
current ηrwms P CurrpFn,F ^ Apφqq.

Let αm “ rfm`1pσqsrfpγ1
mqs. Note that since �pγ1

mq ď K, the value �prfpγ1
mqsq

is bounded by a constant K0 which only depends on K. Let C 1 be the constant
given by Lemma 4.9 and let K1 “ maxtK0, C

1u. Then, with the notations of
Lemma 4.11, the reduced circuit γ2

m “ rαms can be written as a product γ2
m “

rfm`1pσqs˚βm where �pβmq ď K1 and �F prfm`1pσqs˚q ě �F prfm`1pσqsq ´ 2K1.
Applying Lemma 4.11 twice, we see that, for every element γ P PpF ^ Apφqq, we
have

lim
mÑ8

xγ, γmy

�F pγmq
“ xγ, ησy

and

lim
mÑ8

xγ, γ2
my

�F pγ2
mq

“ xγ, ησy .

By Lemma 3.30, we have

lim
mÑ8

ηrwms

‖ηrwms‖F
“ ησ.

From the continuity of the OutpFnq-action on PCurrpFn,F ^ Apφqq and from the
fact that φpηrwmsq “ ηφprwmsq, we see that

lim
mÑ8

ηφprwmsq

‖ηrwms‖F
“ φpησq.
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Since the reduced circuit γ2
m represents the conjugacy class φprwmsq, the second of

the above equalities implies that

lim
mÑ8

ηφprwmsq

‖ηφprwmsq‖F
“ ησ.

Recall that limmÑ8
�F pγmq

�F prfmpσqsq
“ 1 and that limmÑ8

�F pγ2
mq

�F prfm`1pσqsq
“ 1. By

Lemma 3.27, we have �F pγmq “ ‖ηrwms‖F and �F pγ2
mq “ ‖ηφprwmsq‖F . Recall

from the claim in the proof of Proposition 4.4 that �F prfpσqsq is the norm of a ma-
trix. The conclusion of Proposition 4.12 then follows from the fact (see [LU1, Re-
mark 3.3]) that there exists λσ ą 1 such that

lim
mÑ8

�F prfm`1pσqsq

�F prfmpσqsq
“ λσ. l

We now prove a lemma which will be used in [Gue2].

Lemma 4.13. Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq

be an expanding outer automorphism relative to F . Let f : G Ñ G be as in Propo-
sition 4.4. Let σ be an expanding splitting unit and let ησ be the current associated
with σ given by Proposition 4.4(2).

(1) There exists a projective current rηs P PCurrpFn,F ^ Apφqq whose support
is contained in the support of ησ and such that Supppηq is uniquely ergodic.
In particular, the support of every extremal current of Δ˘pφq contains a
closed subset which is uniquely ergodic.

(2) There exist only finitely many projective currents rηs P PCurrpFn,F^Apφqq

whose support is contained in the support of ησ and such that Supppηq is
uniquely ergodic.

Proof. p1q Note that, since φ is expanding relative to F , we have F ^Apφq “ Apφq.
Let r P N be the minimal integer such that Hr is an EG stratum and a reduced
iterate of σ contains a splitting unit which is an edge of Hr. Such a stratum Hr

exists since σ is expanding. Let e be an edge ofHr with fixed initial direction and let
ηe be the current in PCurrpFn,Apφqq associated with e given by Proposition 4.4(2).

Claim. The support of ηe is uniquely ergodic.

Proof. Let G1 be the minimal subgraph of G which contains every reduced iterate
of e and let A be a subgroup of Fn such that π1pG1q is a conjugate of A when π1pGq

is identified with Fn. Then G1 is f -invariant and hence rAs is φ-invariant. Let
G1

1, . . . , G
1
k be the connected component of G1 ´ Hr and let F 1 be the free factor

system of Fn determined by G1
1, . . . , G

1
k. Let Φ P φ be such that ΦpAq “ A. Note

that rΦ|As P OutpAq is fully irreducible relative to F 1.
By Proposition 3.14 and Proposition 2.5(9), if γ is a cyclically reduced circuit

of G1 of height r whose growth under iteration of f is polynomial, then γ contains
(up to taking inverse) the only height r EG INP σr. As one of the endpoints of σr

is not contained in Gr´1 by [HM, Fact I.1.42], we see that either σr is not closed
and γ does not exist or σr is closed and γ is an iterate of σr or σ´1

r . Let b P Fn be
the (possibly trivial) element associated with σr.

Let PCurrpSupppηeqq be the set of projective currents in PCurrpFn,F ^ Apφqq

whose support is contained in Supppηeq. By minimality of r, there does not exist a
splitting unit contained in a reduced iterate of e which is an edge in an EG stratum
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of height less than r. Thus, every maximal subpath of G1 XGr´1 which is contained
in a reduced iterate of σ is a concatenation of paths in GPG and NPG. In particular,
we see that

Supppηeq Ď

ď

gPFn

gB
2
pA,F 1

q.

We now construct an injective application

Θ: PCurrpSupppηeqq Ñ PCurrpA,F 1
q

such that for every projective current rμs P PCurrpSupppηeqq we have

SupppΘprμsqq “ Suppprμsq X B
2A.

Let CpF 1q be the set of paths in G defined by Lemma 2.12 associated with the free
factor system F 1. Let CApF 1q be the set of paths in CpF 1q contained in G1. Note
that no path of CApF 1q is contained in G1 X Gr´1. Moreover, a path in CApF 1q is
contained in a concatenation of paths in GPG and NPG if and only if it is contained
in the circuit representing a power of b. Thus, up to restricting CApF 1q to longer
paths (which does not change the fact that the cylinders associated with paths
in CApF 1q cover B2pA,F 1q), we may suppose that, for every γ P CApF 1q, either
γ contains σr and is contained in a power of σr or that γ is not contained in a
concatenation of paths in GPG and NPG.

Since cylinders associated with paths in CApF 1q cover the relative double bound-
ary B2pA,F 1q, by [Gue1, Lemma 3.2], it suffices to prove that for every projective
current η P PCurrpSupppηeqq, we can associate a function rη : CApF 1q Ñ R such that
for every γ P PApF 1q, we have

(i) 0 ď rηpγq ă 8;
(ii) rηpγq “ σγ´1 ;

(iii) rηpγq “
ř

ePE σγe, where E is the subset of 	EG1 consisting of all edges that
are incident to the endpoints of γ and distinct from the inverse of the last
edge of γ.

Let η P PCurrpSupppηeqq. If γ P CApF 1q is not contained in the axis of a conjugate
of b, we may set rηpγq “ ηpCpγqq. Since σe is r-legal, a reduced iterate of σe cannot
contain the only height r EG INP. Thus, we may set, for every path γ P PApF 1q

contained in the axis of a conjugate of b: rηpγq “ 0.
The function rη satisfies Conditions (i)–(iii) as η is a relative current whose

support is contained in
Ť

gPFn
gB2pA,F 1q. Hence it defines a unique current in

PCurrpA,F 1q, which we still denote by rη. Note that for every element γ P CApF 1q,
we have

rηpCpγq X B
2A X B

2
pFn,Apφqqq “ ηpCpγq X B

2A X B
2
pFn,Apφqqq.

Therefore, we have Suppprηq “ Supppηq X B2A. Since Supppηeq Ď
Ť

gPFn
gB2pA,F 1q,

the application PCurrpSupppηeqq Ñ PCurrpA,F 1q is injective.
Let rηe P PCurrpA,F 1q be the relative current of A associated with ηe. This cur-

rent coincides with the attractive projective current associated with rΦ|As defined
by Gupta in [Gup1, Proposition 8.12]. By [Gup2, Lemma 4.17], the support of rηe
is uniquely ergodic. Thus the support of ηe is uniquely ergodic. �

By the claim, it remains to prove that Supppηeq Ď Supppησq. Recall the definition
of PpF ^ Apφqq above Lemma 3.29. Note that an element β P B2pFn,Apφqq is
contained in the support of ησ if for every element γ P PpF ^ Apφqq such that
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β P Cpγq, we have ησpCpγqq ą 0. Then the support of ησ contains all the cylinder
sets of the form Cpγq where γ P PpF ^ Apφqq and γ is contained in a reduced
iterate of σ. In particular, since e is contained in a reduced iterate of σ, we have
Supppηeq Ď Supppησq. This proves Assertion p1q.

(2) Suppose towards a contradiction that there exist infinitely many pairwise
distinct projective currents prηmsqmPN P PCurrpFn,F ^ Apφqq whose support is
contained in the support of ησ and such that for everym P N, the support Supppηmq

is uniquely ergodic. By compactness of PCurrpFn,F^Apφqq (see Lemma 2.14) up to
passing to a subsequence, there exists a projective current rηs P PCurrpFn,F^Apφqq

such that limmÑ8rηms “ rηs. Let K P N
˚ be such that PpF ^ Apφqq contains

reduced edge paths of length equal to K. By additivity of η, there exists γ1, . . . , γt P

PpF ^ Apφqq of length equal to K such that the support Supppηq is contained in
Ťt

j“1 Cpγjq and for every j P t1, . . . ,mu, we have ηpCpγjqq ą 0. Then, there exists

N P N
˚ such that, for everym ě N and every j P t1, . . . , tu, we have ηmpCpγjqq ą 0.

Hence for every m ě N , we have

Supppηq Ď

t
ď

j“1

Cpγjq Ď Supppηmq.

By unique ergodicity, for every m ě N , we have rηs “ rηms, a contradiction. �

5. North-South dynamics for expanding relative outer

automorphisms

Let X be a compact metric space and let G be a group acting on X by homeo-
morphisms. We say that an element g P G acts on X with generalized north-south
dynamics if the action of g on X has two invariant disjoint closed subsets Δ´

and Δ` such that, for every open neighborhood U˘ of Δ˘ and every compact set
K˘ Ď X ´ Δ¯, there exists M ą 0 such that, for every n ě M , we have

g˘nK˘ Ď U˘.

In this section we prove Theorem 5.1. Recall that a relative expanding outer auto-
morphism is in particular relative almost atoroidal (with F1 “ trFnsu).

Theorem 5.1. Let n ě 3 and let F be a free factor system of Fn. Let φ P

OutpFn,Fq be a relative expanding outer automorphism. Let Δ`pφq and Δ´pφq be
the simplexes of attraction and repulsion of φ. Then φ acts on PCurrpFn,F ^Apφqq

with generalized north-south dynamics with respect to Δ`pφq and Δ´pφq.

Theorem 1.2 in Section 1 follows from Theorem 5.1 since every exponentially
growing element of OutpFnq is expanding relative to its polynomial part.

5.1. Relative exponential length and goodness. Let n ě 3 and let F be a free
factor system of Fn. Let φ P OutpFn,Fq be an atoroidal or an almost atoroidal outer
automorphism relative to F . In this section we define and prove the properties of
the objects needed in order to prove Theorem 5.1. Let f : G Ñ G be a CT map
representing a power of φ with filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G and let
p P t1, . . . , ku be such that FpGpq “ F . The proof of Theorem 5.1 relies on the
study of PG-relative completely split edge paths. More precisely, given a reduced
circuit γ of G, we study the proportion of subpaths of γ which have PG-relative
complete splittings. This proportion will be measured using the exponential length.
However, the lack of equality in Lemma 3.17 shows that the exponential length is
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not well-adapted to study the exponential length of a path by comparing it with
the exponential length of its subpaths. Instead, we define a notion of exponential
length of a subpath relative to γ. We first need some preliminary results regarding
splittings of edge paths.

Definition 5.2. Let γ be a reduced edge path in G and let γ “ γ0γ
1
1γ1 . . . γ

1
kγk be

the exponential decomposition of γ (see the beginning of Section 3.2). Let α be a
subpath of γ. The exponential length of α relative to γ, denoted by �γexppαq, is:

�γexppαq “

k
ÿ

i“1

�exppα X γ1
kq.

We define the F-length of α relative to γ similarly replacing �exp by �F and the
exponential decomposition by the F-exponential decomposition.

Note that, for every reduced edge path γ of G, we have �γexppγq “ �exppγq. The
exponential length relative to a path γ is well-adapted to compute the exponential
length of γ using its subpaths, as shown by Lemma 5.3.

Lemma 5.3. Let γ be a reduced edge path and let γ1 “ αβ Ď γ be a subpath of γ.
Then

�γexppγ1
q “ �γexppαq ` �γexppβq.

In particular, when γ1 “ γ, we have

�exppγq “ �γexppαq ` �γexppβq.

The same statement is true replacing �γexp by �γF .

Proof. The proof is similar for both �γexp and �γF , so we only do the proof for �γexp.
Let γ “ γ0γ

1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ. Then, for every

i P t1, . . . , ku, the paths α X γ1
i and β X γ1

i do not contain a subpath of a path in
Nmax

PG pγq. In particular, for every i P t1, . . . , ku, one computes �exppα X γ1
iq and

�exppβ X γ1
iq by removing edges from G1

PG. Since �γexppγ1q is computed by removing
edges in G1

PG from every γ1
i with i P t1, . . . , ku, the proof follows. �

In Lemma 5.6, we will show that if γ is a reduced edge path in G and that α is a
subpath of γ, then �exppαq and �γexppαq differ by a uniform additive constant. This
will allow us to compute directly �exppαq rather than �γexppαq.

Let γ be a reduced edge path in G and let γ “ γ1 . . . γm be a splitting of γ.
Let JCS,PG Ď tγ1, . . . , γmu be the subset consisting of all subpaths which have a
PG-relative complete splitting. If �exppγq ą 0, let

gCT,PGpγ, γ1, . . . , γmq “

ř

γiPJCS,PG
�γexppγiq

�exppγq
.

The goodness of γ, denoted by gpγq, is the least upperbound of gCT,PGpγq over all
splittings of γ if �exppγq ą 0, and is equal to 0 otherwise. When γ is a circuit, the
value gCT,PGpγq is defined using only circuital splittings.

Since there are only finitely many decompositions of a finite edge path into
subpaths, the value gpγq is realized for some splitting of γ. A splitting for which
gpγq is realized is called an optimal splitting of γ, and an optimal circuital splitting
when γ is a circuit.

A subpath of γ which is the concatenation of consecutive splitting units of an op-
timal splitting of γ is called a factor of γ. When �exppγq “ 0, we use the convention
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that the only factor of γ is γ itself. The factors of γ that admit a PG-relative com-
plete splitting are called complete factors. The factors in an optimal splitting which
do not admit PG-relative complete splittings are said to be incomplete. Remark
that, by Proposition 2.5 p6q, p8q and by Lemma 3.10, the rf s-image of a PG-relative
complete path is PG-relative complete, and the reduced iterates of an incomplete
factor are eventually PG-relative complete.

Using Lemma 5.3, we have the following result.

Lemma 5.4. Let γ be a reduced edge path and let γ “ γ1
0γ1γ

1
1 . . . γmγ1

m be an
optimal splitting of γ, where, for every i P t0, . . . ,mu, the path γ1

i is an incomplete
factor of γ and, for every i P t1, . . . ,mu, the path γi is complete. Then

gpγq “

řm
i“1 �

γ
exppγiq

řm
i“1 �

γ
exppγiq `

řm
j“0 �

γ
exppγ1

iq
.

Definition 5.5. Let n,F , φ, f, p be as in the beginning of this section. Let K ě 1.
The CT map f is 3K-expanding if for every edge e of G ´ G1

PG, we have

�expprfpeqsq ě 3K.

Note that, by Lemma 3.22, for every K ě 1, the CT map f has a power which
is 3K-expanding. Note that, since φ is exponentially growing, we have G ‰ G1

PG,
so that the definition of 3K-expanding is not empty.

In the rest of the section, let K ě 1 be a constant such that, for every reduced
edge path σ which is either in NPG or a path in a zero stratum, we have �pσq ď

K
2 .

Such a K exists since NPG is finite by Lemma 3.5(1) and since every zero stratum
is contractible by Proposition 2.5(3). We fix a constant Cf given by Lemma 4.9.
Let

(6) C “ maxtK,Cfu.

Recall that if σ is a PG-relative splitting unit, σ is either an edge in an irreducible
stratum, a path in a zero stratum or a concatenation of paths in GPG and in NPG.
Thus, the choice of K implies that for every PG-relative splitting unit σ, we have
�exppσq ď

K
2 .

Lemma 5.6. Let γ be a reduced edge path in G and let γ1 be a subpath of γ. Let γ “

γ0γ
1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ. There exist three (possibly

empty) subpaths δ1, δ2 and τ of γ such that for every i P t1, 2u, the path δi is a
proper subpath of a splitting unit of some γj, we have �exppτ q “ �γexppτ q “ �γexppγ1q

and γ1 “ δ1τδ2. In particular, we have

�γexppγ1
q ď �exppγ1

q ď �γexppγ1
q ` 2C ď �exppγq ` 2C.

The same statement is true replacing �exp by �F and �γexp by �γF .

Proof. The proof is similar for both �exp and �F , so we only do the proof for �exp.
Since γ1 is a subpath of γ, there exist three (possibly trivial) paths δ1

1, τ
1 and δ1

2

such that:

(a) for every i P t1, 2u, there exists ki P t0, . . . , ku such that the path δ1
i is a

subpath of some γki
;

(b) for every j P t0, . . . , ku, either γj is contained in τ 1 or γj does not contain
edges of τ 1;

(c) we have γ1 “ δ1
1τ

1δ1
2.
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The path δ1
1 has a decomposition δ1

1 “ δ1f1, where f1 is a (possibly trivial) factor
of γk1

and δ1 is properly contained in a splitting unit of γk1
for some fixed choice of

optimal splitting of γk1
. Similarly, the path δ1

2 has a decomposition δ1
2 “ f2δ2, where

f2 is a (possibly trivial) factor of γk2
and δ2 is properly contained in a splitting unit

of γk2
for some fixed choice of optimal splitting of γk2

. Let τ “ f1τ
1f2. Then

γ1 “ δ1τδ2. It remains to show that �exppτ q “ �γexppτ q “ �γexppγ1q. Since for every
i P t1, 2u, the path fi is a path in NPG, we have �exppτ q “ �exppτ 1q. By (b), one
obtains �exppγ1q by deleting edges in G1

PG and every path of Nmax
PG pγq contained in

τ 1. Hence we have

�γexppτ 1
q “

k
ÿ

i“1

�exppτ 1
X γ1

kq “

k
ÿ

i“1

�exppτ X γ1
kq “ �γexppτ q.

Since δ1 and δ2 are contained in paths of Nmax
PG pγq, we have �γexppγ1q “ �γexppτ q, that

is, the second equality holds.
We now prove the final inequalities in the lemma. The first inequality follows

from the fact that every path in Nmax
PG pγ1q is a subpath of some γi for i P t0, . . . , ku.

Thus, we have �γexppγ1q ď �exppγ1q. By Lemma 3.17, we have

�exppγ1
q ď �exppδ1q ` �exppτ q ` �exppδ2q ď �γexppγ1

q ` �pδ1q ` �pδ2q.

By definition of the constant K and the fact that K ď C, we have:

�γexppγ1
q ` �pδ1q ` �pδ2q ď �γexppγ1

q ` 2C ď �exppγq ` 2C,

where the last inequality follows from Lemma 5.3. �

Lemma 5.7. Let f : G Ñ G be a 3K-expanding CT map. Let γ be a PG-relative
completely split edge path of positive exponential length. Then

�expprfpγqsq ě 3�exppγq.

Proof. Consider a PG-relative complete splitting γ “ γ1
0γ1γ

1
1 . . . γmγ1

m of γ, where,
for every i P t0, . . . ,mu, the path γ1

i is either a (possibly trivial) concatenation of
paths in GPG and in NPG or a (possibly trivial) reduced maximal taken connecting
path in a zero stratum and, for every i P t1, . . . ,mu, the path γi is an edge in an
irreducible stratum of positive exponential length. By Lemma 3.24, we have

�exppγq “

m
ÿ

i“1

�exppγiq.

Since f is 3K-expanding, for every i P t1, . . . ,mu, we have

�expprfpγiqsq ě 3K�exppγiq.

Since the reduced image of a PG-relative complete splitting is a PG-relative com-
plete splitting by Lemma 3.10, by Lemma 3.21(2), we see that

�expprfpγqsq ě

m
ÿ

i“1

�expprfpγiqsq ě

m
ÿ

i“1

3K�exppγiq ě 3�exppγq.

This concludes the proof. �

Lemma 5.8. Let f : G Ñ G be a 3K-expanding CT map. Let γ “ γ1γ2 be a (not
necessarily reduced) edge path of positive exponential length, where γ1 and γ2 are
reduced edge paths. Let γ1 “ a1b1 . . . akbk be an optimal splitting of γ1 where for
every i P t1, . . . , ku, the path ai is an incomplete factor and for every i P t1, . . . , ku
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‚

‚

‚ ‚

γ1 γ2

γ`
1

rγs

Figure 2. Illustration of Lemma 5.8. If a complete factor of γ1
contained in rγs is not contained in γ`

1 , then it is a complete factor
of rγs.

the path bi is complete. For every i P t1, 2u, let γ1
i be the subpath of γi contained

in rγs. Let γ1
1 “ γ´

1 γ`
1 be a decomposition of γ1

1 into two subpaths where γ`
1 is the

maximal terminal segment of γ1
1 such that

řk
i“1 �exppγ`

1 X biq “ 2C. Then every

PG-relative complete factor b1 of γ1 contained in γ´
1 (for the given optimal splitting)

is also a PG-relative complete factor of rγs.

Remark 5.9.

(1) We emphasize that, in the statement of Lemma 5.8, if the path γ1 is PG-
relative completely split, the path γ1

1 is not necessarily PG-relative com-
pletely split. Indeed, there might be some identification with the path γ2
that might create incomplete factors in γ1

1.
(2) Lemma 5.8 also implies that if γ1 is PG-relative completely split, the in-

tersection of an incomplete factor of rγs with γ1
1 is contained in a terminal

segment of γ1
1 of exponential length at most equal to 2C (see Figure 2).

Indeed, the claim in the proof of Lemma 5.8 shows that the path γ´
1 is

a complete factor of γ1, hence a complete factor of rγs by Lemma 5.8.
Moreover, we have k “ 1, a1 is trivial and �exppγ`

1 q “ �exppγ`
1 X b1q.

Proof. Let t P t1, . . . , ku be the minimal integer such that γ´
1 is contained in

δ1 “ a1b1 . . . atbt. Let bt “ δ1 . . . δs1 be a PG-relative complete splitting of bt.
Let s P t1, . . . , s1u be the minimal integer such that γ´

1 is contained in δ “

a1b1 . . . atδ1 . . . δs. The integer s exists since, by maximality of γ`
1 , for every

i P t1, . . . , ku, either γ`
1 X ai “ ai or γ

`
1 X ai “ ∅.

Claim. We have δ “ γ´
1 .

Proof. By minimality of t and s, the path γ´
1 contains an edge of δs. We claim

that δs is contained in γ1
1. Indeed, it is clear if δs is an edge. Suppose towards a

contradiction that δs is not contained in γ1
1. Then the concatenation point of γ1

1

and γ1
2 is contained in δs.

If δs is a maximal taken connecting path in a zero stratum, then, by the choice of
K, we have �pδsq ď

K
2 ď

C
2 . Since �pγ

`
1 q ě 2C, the path δs Xγ1

1 would be contained

in γ`
1 , contradicting the fact that γ´

1 contains the first edge of δs.
Suppose that δs is a concatenation of paths in GPG and NPG. Then δs X γ1

1

has a decomposition δs X γ1
1 “ β

psq

1 α
psq

1 β
psq

1 . . . α
psq

ks´1β
psq

ks
α

psq

ks
, where for every i P

t1, . . . , ksu, the path β
psq

i is contained in GPG, for every i P t1, . . . , ks ´1u, the path

α
psq

i is contained in Nmax
PG pδsq and α

psq

ks
is a subpath of a path in Nmax

PG pδsq. By the
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choice of K, we have �exppδsq ď �pαks
q ď

K
2 ď

C
2 . Since �exppγ`

1 q ě 2C, the path

δs X γ1
1 would be contained in γ`

1 , contradicting the fact that γ´
1 contains the first

edge of δs.
Hence, in every case, the path δs is contained in γ1

1. Note that, since γ`
1 is the

maximal subpath of γ1
1 for the property that

řk
i“1 �exppγ`

1 X biq “ 2C, the PG-
relative splitting unit δs is not a concatenation of paths in GPG and in NPG or a
maximal taken connecting path in a zero stratum. Indeed, otherwise it is properly
contained in γ`

1 , contradicting the fact that γ´
1 intersects δs. Hence δs is an edge

contained in γ´
1 and δ “ γ´

1 . �

By the claim, we see that γ´
1 “ a1b1 . . . atδ1 . . . δs is an optimal splitting of γ´

1 .
Let r P t1, . . . , ku be the minimal integer such that γ1

1 is contained in a1b1 . . . arbr.
The last edge of γ1

1 is either contained in ar or in br. In the first case, for every
i P t1, . . . , ku, either bi is contained in γ1

1 or bi Xγ1
1 is at most a point. In the second

case, it is possible that br Xγ1
1 ‰ br and that br Xγ1

1 contains an edge. Let α1 be the
(possibly trivial) terminal segment of γ`

1 which is properly contained in a splitting
unit σ of br.

If σ is a maximal taken connecting path in a zero stratum, then, by the choice
of K, we have �exppα1q ď �pα1q ď �pσq ď

K
2 ď

C
2 .

Suppose that σ is a concatenation of paths in GPG and NPG. Then α1 has a
decomposition α1 “ β1α1β1 . . . α�´1β�α�, where for every i P t1, . . . , �u, the path
βi is contained in GPG, for every i P t1, . . . , � ´ 1u, the path αi is contained in
Nmax

PG pσq and α� is a subpath of a path in Nmax
PG pσq. By the choice of K, we have

�exppα1q ď �pα�q ď
K
2 ď

C
2 .

Thus, in all cases, we have �exppα1q ď
C
2 . Since �exppγ`

1 q ě 2C, there exists a PG-

relative complete factor α0 of br such that γ`
1 “ δs`1 . . . δs1at`1bt`1 . . . arα0α

1 “

αα1 and
k

ÿ

i“1

�exp pα X biq ě C.

We now prove that every PG-relative complete factor of γ1 contained in γ´
1 is a

PG-relative complete factor of γ. Note that the decomposition γ´
1 α is a splitting.

Thus, it suffices to prove that, for every k P N
˚, the path rfkpγ´

1 qs is contained
in rfkpγqs as any identification in order to obtain rfkpγqs which involves a path
in fkpγ´

1 q will be induced by an identification in order to obtain rfkpγ´
1 qs from

fkpγ´
1 q.

By Lemma 5.7 applied to δs`1, . . . , δs1 , to the paths bi with i P t1, . . . , ku such
that bi Ď α and to α0, we have

k
ÿ

i“1

�expprfpαqs X rfpbiqsq ě

s1
ÿ

i“s`1

�expprfpδiqsq `

r´1
ÿ

i“t`1

�expprfpbiqsq ` �expprfpα0qsq

ě 3
k

ÿ

i“1

�exp pα X biq ě 3C,

where the first inequality follows from the fact that the decomposition

α “ δs`1 . . . δs1at`1bt`1 . . . arα0

is an optimal splitting of α.



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 217

Note that, since the decomposition γ´
1 α is a splitting, for every k P N

˚, the
path rfkpαqs is contained in rfkpγ´

1 αqs. Remark that Lemma 4.9 implies that
the segment of rfpγ´

1 αqs which is C away from the concatenation point between
rfpγ´

1 αqs and rfpα1γ1
2qs remains in rfprγsqs. In particular, the edges of rfpγ´

1 αqs

which are cancelled with edges of rfpα1γ1
2qs are contained in rfpαqs. Recall that

řk
i“1 �expprfpαqs X rfpbiqsq ě 3C and that the subpath of rfpαqs which is contained

in rfprγsqs is obtained by the concatenation of at most C edges of rfpαqs. Thus, we
see that the sum over i of the exponential length of the subpaths of rfpαqs X rfpbiqs

which are contained in rfprγsqs is at least equal to 2C. Hence the path rfpγ´
1 qs is

a subpath of rfprγsqs and
řk

i“1 �expprfpγ`
1 qs X rfpbiqs X rfprγsqsq ě 2C.

Thus, we can apply the same arguments to show that for every k ě 1, the path
rfkpγ´

1 qs is contained in rfkprγsqs and the exponential length of the subpath of
rfkpαqs contained in rfkprγsqs is at least equal to 2C. Hence every PG-relative
complete factor of the path γ1 contained in γ´

1 is a complete factor of an optimal
splitting of rγs. �

Lemma 5.10.

(1) Let γ “ αβ be a reduced path. Let N P N
˚ be such that rfN pαqs has a

PG-relative complete splitting and that rfN pβqs is a concatenation of paths
in GPG and in NPG. For every m ě N , let αm, βm and σm be paths such
that rfmpαqs “ αmσm and rfmpβqs “ σ´1

m βm.
For every m ě N , we have �exppσmq ď C, �exppαmq ě �expprfmpαqsq´C

and �exppβmq ď C.

(2) Let γ “ βp1qαβp2q be a reduced path. Let N P N
˚ be such that rfN pαqs has a

PG-relative complete splitting and, for every i P t1, 2u, the path rfN pβpiqqs

is a concatenation of paths in GPG and in NPG. For every m ě N , let

αm, β
p1q
m , β

p2q
m , and σ

p1q
m , σ

p2q
m be paths such that rfmpαqs “ σ

p1q
m αmσ

p2q
m ,

rfmpβp1qqs “ β
p1q
m σ

p1q´1
m and rfmpβp2qqs “ σ

p2q´1
m βm.

For every m ě N , either �exppαmq ď 2C or we have �exppσ
p1q
m q, �exppσ

p2q
m q ď C,

�exppαmq ě �expprfmpαqsq ´ 2C and �exppβ
p1q
m q, �exppβ

p2q
m q ď C.

Proof. Assertion p2q follows from Assertion p1q by applying Assertion p1q twice:
one with γ “ αβp2q and one with γ “ α´1βp1q. If for some m P N

˚, �exppαmq ě

2C, there is no identification between rfmpβp1qqs and rfmpβp2qqs by Lemma 4.9,
so Assertion p2q follows from Assertion p1q. Therefore, we focus on the proof of
Assertion p1q.

Let m ě N . When σm is reduced to a point, we have �exppαmq “ �expprfmpαqsq

and �exppβmq “ �expprfmpβqsq “ 0 by Lemma 3.18. This concludes the proof in
this case. So we may suppose that σm is nontrivial.

Let rfmpαqs “ a1 . . . ak be a PG-relative complete splitting of rfmpαqs. Suppose
that, for every i P t1, . . . , ku such that ai is a concatenation of paths in GPG and
NPG, the path ai is a maximal subpath of rfmpαqs for the property of being a factor
which is a concatenation of paths in GPG and NPG. For every j P t1, . . . , ku, let rj
be the height of aj .

Let i P t1, . . . , ku be such that ai contains the first edge of σm. Let σ1 P

Nmax
PG pσmq. Note that there exists σ2 P Nmax

PG prfmpαqsq such that σ1 Ď σ2. By
Lemma 3.21(1) applied to σ2 and rfmpαqs, the path σ2 is contained in a factor
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which is a concatenation of paths in GPG and NPG. By the maximality assump-
tion, there exists j P t1, . . . , ku such that σ1 Ď σ2 Ď aj . Hence we can compute
�exppσmq by removing, for every j P t1, . . . , ku, paths in the intersection σm X aj .
Thus, we have

�exppσmq “

ÿ

jąi

�exppajq ` �exppai X σmq.

Note that, by Lemma 3.10, the path rfmpβqs “ σ´1
m βm is a concatenation of

paths in GPG and in NPG. Let j P ti, . . . , ku.

Claim. If j ą i, then either aj is not an edge in an EG stratum and �exppaj Xσmq “

0, or �expppai . . . ajq X σmq ď C. If j “ i, then �exppaj X σmq ď C.

Proof. We distinguish several cases, according to the nature of aj .

(i) Suppose that aj is maximal taken connecting path in a zero stratum. By
definition we have �exppaj X σmq “ 0.

(ii) Suppose that aj is a concatenation of paths in GPG and inNPG. If j ą i, we
have ajXσm “ aj . By Lemma 3.18 applied to aj , we have �exppajXσmq “ 0.

Suppose that i “ j. Suppose that the first edge of σm is not contained
in a path in Nmax

PG paiq. Then ai has a decomposition ai “ a0i a
1
i a

2
i where

a1i is a path contained in GPG such that the first edge of σm is contained
in a1i and such that, for every path δ P Nmax

PG paiq, either δ Ď a0i or δ Ď a2i .
Note that a terminal segment of ai whose first edge is contained in a1i is a
concatenation of paths in GPG and in NPG. In particular, the path ai Xσm

is a concatenation of paths in GPG and in NPG. By Lemma 3.18 applied
to ai X σm, we have �exppai X σmq “ 0.

Suppose now that the first edge of σm is contained in a path δ P Nmax
PG paiq.

Then ai has a decomposition a1i δa
2
i , where the first edge of σm is contained

in δ. Note that a2i is a concatenation of paths in GPG and in NPG which
is contained in σm. By Lemma 3.17 applied to ai X σm “ pδ X σmqa2i , by
Lemma 3.18 applied to a2i and by definition of the constant K, we have

�exppai X σmq ď �exppδ X σmq ` �exppa2i q “ �exppδ X σmq ď �pδq ď K ď C.

(iii) Suppose that aj is an edge in an irreducible stratum with positive expo-
nential length. Since rfmpβqs is a concatenation of paths in GPG and in
NPG, there exists a path γ1 P Nmax

PG prfmpβqsq such that aj is contained
in γ1. By Lemma 3.21(1), every path in Nmax

PG prfmpαqsq is contained in a
minimal factor of rfmpαqs consisting in PG-relative splitting units which
are concatenation of paths in GPG and NPG. Since aj is a PG-relative
splitting unit of rfmpαqs which is not a concatenation of paths in GPG and
in NPG, the path aj is not contained in a path of Nmax

PG prfmpαqsq. Hence
the path γ1 is not contained in σm as otherwise it would be contained in
a path of Nmax

PG prfmpαqsq. Therefore, we see that pai . . . ajq X σm Ď γ1.
Hence, by the choice of K, we have

�expppai . . . ajq X σmq ď �ppai . . . ajq X σmq ď �pγ1
q ď C.

This proves the claim as we have considered all possible PG-relative splitting units.
�
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Let m P N
˚. By the claim, either �expppai . . . ajq X σmq ď C or, for every j ą i,

we have �exppaj X σmq “ 0. In the second case, we have

�exppσmq “

ÿ

jąi

�exppajq ` �exppai X σmq “ �exppai X σmq ď C,

where the last inequality follows from the case j “ i of the claim. Hence, for
every m P N

˚, we have �exppσmq ď C. Note that, by Lemma 3.17 applied to
rfmpαqs “ αmσm, we have

�exppαmq ě �expprfm
pαqsq ´ �exppσmq ě �expprfm

pαqsq ´ C.

It remains to prove that �exppβmq ď C. But βm can be written as βm “ δ1δ2 where
δ2 is a concatenation of paths in GPG and in NPG and δ1 is a (possibly trivial)
path contained in a path of Nmax

PG prfmpβqsq. By Lemma 3.18 applied to δ2 and by
the choice of K (since δ1 is a subpath of a path in NPG), we have

�exppβmq ď �exppδ1q ` �exppδ2q “ �exppδ1q ď �pδ1q ď C.

This concludes the proof. �
Lemma 5.11. Let L ě 1. There exists n0 “ n0pLq P N

˚ which satisfies the follow-
ing properties. Let γ be a reduced edge path of G such that �exppγq ď L. For every
n ě n0 and every optimal splitting of rfnpγqs, either rfnpγqs is a concatenation of
paths in GPG and in NPG or the following two assertions hold:

(a) the path rfnpγqs contains a complete factor of exponential length at least
equal to 10C;

(b) the exponential length of an incomplete factor of rfnpγqs is at most equal
to 8C.

Proof. By Lemma 3.22, there exists an integer m1 P N
˚ depending only on f such

that for every edge e of G ´ G1
PG and every n ě m1, we have �exprfnpeqs ě 16C`1.

Let γ “ γ0γ
1
1γ1 . . . γ

1
�γ� be the exponential decomposition of γ. Let

γ “ β0α1β1 . . . αkβk

be a nontrivial decomposition of γ such that, for every i P t0, . . . , ku, the path βi is
a concatenation of paths in GPG and in NPG and for every i P t1, . . . , ku, the path
αi is a concatenation of edges in irreducible strata not contained in some γj with
j P t0, . . . , �u and paths in zero strata. The main point of the proof is to show that,
up to applying an iterate of rf s, there is no cancellation between the subpaths αi.

For every i P t1, . . . , ku, we have �exppγq “
řk

i“1 �exppαiq by definition of the
exponential length. Therefore, since �exppγq ď L, for every i P t1, . . . , ku, we have
�exppαiq ď L. Note that, for every i P t1, . . . , ku, we have �exppαiq “ �pαiq´�pαiXZq

where Z is the subgraph of G consisting in all zero strata. By the choice of C the
length of every path contained in a zero stratum is at most equal to C. Hence for
every i P t1, . . . , ku, we have �pαiq ď CL.

By Proposition 2.5(8) there existsm2 P N
˚ depending only on L such that, for all

i P t1, . . . , ku and m ě m2, the path rfmpαiqs is completely split. Let m “ m1 `m2.

By Lemma 3.21(2), for every n ě m and every i P t1, . . . , ku, since rfn´m1
pαiqs is

completely split, one computes its exponential length by adding the exponential
length of all its splitting units. Thus, if rfn´m1

pαiqs contains a splitting unit which

is an edge e in G ´ G1
PG, we have

(7) �expprfn
pαiqsq ě �expprfm1

peqsq ě 16C ` 1.
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Let Cm be a bounded cancellation constant for fm given by Lemma 4.9. Note
that if there exists i P t1, . . . , k ´ 1u such that �pβiq ă Cm, then there might
exist some identifications between rfmpαi´1qs and rfmpαiqs when reducing the
paths in order to obtain rfmpγqs. This is why we replace the decomposition
γ “ β0α1β1 . . . αkβk of γ by a new one.

The new decomposition is defined as follows. Since every lift of fm to the
universal cover of G is a quasi-isometry, there exists Mm ą 0 depending only
on m such that, for every reduced edge path of length �pβq ą Mm, we have
�prfmpβqsq ě 2Cm ` 1.

Let Γm “ tβi | �pβiq ď Mmu. Note that |Γm| ď k ` 1. Note that, by Lemma 2.9
and Proposition 2.5(4), for every i P t1, . . . , ku, if βi´1 or βi is not trivial, then αi

is not contained in a zero stratum. In particular, we may suppose that, for every

i P t1, . . . , ku, we have �exppαiq ą 0. Thus, since �exppγq “
řk

i“1 �exppαiq ď L, and,
for every i P t1, . . . , ku, we have �exppαiq ą 0, we see that k ď L. Hence we have
|Γm| ď k ` 1 ď L ` 1.

Claim. There exist m1 ě m depending only on |Γm| (and hence on L) and a

decomposition γ “ β
p1q

0 α
p1q

1 β
p1q

1 . . . α
p1q

k1
β

p1q

k1
such that:

(a1) for every i P t1, . . . , k1u, the path rfm1pα
p1q

i qs is completely split;

(b1) for every i P t0, . . . , k1u, the path β
p1q

i is a concatenation of paths in GPG

and in NPG;

(c1) for every i P t0, . . . , k1u, the subpath of rfm1pβ
p1q

i qs contained in rfm1pγqs

is not reduced to a point;

(d1) for every i P t1, . . . , k1u, for every n ě m1, if rfn´m1
pα

p1q

i qs contains a

splitting unit which is an edge in G ´ G1
PG then �expprfnpα

p1q

i qsq ě 16C`1.

Proof. The proof is by induction on |Γm|. Suppose first that Γm “ ∅. By the
definition of |Γm| and Mm, for every i P t0, . . . , ku, the path rfmpβiqs has length
at least equal to 2Cm ` 1. By Lemma 4.9, for every i P t0, . . . , ku, the subpath of
rfmpβiqs contained in rfmpγqs is not reduced to a point. So the integer m1 “ m and
the decomposition γ “ β0α1β1 . . . αkβk satisfy the assertions of the claim (Assertion
(d1) follows from Equation (7)).

Suppose now that Γm ‰ ∅. Then

k
ÿ

i“1

�pαiq `

ÿ

βiPΓm

�pβiq ď kCL ` MmL ď CL2
` MmL.

Let m1
2 ě m be such that for every path β of length at most equal to CL2 ` MmL

and every n ě m1
2, the path rfnpβqs is completely split. Then γ has a decomposition

γ “ β
p2q

0 α
p2q

1 β
p2q

2 . . . α
p2q

k2
β

p2q

k2
such that, for every i P t1, . . . , k2u, the path rfm1

2pα
p2q

i qs

is completely split and for every i P t0, . . . , k2u, the path β
p2q

i is a concatenation of
paths in GPG and in NPG of length greater than Mm. Let m2 “ m1

2 `m1. Then for

every i P t1, . . . , k2u, the paths rfm2pα
p2q

i qs and rfm2´m1
pα

p2q

i qs are completely split.

Moreover, if rfm2´m1
pα

p2q

i qs contains a splitting unit which is an edge in G ´ G1
PG,

then �expprfmpα
p2q

i qsq ě 16C ` 1 as in Equation (7).
Let Cm2

be a bounded cancellation constant associated with fm2 and let Mm2
ě

Mm be such that, for every reduced edge path of length �pβq ą Mm2
, we have

�prfm1pβqsq ě 2Cm2
` 1. Let Γm2

“ tβ
p2q

i | �pβiq ď Mm2
u. Note that |Γm2

| ă
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|Γm|. Hence we can apply the induction hypothesis to the decomposition γ “

β
p2q

0 α
p2q

1 β
p2q

2 . . . α
p2q

k2
β

p2q

k2
to obtain the desired decomposition of γ. This concludes

the proof of the claim. �

Let m1 and γ “ β
p1q

0 α
p1q

1 β
p1q

1 . . . α
p1q

k1
β

p1q

k1
be as in the assertion of the claim.

By Assertion (c1) of the claim, for every i P t1, . . . , k1u, there is no identification

between edges of rfm1pα
p1q

i qs, rfm1pα
p1q

i´1qs and rfm1pα
p1q

i`1qs when reducing in order
to obtain rfm1pγqs.

For every i P t1, . . . , k1u, since rfm1pα
p1q

i qs is PG-relative completely split, we

can distinguish three possible cases for rfm1pα
p1q

i qs:

(i) the path rfm1pα
p1q

i qs contains a PG-relative splitting unit which is an edge

in G ´ G1
PG (by Lemma 3.24 this case happens exactly when

�expprfm1pα
p1q

i qsq ą 0);

(ii) �expprfm1pα
p1q

i qsq “ 0 and the path rfm1pα
p1q

i qs is a concatenation of paths
in GPG and in NPG;

(iii) �expprfm1pα
p1q

i qsq “ 0 and rfm1pα
p1q

i qs contains a maximal taken connecting
path in a zero stratum.

We claim that if there exists i P t1, . . . , k1u such that rfm1pα
p1q

i qs satisfies (iii),

then rfm1pγqs is contained in a zero stratum. Indeed, suppose that rfm1pα
p1q

i qs

satisfies (iii). By Lemma 3.24 applied to the PG-relative completely split edge

path rfm1pα
p1q

i qs, since �expprfm1pα
p1q

i qsq “ 0 the path rfm1pα
p1q

i qs does not contain

an edge in G ´ G1
PG. Therefore, the path rfm1pα

p1q

i qs is a concatenation of paths in
G1

PG and in NPG. By Proposition 2.5(4) and Lemma 2.9, there is no path in a zero
stratum which is adjacent to a concatenation of paths in GPG and in NPG. Hence

rfm1pα
p1q

i qs “ σ, where σ is a maximal taken connecting path in a zero stratum not

contained in GPG. But the endpoints of σ are the endpoints of rfm1pβ
p1q

i´1qs and

rfm1pβ
p1q

i qs, which are concatenation of paths in GPG and in NPG. As above, this
implies that rfm1pγqs “ σ.

Since zero strata are contractible, there existsm3 P N
˚ such that rfm3pγqs is PG-

relative completely split. Hence Assertion (b) of Lemma 5.11 follows. Applying a
further power of rf s (which can be chosen uniformly as there are finitely many
reduced edge paths contained in a zero stratum), there exists m4 P N

˚ such that
rfm4pγqs is a concatenation of paths in GPG and in NPG or it satisfies Assertion (a)
of Lemma 5.11. This concludes the proof of Lemma 5.11 in case (iii).

Hence we may suppose that for every i P t1, . . . , k1u, the path rfm1pα
p1q

i qs satisfies

either (i) or (ii). Note that if i P t1, . . . , k1u is such that the path rfm1pα
p1q

i qs

satisfies (i), then rfm1pα
p1q

i qs also satisfies the hypothesis of Assertion (d1) of the
claim. Thus

�expprfm1`m1
pα

p1q

i qsq ě 16C ` 1.

Let m1
1 “ m1 ` m1 and let n1 ě m1

1. Let

Λexp “ tα
p1q

i | �expprfn1
pα

p1q

i qsq ě 16C ` 1u.
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For every j P t1, . . . , k1u and every n P N
˚, let α

pnq

j be the subpath of rfnpα
p1q

j qs

contained in rfnpγqs. For every j P t0, . . . , k1u and every n P N
˚, let β

pnq

j be the

subpath of rfnpβ
p1q

j qs contained in rfnpγqs.

Suppose first that Λexp is not empty and let α
p1q

i P Λexp. By Lemma 5.10(2)

applied to βp1q “ rfn1
pβ

p1q

i´1qs, α “ rfn1
pα

p1q

i qs and βp2q “ rfn1
pβ

p1q

i qs, we have

�exppα
pn1

q

i q ě 14C ` 1.

Using Remark 5.9(2) twice (once with γ1 “rfn1
pα

p1q

i qs and γ2 “rfn1
pβ

p1q

i . . . α
p1q

k1
β

p1q

k1
qs,

and once with γ1 “ rfn1
pα

p1q

i qs´1 and γ2 “ rfn1
pβ

p1q

0 . . . α
p1q

i´1β
p1q

i´1qs´1), we see that

the path α
pn1

q

i contains a complete factor of rfn1
pγqs of exponential length at least

equal to 14C ` 1 ´ 4C “ 10C ` 1. This proves Assertion (a) of Lemma 5.11 when
Λexp is not empty.

Moreover, Remark 5.9(2) implies that the intersection of an incomplete factor of

rfn1
pγqs with α

pn1
q

i is contained in the union of an initial and a terminal segment

of α
pn1

q

i of exponential lengths at most 2C. For every i P t1, . . . , k1u such that

α
p1q

i P Λexp, let τ1i be the maximal initial segment of α
pn1

q

i of exponential length

equal to 2C and let τ2i be the maximal terminal segment of α
pn1

q

i of exponential
length equal to 2C.

We now prove Assertion (b) of Lemma 5.11 when Λexp is not empty. Suppose that

there exists i P t1, . . . , k1u such that α
p1q

i R Λexp, so that in particular rfm1pα
p1q

i qs

does not satisfy (i). Then rfm1pα
p1q

i qs satisfies (ii) and is a concatenation of paths

in GPG and in NPG. By Lemma 3.10(3), the path rfn1
pα

p1q

i qs is a concatenation

of paths in GPG and in NPG. By Lemma 3.6, the path rrfn1
pβ

p1q

i´1qsrfn1
pα

p1q

i qs

rfn1
pβ

p1q

i qss is a concatenation of paths in GPG and in NPG. Thus, the path

β
pn1

q

i´1α
pn1

q

i β
pn1

q

i is a subpath of a concatenation of paths in GPG and in NPG. Hence

rfn1
pγqs has a decomposition

rfn1
pγqs “ ε1α

pn1,`q

1 ε2 . . . α
pn1,`q

k2
εk2

,

where for every j P t1, . . . , k2u, the path α
pn1,`q

j is the reduced image of a path in

Λexp and for every j P t0, . . . , k2u, the path εj is contained in a path ιj which is a
concatenation of paths in GPG and in NPG. Hence, for every j P t0, . . . , k2u, we
have �exppιjq “ 0 by Lemma 3.18 and, by Lemma 5.6, we have �exppεjq ď 2C.

If γ1 is an incomplete factor of rfn1
pγqs, as explained above, there exists i P

t1, . . . , k2u such that γ1 is contained in τ2i´1εi´1τ
1
i . By Lemma 5.6, we have

�exppγ1
q ď �exppτ2i´1εi´1τ

1
i q ` 2C.

By Lemma 3.17, the exponential length of γ1 is at most equal to

�exppτ2i´1q ` �exppεi´1q ` �exppτ1i q ` 2C ď 6C ` �exppεi´1q ď 8C.

This proves (b) when Λexp is not empty.

Finally, suppose that Λexp is empty. For every j Pt1, . . . , k1u, the path rfm1pα
p1q

j qs

is a concatenation of paths in GPG and in NPG. By Lemma 3.6, the path rfm1pγqs

is a concatenation of paths in GPG and in NPG. By Lemma 3.10, for every n1 ě m1,
the path rfn1

pγqs is a concatenation of paths in GPG and in NPG. �
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Lemma 5.12. Let f : G Ñ G be a 3K-expanding CT map. There exists N P N
˚

such that for every reduced edge path γ and every m ě N , the total exponential
length of incomplete factors in any optimal splitting of rfmpγqs is uniformly bounded
by 8C�exppγq.

Proof. By Proposition 2.5(8), there exists N P N
˚ such that, for every reduced

edge path α of length at most equal to C ` 1, the path rfN pαqs is completely split.
Suppose first that �exppγq “ 0. Then, by definition of the exponential length, the
path γ is a concatenation of paths in G1

PG and in NPG. By Proposition 2.5(4),
every edge in a zero stratum is adjacent to either an edge in a zero stratum or an
edge in an EG stratum. Moreover, by Lemma 2.9, there does not exist a subpath
of γ contained in a zero stratum which is adjacent to a Nielsen path. Hence γ is
either a concatenation of paths in GPG and in NPG or a path in a zero stratum.

In the first case, the path γ is PG-relative completely split. In the second case,
by the definition of the constant K and Equation (6), we have �pγq ď K ď C.
By the choice of N , for every m ě N , the path rfmpγqs is completely split. By
Lemma 3.20, for every m ě N , the path rfmpγqs is PG-relative completely split.

So we may suppose that �exppγq ą 0. Let γ “ γ0γ
1
1γ1 . . . γ

1
�γ� be the exponential

decomposition of γ (see the beginning of Section 3.2). By Lemma 2.9, there does
not exist a subpath of γ contained in a zero stratum which is adjacent to a Nielsen
path. Therefore, the path γ has a decomposition α0β1α1 . . . βkαk where, for every
i P t0, . . . , ku, the path αi is a (possibly trivial) concatenation of paths in GPG and
in NPG and, for every i P t1, . . . , ku, the path βi is a concatenation of a (possibly
trivial) maximal reduced path in a zero stratum and an edge in an irreducible
stratum not contained in GPG or in some γi. By construction of K, for every
i P t1, . . . , ku, we have �pβiq ď C ` 1. By the choice of N , for every m ě N , the
path rfmpβiqs is completely split.

Note that, for every i P t1, . . . , ku, we have �exppβiq “ 1 and that

�exppγq “

k
ÿ

i“1

�exppβiq “ k.

By Lemma 3.10, for every i P t0, . . . , ku and every m ě M , the path rfmpαiqs is a
concatenation of paths in GPG and in NPG. By Lemma 3.18, for every m ě M ,
we have �expprfmpαiqsq “ 0. By Lemma 5.6, the exponential length of the subpath
of rfmpαiqs contained in rfmpγqs is at most equal to 2C.

For every i P t0, . . . , ku (resp. i P t1, . . . , kuq and every m ě N , let αi,m (resp.
βi,m) be the subpath of rfmpαiqs (resp. rfmpβiqs) contained in rfmpγqs. By Re-
mark 5.9(2), for every i P t1, . . . , ku and every m ě N , the exponential length of
any incomplete factor in βi,m is at most equal to 4C. By Lemma 3.17, for every
m ě N , the sum of the exponential lengths of the incomplete factors in rfmpγqs is
at most equal to

k
ÿ

i“0

�exppαi,mq ` 4Ck ď 2Cpk ` 1q ` 4kC ď 4Ck ` 4Ck “ 8Ck “ 8C�exppγq.

The conclusion of the lemma follows. �

Lemma 5.13. Let f : G Ñ G be a 3K-expanding CT map. Let γ be a reduced edge
path in G. Suppose that γ has a splitting γ “ b1ab2 where, for every i P t1, 2u,
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the (possibly trivial) path bi is PG-relative completely split. If �γexppaq “ 0 then
�exppaq “ 0.

Proof. Let γ “ γ0γ
1
1γ1 . . . γ

1
kγk be the exponential decomposition of γ. By

Lemma 5.6, there exist three (possibly trivial) paths δ1, δ2 and τ such that for every
i P t1, 2u, the path δi is a proper initial or terminal subpath of a splitting unit of
some γj we have �exppτ q “ �γexppτ q “ �γexppaq and a “ δ1τδ2. Since �γexppaq “ 0, we
have �exppτ q “ 0. Hence τ is a concatenation of paths in G1

PG and in NPG.
By Proposition 2.5(4), every edge in a zero stratum is adjacent to either an edge

in a zero stratum or an edge in an EG stratum. Moreover, by Lemma 2.9, there
does not exist a subpath of γ contained in a zero stratum which is adjacent to a
Nielsen path. Hence τ is either a concatenation of paths in GPG and in NPG or a
path in a zero stratum.

If τ is contained in a zero stratum, by Lemma 2.9, we see that δ1 and δ2 are
trivial, that is, a “ τ . Thus, we have �exppaq “ �exppτ q “ 0.

So we may suppose that τ is a concatenation of paths in GPG and in NPG.
Suppose towards a contradiction that there exists i P t1, 2u such that δi is not
trivial. For every i P t1, 2u such that δi ‰ ∅, let σi be the splitting unit of some
γj containing δi and let ri be the height of σi. By [BH, Lemma 5.11], for every
i P t1, 2u such that δi is not trivial, there exist two distinct ri-legal paths αi and βi

such that σi “ αiβi and such that the turn tDfpα´1
i q, Dfpβiqu is the only height

ri illegal turn. Moreover, there exists a path τ 1
i such that rfpαiqs “ αiτ

1
i and

rfpβiqs “ τ 1´1
i βi. Let ε

p1q

1 , ε
p2q

1 be two paths such that σ1 “ ε
p1q

1 ε
p2q

1 , the path ε
p1q

1 is

contained in b1 and the path ε
p2q

1 is contained in a. Similarly, let ε
p1q

2 , ε
p2q

2 be two

paths such that σ2 “ ε
p1q

2 ε
p2q

2 , the path ε
p2q

2 is contained in b2 and the path ε
p1q

2 is
contained in a.

Claim.

(1) For every path b P Nmax
PG pb1q (resp. b P Nmax

PG pb2q), the path b does not

contain edges of ε
p1q

1 (resp. ε
p2q

2 ).

(2) The path ε
p1q

1 is r1-legal and the path ε
p2q

2 is r2-legal.

Proof. We prove the claim for b1, the proof for b2 being similar.

(1) Let b P Nmax
PG pb1q. There exists c P Nmax

PG pγq such that b Ď c. Moreover,
by Lemma 3.5(3) applied to γ1 “ b and γ “ c, either b is a concatenation
of splitting units of c or b is properly contained in a splitting unit of c and
is not an initial or a terminal segment of c. Since b1 is an initial segment
of γ, the second case cannot occur. Hence b is a concatenation of splitting
units of c. Since σ1 is not contained in b1, the path b cannot contain edges

of σ1. Since ε
p1q

1 Ď σ1, the path b cannot contain edges of ε
p1q

1 .

(2) Suppose towards a contradiction that ε
p1q

1 is not r1-legal. Then it contains
the illegal turn tDfpα´1

1 q, Dfpβ2qu. Recall that the path b1 is PG-relative
completely split. By the description of PG-relative splitting units, the
illegal turn must be contained in a PG-relative splitting unit of b1 which
is a concatenation of paths in GPG and in NPG. Since the last edge of α1

is an edge in an EG stratum, the last edge of α1 must be contained in a
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path contained in NPG. Hence ε
p1q

1 intersects a path in Nmax
PG pb1q. This

contradicts Assertion p1q. �

By Assertion p2q of the claim, for every i P t1, 2u such that σi is not trivial, the

path ε
piq
i is ri-legal. Moreover, by Assertion p1q of the claim an INP contained in bi

cannot intersect the path ε
piq
i . Since the paths b1 and b2 are PG-relative completely

split, the paths b1 and b2 split respectively at the origin of ε
p1q

1 and at the end of

ε
p2q

2 . So we may suppose that b1 “ ε
p1q

1 and b2 “ ε
p2q

2 . Therefore, there exists a
(possibly trivial) path τ1 such that, up to taking a power of f so that the length of

rfpb1qs is greater than α1, we have rfpb1qs “ α1τ1 and rfpε
p2q

1 qs “ τ´1
1 β1. Similarly,

there exists a path τ2 such that rfpε
p1q

2 qs “ α2τ2 and rfpb2qs “ τ´1
2 β2.

Since γ splits at the concatenation points of b1, a and b2, the paths τ´1
1 and

τ2 contained in rfpε
p2q

1 qsrfpτ qsrfpε
p1q

2 qs must be identified when passing to rfpaqs.
Suppose first that rfpτ qs is a point. Then since the EG INPs σ1 and σ2 are uniquely
determined by their initial and terminal edges by Proposition 2.5(9), we see that
σ1 “ σ´1

2 . But then there are some identifications between b1 and b2, which con-
tradicts the fact that b1ab2 is a splitting.

Thus, we may suppose that rfpτ qs is nontrivial. By Lemma 3.10, since τ is a
concatenation of paths in GPG and in NPG so is rfpτ qs. Note that, since an EG INP
is completely determined by its initial and terminal edges by Proposition 2.5(9), if
rfpτ qs contains the initial or the terminal edge of an EG INP σ, then σ is contained

in rfpτ qs. Note that there are identifications between edges of rfpε
p2q

1 qs and rfpτ qs

or between edges of rfpτ qs and rfpε
p1q

2 qs. Therefore, rfpτ qs starts with σ´1
1 or rfpτ qs

ends with σ´1
2 . Thus, one of the following holds:

(a) rfpτ qs “ σ´1
1 τ 1 with τ 1 a (possibly trivial) path which is a concatenation of

paths in GPG and in NPG which does not end by σ´1
2 ;

(b) rfpτ qs “ τ 1σ´1
2 with τ 1 a (possibly trivial) path which is a concatenation of

paths in GPG and in NPG which does not start by σ´1
1 ;

(c) rfpτ qs “ σ´1
1 τ 1σ´1

2 with τ 1 a (possibly trivial) path.

We treat the three cases simultaneously by considering Case (c) and assuming
that σ´1

1 and σ´1
2 might be trivial. Note that σ´1

1 τ 1σ´1
2 is reduced since it is equal

to rfpτ qs, so that there is no identification between α´1
1 and τ 1 and between τ 1 and

β´1
2 .
Let eσ1

be the terminal edge of σ1 and let eσ2
be the initial edge of σ2. By Propo-

sition 2.5(9), both eσ1
and eσ2

are edges in EG strata. Since f is 3K-expanding,
for every i P t1, 2u, the path rfpeσi

qs has length at least equal to 3K. Recall that,
for every i P t1, 2u, by definition of K, we have �pσiq ď K, so that �pαiq, �pβiq ď K.

Since rfpε
p2q

1 qs “ τ´1
1 β1 and rfpε

p1q

2 qs “ α2τ2, the path rfpeσ1
qs contains a nonde-

generate terminal segment of τ´1
1 and the path rfpeσ2

qs contains a nondegenerate
initial segment of τ2. As eσ1

is r1-legal and as f is a relative train track by Proposi-
tion 2.5(1), we see that the last edge of τ´1

1 is not the last edge of α1. Similarly, the
first edge of τ2 is not the first edge of β2. Therefore, we have rτ´1

1 β1σ
´1
1 s “ τ´1

1 α´1
1

and rσ´1
2 α2τ2s “ β´1

2 τ2. Thus we have

rrfpε
p2q

1 qsrfpτ qsrfpε
p1q

2 qss “ rτ´1
1 β1σ

´1
1 τ 1σ´1

2 α2τ2s “ rτ´1
1 α´1

1 τ 1β´1
2 τ2s,
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and there is no identification between τ´1
1 and α´1

1 , α´1
1 and τ 1, τ 1 and β´1

2 and
β´1
2 and τ2. Therefore, if τ

1 is not trivial, then we have a contradiction as τ´1
1 and

τ2 are not identified in rfpaqs.
Suppose that τ 1 is trivial. Then the paths τ´1

1 and τ2 are identified in rfpaqs

only if a terminal segment of α´1
1 is identified with an initial segment of β´1

2 . Since
EG INP are uniquely determined by their initial and terminal edges by Proposi-
tion 2.5(9), we see that σ1 “ σ´1

2 . Hence α´1
1 “ β2 and either τ´1

1 is an initial
segment of τ´1

2 or τ2 is an initial segment of τ1.
Up to changing the orientation of γ, we may suppose that τ´1

1 is an initial
segment of τ´1

2 . If τ´1
1 “ τ´1

2 , then rfpaqs is a vertex. Moreover, as σ1 “ σ´1
2 , the

segment b1 “ ε
p1q

1 is equal to b´1
2 . Therefore, a terminal segment of b1 is identified

with an initial segment of b2, a contradiction. If τ´1
1 is a proper initial segment of

τ´1
2 , then τ2 is identified with edges in b1, a contradiction. As we have considered
every case, we see that δ1 and δ2 are trivial and �exppaq “ �exppτ q “ 0. �
Lemma 5.14. Let f : G Ñ G be a 3K-expanding CT map. There exists n0 P N

˚

such that for every n ě n0, and every closed reduced edge path γ of G, we have:

gprfn
pγqsq ě gpγq.

Proof. By Lemma 3.23, there exists N0 P N
˚ such that, for every n ě N0 and

every PG-relative splitting unit σ, the exponential length of the path rfnpσqs is at
least equal to the one of σ. By Lemma 5.12, there exists N1 such that for every
n ě N1 and every closed reduced edge path γ of G, the total exponential length of
incomplete segments in any optimal splitting of rfnpγqs is bounded by 8C�exppγq.
Let N2 “ rlog3p10C ` 16C2qs P N

˚ be such that for every x, y ě 0 such that
px, yq ‰ p0, 0q, we have

p3N2 ´ 2Cqx

p3N2 ´ 2Cqx ` 8Cp1 ` 2Cqy
ě

x

x ` y
.

Let n0 “ maxtN0, N1, N2u.
Let γ be a closed reduced edge path in G. All splittings of γ are circuital

splittings in what follows. Let γ “ α0β1α1 . . . βkαk be an optimal splitting of γ,
where for every i P t0, . . . , ku, the path αi is an incomplete factor of γ and for every
i P t1, . . . , ku, the path βi is a PG-relative complete factor of γ. First note that, for
every i P t1, . . . , ku, and for every n ě 1, the path rfnpβiqs is PG-relative completely
split by Proposition 2.5(6) and Lemma 3.10. Therefore, if n ě n0 ě N0, the total
exponential length of such PG-relative complete segments is nondecreasing under
rfns. We now distinguish two cases, according to the growth of the paths βi.

Suppose first that for every i P t1, . . . , ku, the exponential length of βi relative
to γ is equal to zero. Since the splitting γ “ α0β1α1 . . . βkαk is optimal and since
for every i P t1, . . . , ku, we have �γexppβiq “ 0, we have gpγq “ 0. Therefore, for
every n P N

˚, we have gprfnpγqsq ě gpγq.
Suppose now that there exists i P t1, . . . , ku such that the exponential length

of βi relative to γ is positive. By Lemma 3.22, the sequence p�expprfnpβiqsqqnPN˚

grows exponentially with n. We can now modify the splitting of γ into the following
splitting: γ “ α1

0β
1
1α

1
1 . . . β

1
mα1

m where:

(a) for every j P t0, . . . ,mu, the path α1
i is a concatenation of incomplete factors

and complete factors of zero exponential length relative to γ of the previous
splitting;
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(b) for every j P t1, . . . ,mu, the path β1
i is a complete factor of positive expo-

nential length relative to γ of the previous splitting.

Note that, by definition of the exponential length relative to γ, for every i P

t1, . . . ,mu and every path γ1 P Nmax
PG pγq, the path β1

i is not contained in γ1. There-
fore, if there exists j P t0, . . . ,mu and γ1 P Nmax

PG pγq such that α1
j intersects γ1

nontrivially, then γ1 is contained in β1
j´1α

1
jβ

1
j . In particular, Lemma 5.13 applies

and for every j P t0, . . . ,mu, if �γexppα1
jq “ 0, then �exppα1

jq “ 0. Let Λ be the subset

of t0, . . . ,mu such that for every j P Λ, we have �γexppα1
jq ą 0.

By Lemma 5.6 and Lemma 5.7, for every j P t1, . . . ,mu and every M P N
˚, we

have

�rfM
pγqs

exp prfM
pβ1

iqsq ě �expprfM
pβ1

iqsq ´2C ě 3M �exppβ1
iq ´2C ě p3M ´2Cq�γexppβ1

iq.

By Lemma 5.6, for every j P t0, . . . ,mu, we have �γexppα1
jq ď �exppα1

jq. Note that,

for every i P t1, . . . ,mu, and every n P N
˚, the path rfnpβ1

iqs is PG-relative com-
pletely split. In particular, for every n P N

˚, any incomplete factor of rfnpγqs

is contained in a reduced iterate of some α1
i. Thus, by Lemma 5.12, for every

n ě n0 ě N1, the total exponential length of incomplete segments in rfnpγqs is

bounded by 8C
řk

j“1 �exppα1
jq “ 8C

ř

jPΛ �exppα1
jq. Note that the function

x ÞÑ
x

x ` 8C
ř

jPΛ �exppα1
jq

is nondecreasing. Recall that, for every n P N
˚, the goodness function is a supre-

mum over splittings of rfnpγqs. Thus, by Lemma 5.4, for every n ě n0, we have:

gprfn
pγqsq ě

p3n ´ 2Cq
řm

i“1 �
γ
exppβ1

iq

p3n ´ 2Cq
řm

i“1 �
γ
exppβ1

iq ` 8C
ř

jPΛ �exppα1
jq
.

By Lemma 5.6, we have

8C
ÿ

jPΛ

�exppα1
jq ď 8C

ÿ

jPΛ

p�γexppα1
jq ` 2Cq ď 8Cp1 ` 2Cq

ÿ

jPΛ

�γexppα1
jq,

where the last inequality follows from the fact that, for every j P Λ, we have
�γexppα1

jq ě 1. Therefore, since n0 ě N2, for every n ě n0, we have:

p3n ´ 2Cq
řm

j“1 �
γ
exppβ1

jq

p3n ´ 2Cq
řm

j“1 �
γ
exppβ1

jq ` 8Cp1 ` 2Cq
ř

jPΛ �γexppα1
jq

ě

řm
j“1 �

γ
exppβ1

jq
řm

j“1 �
γ
exppβ1

jq `
ř

jPΛ �γexppα1
jq
.

By Lemma 5.3, we have

�exppγq “

m
ÿ

j“1

�γexppβ1
jq `

m
ÿ

j“0

�γexppα1
jq “

m
ÿ

j“1

�γexppβ1
jq `

ÿ

jPΛ

�γexppα1
jq.

Thus, we see that
řm

j“1 �
γ
exppβ1

jq
řm

j“1 �
γ
exppβ1

jq `
ř

jPΛ �γexppα1
jq

“ gpγq,

which gives the result. �
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Remark 5.15. In the next lemmas, we will adopt the following conventions.
Let φ P OutpFn,Fq be an atoroidal or an almost atoroidal outer automorphism
relative to F . Let f : G Ñ G be a CT map representing a power of φ with filtration

∅ “ G0 Ĺ . . . Ĺ Gk “ G.

Let p P t1, . . . , k ´ 1u be such that FpGpq “ F . By Lemma 3.22, up to taking
a power of f , we may suppose that f is 3K-expanding. By Lemma 5.14, up to
passing to a power of f , we may suppose that for every closed reduced edge path γ
of G, we have gprfpγqsq ě gpγq.

Lemma 5.16. Let f : G Ñ G be as in Remark 5.15.

(1) For every δ ą 0, there exists m P N
˚ such that for every reduced edge path

γ such that gpγq ě δ and every n ě m, the total exponential length relative
to rfnpγqs of complete factors in rfnpγqs denoted by TELpn, γq is at least

TELpn, γq ě gpγq�exppγqp3n ´ 2Cq.

(2) For every δ ą 0 and every ε ą 0, there exists m P N
˚ such that for every

cyclically reduced circuit γ such that �exppγq ą 0 and gpγq ě δ and every
n ě m, we have gprfnpγqsq ě 1 ´ ε.

Proof. Let γ“α0β1α1 . . . αkβk be an optimal splitting, where for every iPt0, . . . , ku,
the path αi is an incomplete factor of γ and for every i P t1, . . . , ku, the path βi

is a PG-relative complete factor of γ. We may assume that �exppγq ą 0, otherwise
gpγq “ 0 and the result is immediate. Note that, since gpγq ě δ ą 0, there exists
i P t1, . . . , ku such that �γexppβiq ą 0. Let Λγ be the set consisting of all complete
factors βi of γ whose exponential length relative to γ is positive. Let �γexppΛγq be
the sum of the exponential lengths relative to γ of all factors that belong to Λγ .
Note that

�γexppΛγq “

ÿ

βiPΛγ

�γexppβiq “ gpγq�exppγq.

Note that, for every n P N
˚, the value TELpn, γq is a supremum over all splittings

of rfnpγqs. Thus, by Lemma 5.6 and Lemma 5.7, for every n P N
˚, we have:

TELpn, γq ě
ÿ

βiPΛγ

�rfn
pγqs

exp prfn
pβiqsq ě p3n ´ 2Cq�γexppΛγq ě p3n ´ 2Cqgpγq�exppγq.

This proves p1q. We now prove p2q. By Lemma 5.12, there exists n0 P N
˚

such that for every n ě n0, the total exponential length of incomplete segments
in rfnpγqs is bounded by 8C�exppγq. By Lemma 5.6, the total exponential length
relative to γ of incomplete segments in rfnpγqs is hence bounded by 10C�exppγq.
Note that, for every n P N

˚, the value gprfnpγqsq is a supremum over all splittings
of rfnpγqs. Thus, by Lemma 5.4, for every n ě n0, we have:

gprfn
pγqsq ě

gpγq�exppγqp3n ´ 2Cq

10C�exppγq ` gpγq�exppγqp3n ´ 2Cq

“
gpγqp3n ´ 2Cq

10C ` gpγqp3n ´ 2Cq
ě

δp3n ´ 2Cq

10C ` δp3n ´ 2Cq
.

The last term is independent of γ and converges to 1 as n goes to infinity. Therefore
the conclusion of Lemma 5.16 holds for some n large enough which does not depend
on γ. This proves p2q and this concludes the proof. �
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5.2. North-South dynamics for a relative atoroidal outer automorphism.
Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an
atoroidal or an almost atoroidal automorphism relative to F . In this subsection we
prove Theorem 5.1. The proof of Theorem 5.1 is inspired by the proof of the same
result due to Uyanik [Uya2] in the context of an atoroidal outer automorphism, that
is, in the special case when F “ ∅. The proof relies on the study of splittings of
reduced edge paths in the graph associated with a CT map representing a power of
φ. Indeed, we show that, when a cyclically reduced edge path representing w P Fn

has a splitting which is close to a complete splitting, then some iterate of φ sends
rws into an open neighborhood of Δ`pφq (see Definition 4.5), and this iterate can
be chosen uniformly (see Lemma 5.20).

Let φ P OutpFn,Fq be an almost atoroidal outer automorphism. Let F ď F1 ď

F2 “ trFnsu be a sequence of free factor system given in this definition. Let f : G Ñ

G be a CTmap representing a power of φ with filtration∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “

G and such that there exist p and i in t1, . . . , ku with FpGpq “ F and FpGiq “ F1.
We denote by CurrpF1,F1 ^Apφqq the set of currents of CurrpFn,F1 ^Apφqq whose
support is contained in B2F1.

Note that, since the extension F1 ď trFnsu is sporadic, either F1 “ trH1s, rH2su

or F1 “ trHsu for some subgroups H,H1, H2 of Fn. Up to assuming that H2

is the trivial group, we may assume that F1 “ trH1s, rH2su. Moreover, we have
F1 ^ Apφq “ trA1s, . . . , rAss, rB1s, . . . , rBtsu where, for every j P t1, . . . , su, the
group Aj is contained in H1 and for every j P t1, . . . , tu, the group Bj is contained
in H2. Since F1 ^ Apφq is a malnormal subgroup system, the set trA1s, . . . , rAssu

is a malnormal subgroup system of H1 and the set trB1s, . . . , rBtsu is a malnormal
subgroup system of H2.

Let

XpF1q “ CurrpH1, trA1s, . . . , rAssuq ˆ CurrpH2, trB1s, . . . , rBtsuq.

Let μ P CurrpF1,F1 ^ Apφqq. We set ψ1pμq “ pμ|B2H1
, μ|B2H2

q P XpF1q. Since μ
is Fn-invariant, ψ1pμq does not depend on the choice of the representatives of the
conjugacy classes of H1 and H2. Let pμ1, μ2q P XpF1q. Since the subgroup system
F1 ^ Apφq is malnormal, for every j P t1, 2u, the current μj can be extended in a
canonical way to a current μ˚

j P CurrpFn,F1 ^ Apφqq. The current μ˚
j is such that,

for every Borel subset B of B2pFn,F1 ^ Apφqq, we have

μ˚
j pBq “ μ˚

j pB X B
2Hjq “ μjpB X B

2Hjq.

We set ψ2ppμ1, μ2qq “ μ˚
1 `μ˚

2 . By the property of μ˚
j described above, we see that

ψ2ppμ1, μ2qq P CurrpF1,F1 ^ Apφqq. The maps ψ1 and ψ2 are clearly continuous.

Lemma 5.17. The space CurrpF1,F1 ^ Apφqq is homeomorphic to XpF1q.

Proof. We prove that ψ1 and ψ2 are inverse from each other. Let μ P CurrpFn,F1 ^

Apφqq. Then ψ2 ˝ ψ1pμq “ pμ|B2H1
q˚ ` pμ|B2H2

q˚. Note that μ and ψ2 ˝ ψ1pμq

coincide on Borel subsets contained in B2F1. Since both have supports contained
in B2F1, they are equal. Conversely, let pμ1, μ2q P XpF1q. Then

ψ1 ˝ ψ2ppμ1, μ2qq “ ppμ˚
1 ` μ˚

2 q|B2H1
, pμ˚

1 ` μ˚
2 q|B2H2

q.

But μ˚
2 |B2H1

“ 0 and μ˚
1 |B2H2

“ 0. Hence we have

ppμ˚
1 ` μ˚

2 q|B2H1
, pμ˚

1 ` μ˚
2 q|B2H2

q “ pμ˚
1 |B2H1

, μ˚
2 |B2H2

q “ pμ1, μ2q.

This concludes the proof. �
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Given φ P OutpFn,Fq, we refer to the definition of PpF ^ Apφqq given above
Lemma 3.29.

Lemma 5.18. Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq

be an almost atoroidal outer automorphism. Let F ď F1 ď F2 “ tFnu be a sequence
of free factor systems given in this definition. Let f : G Ñ G be a CT map repre-
senting a power of φ with filtration ∅ “ G0 Ĺ G1 Ĺ . . . Ĺ Gk “ G and such that
there exist p and i in t0, . . . , k ´ 1u such that FpGpq “ F and FpGiq “ F1.

(1) The graph G ´ Gi either is a topological arc whose endpoints are in Gi or
it retracts onto a circuit C and there exists exactly one topological arc that
connects C and Gi.

(2) There does not exist an EG stratum or a zero stratum of height greater than
i. If G ´ Gi is a topological arc, every edge in G ´ Gi is contained in GPG.
Otherwise every edge of the circuit C in G ´ Gi is contained in GPG.

(3) Let γ be a path of Gi which is not contained in a concatenation of paths of
GPG,F1

and NPG,F1
. Then γ is not contained in a concatenation of paths

in GPG and in NPG.
(4) We have

B
2
pFn,F ^ Apφqq “

ď

γPPpF1^Apφqq

Cpγq.

In particular, we have

PCurrpFn,F ^ Apφqq “ PCurrpFn,F1 ^ Apφqq.

(5) For every edge path γ in G, the value �F1
pγq ´ �exppγq is the number of

edges of G ´ Gi contained in γ. In particular, for every path γ contained
in Gi, we have

�F1
pγq “ �exppγq

and for every current μ P CurrpFn,F ^ Apφqq whose support is contained
in B2F1, we have

Ψ0pμq “ ‖μ‖F1
.

(6) Let γ be a circuit in G. For every m P N
˚, we have

�F1
prfm

pγqsq ´ �expprfm
pγqsq “ �F1

pγq ´ �exppγq.

(7) Suppose that F ^ Apφq “ trA1s, . . . , rArsu. One of the following holds.
‚ There exist distinct i, j P t1, . . . , ru such that

Apφq “ pF ^ Apφqq ´ trAis, rAjsuq Y trAi ˚ Ajsu.

‚ There exist i P t1, . . . , ru and an element g P Fn such that

Apφq “ pF ^ Apφqq ´ trAisuq Y trAi ˚ xgysu.

In that case, there exists a subgroup A of Fn such that F1 “ trAsu and
Fn “ A ˚ xgy.

‚ There exists g P Fn such that Apφq “ F ^Apφq Y trxgysu. In that case,
there exists a subgroup A of Fn such that F1 “ trAsu and Fn “ A˚ xgy.

Proof. (1) It is a consequence of [HM, Lemma II.2.5]. Note that, in the termi-
nology of [HM, Lemma II.2.5], the first case is called a one-edge extension
and the second case is called a lollipop extension.
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(2) By Proposition 2.5(4), it suffices to show that there does not exist an EG
stratum of height greater than i. This follows from [BFH1, Corollary 3.2.2]
(where the stratum described in it is the whole graph G ´ Gi)

We now prove the second part of Assertion p2q. Let w be an element
of Fn represented by γ. Then there exists a subgroup A of Fn such that
rAs P Apφq and w P A. Since φ|F1

is expanding relative to F but φ is not
expanding relative to F by Definition 4.3(b), there exists a reduced circuit
γ in G which is not contained in Gi which has polynomial growth under
iterates of f . By Proposition 3.14, the circuit γ is a concatenation of paths
in GPG and in NPG. By the first part of Assertion p2q, the intersection
γ X G ´ Gi does not contain EG INPs, hence consists in edges in GPG.

Thus, if G ´ Gi is a lollipop, then the circuit C in G ´ Gi is contained
in γ, hence is contained in GPG. If G ´ Gi is a topological arc, the graph
G ´ Gi is contained in γ, hence consists in edges in GPG. This proves p2q.

(3) Let γ be as in Assertion p3q. By Assertion p2q, every edge of G ´ Gi is
contained in an NEG stratum. In particular, there does not exist an EG
INP of height greater than i. Hence NPG “ NPG,F1

. Since γ is contained
in Gi and since GPG X Gi “ GPG,F1

, the path γ is not contained in a
concatenation of paths in GPG and NPG.

(4) Since φ|F1
is expanding relative to F , we see that F1 ^ Apφq “ F ^ Apφq.

Thus, we have B2pFn,F ^ Apφqq “ B2pFn,F1 ^ Apφqq. Assertion p4q then
follows from Lemma 3.29 applied to F1 ^ Apφq.

(5) By Assertion p2q, there does not exist an EG INP of height at least i ` 1.
Hence �F1

pγq differs from �exppγq by the number of edges in GPG of height

at least i ` 1. Since every edge in G ´ Gi is in GPG by Assertion p2q, the
conclusion of the first claim of Assertion p5q follows. The claim about paths
contained in Gi is then a direct consequence.

Let μ be a current in CurrpF1,F1 ^ Apφqq. By Lemma 5.17, there
exists pμ1, μ2q P XpF1q such that μ “ μ˚

1 ` μ˚
2 . Since rational cur-

rents are dense in CurrpH1, trA1s, . . . , rAssuq and CurrpH2, trB1s, . . . , rBtsuq

by Proposition 2.15, linear combination of rational currents is dense in
CurrpF1,F1 ^Apφqq. The last claim of Assertion p5q then follows from the
linearity and continuity of Ψ0 and ‖.‖F1

.
(6) Let m P N

˚. By Assertion p5q, it suffices to prove that the number of edges
in G ´ Gi contained in rfmpγqs is equal to the number of edges in G ´ Gi

contained in γ. In the case that G ´ Gi is a lollipop extension and that γ is
the circuit C in G ´ Gi, then γ is fixed by f by [HM, Definition I.1.29 p3q]
(that is the filtration associated with f is reduced). Hence rfmpγqs “ γ and
the claim follows.

Otherwise, if G ´ Gi is either a one-edge extension or a lollipop exten-
sion, the circuit γ is not contained in G ´ Gi. Moreover, if γ or rfmpγqs

contains an edge in G ´ Gi, then it contains G ´ Gi. Hence it suffices to
count the number of occurrences of G ´ Gi in γ and rfmpγqs. Since f pre-
serves Gi, the result follows from Assertion p1q and [BFH1, Corollary 3.2.2]
(where the stratum in it is the graph G ´ Gi).

(7) Note that since φ|F1
is expanding relative to F , we have F1 ^ Apφq “ F ^

Apφq. Recall the definition of the graphG˚ and the map pG˚ : G˚ Ñ G from
above Lemma 3.12. By Proposition 3.14 and Lemma 3.12(2), the malnormal
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subgroup system Apφq is precisely the subgroup system associated with the
fundamental groups of the connected components of G˚. Moreover, the
malnormal subgroup system associated with F1 ^ Apφq “ F ^ Apφq is the
subgroup system associated with the connected components of p´1

G˚ pGiq.

By Assertion p1q, the graph G ´ Gi is either a topological arc or a lol-
lipop. Suppose first that G ´ Gi is a topological arc. By Assertion p2q,
the graph G ´ Gi consists in edges in GPG. Thus, the graph G˚ is ob-
tained from p´1

G˚ pGiq by adding a topological arc τ . If the endpoints of
τ are in two distinct connected components of G˚, then the first case of
Assertion p7q occurs and otherwise the second case of Assertion p7q occurs.
Moreover, if the second case occurs, the extension F1 ď trFnsu is an HNN
extension. Thus there exists a subgroup A of Fn such that F1 “ trAsu.
By [BFH1, Corollary 3.2.2], one can obtain an element g of Fn such that
Fn “ A ˚ xgy by taking a circuit in the image of pG˚ which contains G ´ Gi

exactly once.
Suppose now that G ´ Gi is a lollipop extension. By Assertion p2q, the

circuit C in G ´ Gi consists in edges in GPG. Thus, either G
˚ is obtained

from p´1
G˚ pGiq by adding a lollipop extension orG˚ is obtained from p´1

G˚ pGiq

by adding a connected component which is homotopy equivalent to a circle.
If G˚ is obtained from p´1

G˚ pGiq by adding a lollipop extension, the second

case of Assertion p7q occurs. If G˚ is obtained from p´1
G˚ pGiq by adding a

connected component which is homotopy equivalent to a circle, the third
case of Assertion p7q occurs. The proof of the fact about HNN extension
is similar to the proof for the one-edge extension case. This concludes the
proof. �

Remark 5.19. By Lemma 5.18(1), G ´ Gi is either a topological arc or it retracts
onto a circuit C and there exists exactly one topological arc that connects C and
Gi. In the second case, we will adopt the convention that G ´ Gi “ C, so that, by
Lemma 5.18(2), in both cases of Lemma 5.18(1), every edge in G ´ Gi is in GPG.

Lemma 5.20. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 5.15.

(1) Let U be an open neighborhood of Δ`pφq, let V be an open neighborhood of
KPGpφq (see Definition 3.26). There exist N P N

˚ and δ P p0, 1q such that
for every m ě 1 and every w P Fn with gpγwq ą δ and ηrws R V , we have

pφN
q
m

pηrwsq P U.

(2) Suppose that φ is an almost atoroidal outer automorphism relative to F .
Let F ď F1 ď F2 be an associated sequence of free factor systems.

For every ε ą 0 and L ą 0, there exist δ P p0, 1q and M ą 0 such that, for
every n ě M , for every nonperipheral element w P Fn with gpγwq ą δ, there
exists rμws P Δ`pφq such that for every reduced edge path γ P PpF ^Apφqq

of length at most L contained in Gi:
ˇ

ˇ

ˇ

ˇ

xγ, rfnpγwqsy

�expprfnpγwqsq
´

xγ, rμwsqy

‖rμws‖F1

ˇ

ˇ

ˇ

ˇ

ă ε.

Proof. The proof is similar to the one of [LU2, Lemma 6.1]. By Lemma 5.3 and
Lemma 5.16(1), up to passing to a power of f , we may assume that for every w P Fn
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such that gpγwq ě
1
2 , and every n P N

˚, we have gprfnpγwqsq ě gpγwq and

(8) �expprfn
pγwqsq ě TELpn, γq ě p3n ´ 2Cqgpγwq�exppγwq.

Let N P N
˚ be such that 3N ą 2C. Let λ ą 0 be such that, for every edge

e P 	EG and every n P N
˚, we have

(9) �prfn
peqsq ď λn.

By Lemma 3.30, a sequence prνmsqmPN of projective relative currents tends to
a projective current rνs P PCurrpFn,F ^ Apφqq if for every ε ą 0 and R ą 0
there exists M P N

˚ such that, for every m ě M and every reduced edge path
γ P PpF ^ Apφqq with �pγq ď R, we have

(10)

ˇ

ˇ

ˇ

ˇ

xγ, νy

‖ν‖F
´

xγ, νmy

‖νm‖F

ˇ

ˇ

ˇ

ˇ

ă ε.

For every F-expanding splitting unit σ, we denote by μpσq the corresponding
current given by Proposition 4.4. By Lemma 4.8, we have ‖μpσq‖F “ 1. Since
Δ`pφq is compact by Lemma 4.7, there exist ε, R ą 0 such that for every m ě M ,
if there exists ν P Δ`pφq such that νm, ν, R, ε satisfy Equation (10), then νm P U .
Since there are only finitely many expanding splitting units of positive exponential
length and finitely many edge paths γ P PpF ^ Apφqq such that �pγq ď R, there
exists M0 P N

˚ such that for every m ě M0, for every expanding splitting unit σ
and for every reduced edge path γ P PpF ^ Apφqq with �pγq ď R, we have:

ˇ

ˇ

ˇ

ˇ

xγ, rfmpσqsy

�F prfmpσqsq
´ xγ, μpσqy

ˇ

ˇ

ˇ

ˇ

ă
ε

6
.

Recall that xγ, μpσqy is equal to μpσqpCpγqq by definition of the number of occur-
rences of γ in μpσq. Let γ1 be a reduced edge path in G. By Lemma 5.6, for every

reduced edge path σ of G contained in γ1, we have �F pσq ě �γ
1

F pσq ě �F pσq ´ 2C.
Hence there exists M1 P N

˚ such that for every m ě M1, for every expanding split-
ting unit σ, for every edge path γ1 containing σ as a splitting unit and for every
reduced edge path γ P PpF ^ Apφqq with �pγq ď R, we have:

(11)

ˇ

ˇ

ˇ

ˇ

ˇ

xγ, rfmpσqsy

�
rfmpγ1qs

F prfmpσqsq
´ xγ, μpσqy

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

6
.

Recall the definition of the continuous function Ψ0 : CurrpFn,F ^ Apφqq Ñ R

given above Definition 3.26. Recall that, by Lemma 3.28(3), for every current
μ P CurrpFn,F ^ Apφqq, we have ‖μ‖F ą 0. Let

Ψ: CurrpFn,F ^ Apφqq Ñ R,

rνs ÞÑ
Ψ0pνq

‖ν‖F
.

Since Ψ is continuous and since PCurrpFn,F ^ Apφqq ´ V is compact, there exists
s ą 0 such that for every ν P PCurrpFn,F ^ Apφqq ´ V , we have:

Ψprνsq ě s.

In particular, by Lemma 3.27, for every nonperipheral element w P Fn such that
ηrws R V , we have

(12)
�exppγwq

�F pγwq
“

Ψ0pηrwsq

‖ηrws‖F
“ Ψprηrwssq ě s.
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Now let w P Fn be a nonperipheral element such that gpγwq ě
1
2 and ηrws R

V . Let γw “ α0β1α1 . . . αkβk be an optimal splitting of γw, where for every i P

t0, . . . , ku, the path αi is an incomplete factor of γw and for every i P t1, . . . , ku, the
path βi is a complete factor of γ. Using this optimal splitting, we construct another
decomposition of γw, which is not necessarily a splitting of γw, but is well-adapted
for our considerations.

Since concatenations of paths in GPG and in NPG have zero exponential length
by Lemma 3.18, we change the decomposition in such a way that every subpath of γw
which is a concatenation of paths in GPG and inNPG is in some αi for i P t1, . . . , ku.
In particular, for every i P t1, . . . , ku, the exponential lengths of βi and αi are equal
to their exponential lengths relative to γw. Let i P t0, . . . , ku. The path αi has a

decomposition αi “ α
p1q

i α
p11

q

i . . . α
pkiq

i α
pk1

iq

i where, for every j P t1, . . . , kiu, the path

α
pjq

i is a concatenation of paths in GPG and NPG and, for every j P t1, . . . , kiu, the

path α
pj1

q

i is a path in G ´ GPG such that every edge of α
pj1

q

i either has positive
exponential length relative to γw or is in a zero stratum.

Note that, by Proposition 2.5(4), for every j P t1, . . . , kiu and every maximal

subpath τ of α
pj1

q

i contained in some zero stratum, the path τ is adjacent to a path
in γw of positive exponential length. Suppose that τ is nontrivial. Since no zero
path is adjacent to a path which is a concatenation of paths in GPG and NPG by

Lemma 2.9 and Proposition 2.5(4), either αi “ τ or �exppα
pj1

q

i q ą 0. In the first
case, we have �pτ q ď C by definition of C. Thus, there exists n P N

˚ such that
rfnpτ qs is completely split. Therefore, if the first case occurs, we may suppose, up
to taking a power of f , that αi is completely split and is a splitting unit of some
βj .

Let i P t1, . . . , ku. Since βi does not contain splitting units which are concatena-

tion of paths in GPG and NPG, every splitting unit of βi is an edge in G ´ G1
PG or a

maximal taken connecting path in a zero stratum. By Lemma 3.22, every splitting
unit of βi which is an edge in G ´ G1

PG is expanding.
Let σ1 be a splitting unit of βi which is a maximal taken connecting path in

a zero stratum and which is not expanding. Let n P N
˚ be such that rfnpσ1qs is

completely split. By Lemma 3.22 and Lemma 3.21, the path rfnpσ1qs does not
contain splitting units which are edges in G ´ GPG. If rfnpσ1qs contains a splitting
unit which is contained in a zero stratum, then an inductive argument shows that,
up to taking a larger n, the path rfnpσ1qs is a concatenation of paths in GPG and
NPG. Thus, the F-length of σ1 grows at most polynomially fast under iterates of
f .

Combining all the above remarks, we see that γw has a decomposition

γw “ a0b0a1c
p1q

1 c
p1q

2 . . . c
p1q

k1
a2b2 . . . atc

ptq
1 c

ptq
2 . . . c

ptq
kt
at`1bt`1at`2,

where:

(a) for every i P t0, . . . , t ` 2u, the path ai is either possibly trivial, a concate-
nation of paths in GPG and in NPG or a maximal taken connecting path
whose F-length grows at most polynomially fast;

(b) for every i P t0, . . . , t ` 1u, the path bi is a subpath of positive exponential
length relative to γw of an incomplete path of γw such that every edge of bi
either has positive exponential length relative to γw or is in a zero stratum;
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(c) for every i P t1, . . . , tu and every j P t1, . . . , kiu, the path c
piq
j is a (possibly

trivial) expanding splitting unit of a complete factor of γw.

Recall that the length of every path in a zero stratum is bounded by C. Thus,
for every i P t0, . . . , t ` 1u, we have

�pbiq ď C�exppbiq.

We claim that the exponential length relative to γw of one of the edges at the
concatenation point of two consecutive nontrivial paths of the form aibi, biai`1,

aic
piq
1 , c

piq
j c

piq
j`1 or c

piq
ki
ai`1 is positive. Indeed, for every i P t1, . . . , tu (resp. i P

t0, . . . , t ` 1u) and every j P t1, . . . , kiu, the path c
piq
j (resp. bi) either has positive

exponential length relative to γw or is contained in a zero stratum. Note that by
hypothesis, for every i P t0, . . . , t`1u, the path bi is not contained in a zero stratum.
Moreover, if bi is adjacent to a path ai, then the first edge of bi is not in a zero
stratum by Proposition 2.5(4), Lemma 2.9 and the fact that the paths in zero strata
that we consider in our subdivision are maximal. Hence one of the edges at the
concatenation point of every path of the form aibi, biai`1 has positive exponential
length relative to γw.

By maximality of the splitting units contained in zero strata, one of the splitting

units in a path c
piq
j c

piq
j`1 is an edge in G ´ G1

PG, hence has positive exponential length
relative to γw. Since paths in zero strata and concatenations of paths in GPG and
NPG cannot be adjacent by Proposition 2.5(4) and Lemma 2.9, paths of the form

aic
piq
1 and c

piq
ki
ai`1 have positive exponential length since in this case c

piq
1 or c

piq
ki

is

an edge in G ´ G1
PG. This proves the claim.

Remark that, by construction and the definition of goodness of a reduced path,
we have

t
ÿ

i“1

ki
ÿ

j“1

�exppc
piq
j q “ �exppγwqgpγwq.

Note that the length of reduced iterates of edges in GPG grows at most polyno-
mially fast, hence the F-length of reduced iterates of edges in GPG grows at most
polynomially fast. Let C 1 ą 0 and k P N

˚ be such that, for every splitting unit
σ1 which is either an edge in GPG or a maximal taken connecting path in a zero
stratum whose F-length grows at most polynomially fast, and every m P N

˚, we
have:

�F prfm
pσ1

qsq ď C 1mk�F pσ1
q.

The constants C 1 and k exist by the claim in Proposition 3.14.
Let i P t0, . . . , t ` 2u and let ai “ α0 . . . α�i be a decomposition of ai such that,

for every j P t0, . . . , �iu, the path α�i is either an edge in GPG, a path in Nmax
PG paiq

or a maximal taken connecting path in a zero stratum whose F-length grows at
most polynomially fast. By Lemma 3.17, for every m P N

˚, we have

�F prfm
paiqsq ď

�i
ÿ

j“0

�F prfm
pαjqsq ď C 1mk

�i
ÿ

j“1

�F pαjq “ C 1mk�F paiq,

where the last equality follows from the fact that a path in NPG is contained in
some subpath αj by hypothesis. In particular,

(13)
t`2
ÿ

i“0

�F prfm
paiqsq ď C 1mk

t`2
ÿ

i“0

�F paiq ď C 1�F pγwqmk,
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where the last inequality follows from the fact that, by hypothesis, every path in
Nmax

PG pγq is contained in some ai. Thus, if gpγwq ě
1
2 , there exists C2 ą 0 such

that, for every n ě N , by Equations (8), (13) and (12), we have:
řt`2

i“0 �F prfnpaiqsq

�expprfnpγwqsq
ď

C 1�F pγwqnk

p3n ´ 2Cqgpγwq�exppγwq

ď
C 1 1

s �exppγwqnk

p3n ´ 2Cqgpγwq�exppγwq

ď C2 nk

p3n ´ 2Cqgpγwq
.

Up to taking a larger N P N
˚, we may suppose that, for every n ě N , we have

(14) C2 nk

p3n ´ 2Cqgpγwq
ď

ε

48gpγwqR
.

Recall that, for every reduced edge path γ of G, we have

�exppγq ď �F pγq.

Thus, for every n ě N and every nonperipheral element w P Fn such that
gpγwq ě

1
2 , by Equation (8), we have

2R�exppγwq

�F prfnpγwqsq
ď

2R�exppγwq

p3n ´ 2Cqgpγwq�exppγwq
“

2R

p3n ´ 2Cqgpγwq
.

Up to taking a larger N , we may assume that for every n ě N and every w P Fn

such that gpγwq ě
1
2 , we have:

(15)
2R�exppγwq

�F prfnpγwqsq
ď

2R

p3n ´ 2Cqgpγwq
ď

ε

12gpγwq
.

Let

δ “ max

#

1

1 `
ε
6

,
1

1 `
2RCελN

p3N ´2Cq6

,
1

2

+

.

Thus, in order to prove the first assertion of Lemma 5.20, it suffices to show that
for every m ě N and every w P Fn such that gpγwq ą δ and ηrws R V , the
projective current rνms “ φmprηwsq is close to an element rνs in Δ`pφq in the sense
of Equation (10). Since the goodness function is monotone by Remark 5.15, it
suffices to prove it for m “ N .

Let w P Fn such that gpγwq ą δ and ηrws R V . By Equation (14) and the fact

that gpγwq ě δ ě
1
2 , we have

řt`2
i“0 �F prfN paiqsq

�F prfN pγwqsq
ď

řt`2
i“0 �F prfN paiqsq

�expprfN pγwqsq

ď C2 Nk

p3N ´ 2Cqgpγwq
ď C2 Nk

p3N ´ 2Cqδ
ď

ε

24R
.(16)

Moreover, by Equation (15) and the fact that gpγwq ě δ ě
1
2 , we have

(17)
2R�exppγwq

�F prfN pγwqsq
ď

ε

6
.
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Note that, for every w P Fn such that gpγwq ą δ and ηrws R V , we have:

2RCλN p1 ´ gpγwqq�exppγwq

p3N ´ 2Cqgpγwq�exppγwq
“ 2RC

λN

3N ´ 2C

ˆ

1

gpγwq
´ 1

˙

ď 2RC
λN

3N ´ 2C

ˆ

1

δ
´ 1

˙

ď
ε

6
,(18)

where the last inequality follows from the definition of δ.
Let γ P PpF ^Apφqq be of length at most R. By the triangle inequality, we have

(19)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@

γ, rfN pγwqs
D

�F prfN pγwqsq
´

A

γ,
řt

i“1

řki

j“1 �
rfN

pγwqs

F prfN pc
piq
j qsqμpc

piq
j q

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@

γ, rfN pγwqs
D

�F prfN pγwqsq
´

t
ÿ

i“1

ki
ÿ

j“1

A

γ, rfN pc
piq
j qs

E

�F prfN pγwqsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

ki
ÿ

j“1

A

γ, rfN pc
piq
j qs

E

�F prfN pγwqsq
´

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

´

A

γ,
řt

i“1

řki

j“1 �
rfN

pγwqs

F prfN pc
piq
j qsqμpc

piq
j q

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Note that an occurrence of γ or γ´1 in rfN pγwqs might happen either in some

rfN pc
piq
j qs or in some rfN paiqs or in some rfN pbiqs or it might cross over the con-

catenation points. Recall that one of the edges at the concatenation point of paths

of the form aibi, biai`1, aic
piq
1 , c

piq
j c

piq
j`1 or c

piq
ki
ai`1 has positive exponential length

relative to γw. Recall also that the length of γ is at most equal to R. Thus the
number of such crossings is at most 2R�exppγwq. Thus:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@

γ, rfN pγwqs
D

�F prfN pγwqsq
´

t
ÿ

i“1

ki
ÿ

j“1

A

γ, rfN pc
piq
j qs

E

�F prfN pγwqsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2R�exppγwq

�F prfN pγwqsq
`

t`2
ÿ

i“0

@

γ, rfN paiqs
D

�F prfN pγwqsq
`

t`1
ÿ

i“0

@

γ, rfN pbiqs
D

�F prfN pγwqsq
.

Since γ is not contained in a concatenation of paths in GPG,F and NPG,F ,
if γ is contained in rfN paiqs for i P t1, . . . , t ` 1u, then γ contains an edge of
rfN paiqs of positive F-length relative to rfN paiqs. Hence we have

@

γ, rfN paiqs
D

ď

2�F prfN paiqsq. By Equations (17) and (16) with n “ N , we have

2R�exppγwq

�F prfN pγwqsq
`

t`2
ÿ

i“0

@

γ, rfN paiqs
D

�F prfN pγwqsq
ď

2R�exppγwq

�F prfN pγwqsq
`

2
řt`1

i“0 �F prfN paiqsq

�F prfN pγwqsq
ď

ε

4
.
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Moreover, since for every i P t0, . . . , t ` 1u, we have �pbiq ď C�exppbiq and by
Equations (8), (12) and (18), we see that:

t`1
ř

i“0

xγ,rfN pbiqsy
�F prfN pγwqsq

ď

t`1
ř

i“0

�prfN pbiqsq

�F prfN pγwqsq
ď

t`1
ř

i“0

CλN �exppbiq
p3N´2Cqgpγwq�exppγwq

ď
CλN p1´gpγwqq�exppγwq

p3N´2Cqgpγwq�exppγwq
ď

ε
6
.

For the third term of Inequality (19), note that, since γ P PpF ^Apφqq, it is not
contained in a concatenation of paths in GPG,F and in NPG,F . Therefore, if c is a
reduced edge path of rfN pγwqs, an occurrence of γ always appears with an edge e

of c such that �
rfN

pγwqs

F peq “ 1. Since �pγq ď R, such an edge e can be crossed by
at most R occurrences of γ in c. Thus, for every reduced edge path c in rfN pγwqs,

we have xγ, cy ď 2R�
rfN

pγwqs

F pcq.
Hence we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfpc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2R.

Since

�F prfN
pγwqsq “

t
ÿ

i“1

ki
ÿ

j“1

�
rfN

pγwqs

F prfN
pc

piq
j qsq `

t`1
ÿ

i“0

�
rfN

pγwqs

F prfN
paibiai`1qsq,

using Lemma 5.3 and Lemma 5.6 for the last inequality we have:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

ki
ÿ

j“1

A

γ, rfN pc
piq
j qs

E

�F prfN pγwqsq
´

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

´

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E¯

´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfpc
piq
j qsq

¯

ˆ

´

řt`1
i“0 �

rfN
pγwqs

F prfpaibiai`1qsq

¯

´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq `

řt`1
i“0 �

rfN pγwqs

F prfN paibiai`1qsq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E¯ ´

řt`1
i“0 �

rfN
pγwqs

F prfpaibiai`1qsq

¯

´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfpc
piq
j qsq

¯ ´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

řt
i“1

řki

j“1

A

γ, rfN pc
piq
j qs

E¯ ´

řt`1
i“0 �F prfN pbiqsq ` 2

řt`2
i“0 �F prfN paiqsq

¯

´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfpc
piq
j qsq

¯ ´

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2R

ˇ

ˇ

ˇ

ˇ

ˇ

řt`1
i“0 �F prfN pbiqsq ` 2

řt`2
i“0 �F prfN paiqsq

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Recall that we have

t
ÿ

i“1

ki
ÿ

j“1

�exppc
piq
j q “ �exppγwqgpγwq
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and, for every i P t1, . . . , tu and every j P t1, . . . , kiu, we have either �exppc
piq
j q “ 1

or �exppc
piq
j q “ 0. Hence, we have:

řt
i“1

řki

j“1 �
rfN

pγwqs

F prfN pc
piq
j qsq ě

řt
i“1

řki

j“1p�F prfN pc
piq
j qsq ´ 2Cq

ě
řt

i“1

řki

j“1p3N ´ 2Cq

ě p3N ´ 2Cqgpγwq�exppγwq,

where the first inequality follows from Lemma 5.6 and the second inequality follows
from the fact that f is 3K-expanding and K ě 1. Thus, we have

2R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řt`1
i“0 �F prfN pbiqsq`2

t`2
ř

i“0
�F prfN paiqsq

řt
i“1

řki
j“1 �

rfN pγwqs

F prfN pc
piq

j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2R
ˇ

ˇ

ˇ

řt`1
i“0 �F prfN pbiqsq

p3N´2Cqgpγwq�exppγwq

ˇ

ˇ

ˇ
` 2R

ˇ

ˇ

ˇ

2
řt`2

i“0 �F prfN paiqsq

p3N´2Cqδ�exppγwq

ˇ

ˇ

ˇ
.

By Equation (9), we have

t`1
ÿ

i“0

�F prfN
pbiqsq ď

t`1
ÿ

i“0

�prfN
pbiqsq ď λN

t`1
ÿ

i“0

�pbiq

ď CλN
t`1
ÿ

i“0

�exppbiq ď CλN�exppγwqp1 ´ gpγwqq.

Hence we have:

2R
ˇ

ˇ

ˇ

řt`1
i“0 �F prfN

pbiqsq

p3N´2Cqgpγwq�exppγwq

ˇ

ˇ

ˇ
` 2R

ˇ

ˇ

ˇ

2
řt`2

i“0 �F prfN
paiqsq

p3n´2Cqδ�exppγwq

ˇ

ˇ

ˇ

ď 2R
ˇ

ˇ

ˇ

CλN
p1´gpγwqq�exppγwq

p3N ´2Cqgpγwq�exppγwq

ˇ

ˇ

ˇ
` 2R

ˇ

ˇ

ˇ

2C1�F pγwqnk

p3N ´2Cqδ�exppγwq

ˇ

ˇ

ˇ
by Equation (13)

ď 2R
ˇ

ˇ

ˇ

CλN
p1´gpγwqq�exppγwq

p3N ´2Cqgpγwq�exppγwq

ˇ

ˇ

ˇ
` 2R

ˇ

ˇ

ˇ

2C2nk

p3N ´2Cqδ

ˇ

ˇ

ˇ

ď
2ε
6 by Equations (16) and (18).

Finally, using Equation (11) and the fact that for every i P t1, . . . , tu and every

j P t1, . . . , kiu, the splitting unit c
piq
j is expanding, we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řt
i“1

řki
j“1

A

γ,rfN
pc

piq
j qs

E

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN pc

piq
j qsq

´

B

γ,
řt

i“1

řki
j“1 �

rfN pγwqs
F prfN

pc
piq
j qsqμpc

piq
j q

F

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN pc

piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN

pc
piq
j qsq

¨

˝

xγ,rfN pcpiq
j

qsy

�
rfN pγwqs
F prfN pcpiq

j
qsq

´

A

γ,μpc
piq
j q

E

˛

‚

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN pc

piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε
6

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN

pc
piq
j qsq

řt
i“1

řki
j“1 �

rfN pγwqs
F prfN pc

piq
j qsq

“
ε
6 .

Combining all inequalities, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@

γ, rfN pγwqs
D

�F prfN pγwqsq
´

A

γ,
řt

i“1

řki

j“1 �
rfN

pγwqs

F prfN pc
piq
j qsqμpc

piq
j q

E

řt
i“1

řki

j“1 �
rfN pγwqs

F prfN pc
piq
j qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

4
`

ε

6
`

2ε

6
`

ε

6
ď ε.
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This concludes the proof of Assertion p1q of Lemma 5.20 since for every i P t1, . . . , tu

and every j P t1, . . . , kiu, we have μpc
piq
j q P Δ`pφq.

The proof of Assertion p2q is the same one as the proof of Assertion p1q, replacing
�F and �γF by �exp and �γexp, adding the following arguments. Let γ and w P Fn be
as in Assertion p2q. Then γ is not contained in a concatenation of paths in GPG

and in NPG by Lemma 5.18(3). If

γw “ a0b0a1c
p1q

1 c
p1q

2 . . . c
p1q

k1
a2b2 . . . atc

ptq
1 c

ptq
2 . . . c

ptq
kt
at`1bt`1at`2

is the same decomposition of γw as in the proof of Assertion p1q, then for every
m P N and every i P t1, . . . , t ` 2u, the path γ is not contained in rfmpaiqs by
Lemma 3.10. Similarly, for every m P N

˚ and every i P t1, . . . , t ` 2u, we have
�expprfmpaiqsq “ 0. Hence we do not need Equation (16). By Lemma 5.18(5), we
have

�exppγq “ �F1
pγq.

Moreover, by Lemma 5.18(5), for every current rμs P Δ`pφq, we have Ψ0pμq “

‖μ‖F1
. Replacing �F and �γF by �exp and �γexp in the equations in the proof of

Assertion p1q concludes the proof. �

For Lemma 5.21, we need to compute the exponential length of incomplete seg-
ments in a circuit γ in G. Let �exppIncpγqq be the sum of the exponential lengths of
the incomplete segments of an optimal splitting of γ. Let �γexppIncpγqq be the sum
of the exponential lengths relative to γ of the incomplete segments of an optimal
splitting of γ. Note that �γexppIncpγqq do not depend on the choice of an optimal
splitting. Note that

�γexppIncpγqq “ p1 ´ gpγqq�exppγq ď �exppγq.

Lemma 5.21. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 5.15. Let
δ P p0, 1q, and let R ą 1. There exists n0 P N

˚ such that for every n ě n0 and
every nonperipheral element w P Fn such that ηrws R KPGpφq, we either have

gprfn
pγwqsq ě δ

or

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

10C

R
�γw
exppIncpγwqq

and �expprfn
pγwqsq ď

10C

p1 ´ δqR
�exppγwq.

Proof. Let w P Fn be a nonperipheral element such that ηrws R KPGpφq. Suppose
that n P N

˚ is such that gprfnpγwqsq ă δ. Assuming for now that we have proved
that

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

10C

R
�γw
exppIncpγwqq,

we deduce that �expprfnpγwqsq ď
10C

p1´δqR �exppγwq. Indeed, we have

�rfn
pγqs

exp pIncprfn
pγqsqq “ p1 ´ gprfn

pγqsqq�expprfn
pγqsq ě p1 ´ δq�expprfn

pγqsq.

Thus we have

�expprfnpγwqsq ď
1

1´δ �
rfnpγwqs
exp pIncprfnpγwqsqq ď

10C
p1´δqR�

γw
exppIncpγwqq

ď
10C

p1´δqR�exppγwq.
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Therefore, it suffices to prove that there exists n0 P N
˚ such that for every

n ě n0, if gprfnpγwqsq ă δ, then

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

10C

R
�γw
exppIncpγwqq.

Consider an optimal splitting γw “ α1
0β

1
1α

1
1 . . . α

1
mβ1

m, where for every i P t0, . . . ,mu,
the path α1

i is an incomplete factor of γw and for every i P t0, . . . ,mu, the path β1
i

is a PG-relative complete factor of γw. We can modify the splitting of γw in a new
splitting γw “ α0β1α1 . . . βkαk where:

(i) for every i P t0, . . . , ku, the path αi is a concatenation of incomplete factors
and complete factors of zero exponential length relative to γw of the old
splitting;

(ii) for every i P t1, . . . , ku, the path βi is a complete factor of positive expo-
nential length relative to γw of the old splitting.

In the remainder of the proof, we still refer to the paths αi as incomplete factors.
By the last claim of Remark 5.15, we may suppose that gpγwq ă δ, that is:

(20) �γw
exppIncpγwqq “

k
ÿ

i“0

�γw
exppαiq ě p1 ´ δq�exppγwq.

Claim 1. For every i P t0, . . . , ku and every m P N
˚, we have

�rfm
pγwqs

exp pIncprfm
pαiqsqq ď 24C2�γw

exppαiq.

Similarly, for every m P N
˚, we have

�rfm
pγwqs

exp pIncprfm
pγwqsqq ď 24C2�exppγwq.

Proof. Since a reduced iterate of a complete factor is complete, every incomplete
factor of rfmpγwqs is contained in a reduced iterate of some αi. Thus, we have

�rfm
pγwqs

exp pIncprfm
pγwqsqq ď

k
ÿ

i“0

�rfm
pγwqs

exp pIncprfm
pαiqsqq.

Hence it suffices to prove the result for the paths αi with i P t0, . . . , ku. By Property
(ii) for every i P t1, . . . , ku, the path βi has positive exponential length relative to
γw. Therefore, if there exists γ1 P Nmax

PG pγwq such that αi intersects γ
1 nontrivially,

then γ1 is contained in βiαiβi`1. In particular, Lemma 5.13 applies and for every
i P t0, . . . , ku, if �γw

exppαiq “ 0, then �exppαiq “ 0.
Let i P t0, . . . , ku. Suppose first that �γw

exppαiq “ 0. By the above, we have
�exppαiq “ 0. By Lemma 5.12, there exists N P N

˚ such that for every m ě N ,
such that the total exponential length of incomplete factors in any optimal splitting
of rfmpαiqs is equal to 0. Hence for every m ě N , the path rfmpαiqs is PG-relative
completely split. Up to taking a power of f , we may assume that N “ 1. So this
concludes the proof of the claim in the case when �γw

exppαiq “ 0.
So we may assume that �γw

exppαiq ą 0. By Lemma 5.12, for everym P N
˚, the total

exponential length of incomplete factors in rfmpαiqs is at most equal to 8C�exppαiq.
By Lemma 5.6, for every i P t1, . . . , ku, we have

�exppαiq ď �γw
exppαiq ` 2C ď 3C�γw

exppαiq.

Hence by Lemma 5.6 again, we have

�rfm
pγwqs

exp pIncprfm
pαiqsqq ď �exppIncprfm

pαiqsqq ď 24C2�γw
exppαiq.
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This proves the claim. �

Let Λγw
be the set consisting of all incomplete factors αi of γw whose exponential

length relative to γw is at least equal to p3.108qR6C12 ` 1. Let Λ1
γw

be the set con-
sisting of all incomplete factors αi of γw which are not in Λγw

. Let �γw
exppΛγw

q (resp.
�γw
exppΛ1

γw
q) be the sum of the exponential lengths relative to γw of all incomplete

factors of γ that belongs to Λγw
(resp. Λ1

γw
). We distinguish between two cases,

according to the proportion of �γw
exppΛγw

q in the exponential length relative to γw of
incomplete factors in γw.

Case 1. Suppose that
�γw
exppΛγw

q

�γw
exppIncpγwqq

ă
1

p24C2Rq2
.

This implies that

(21)
�γw
exppΛ1

γw
q

�γw
exppIncpγwqq

ě
p24C2Rq2 ´ 1

p24C2Rq2
.

Note that, by Lemma 5.6, every path in Λ1
γw

has exponential length at most

equal to p3.108qC12R6 ` 1 ` 2C. By Lemma 5.11, there exists n0 P N
˚ such that,

for every edge path β of exponential length at most equal to p3.108qR6C12 `1`2C
and every n ě n0 either rfnpβqs is a concatenation of paths in GPG and in NPG or
rfn0pβqs contains a complete factor of exponential length at least equal to 10C. By
Lemma 5.6, in the second case, the path rfn0pβqs has a complete factor of positive
exponential length relative to rfn0pβqs.

Let Γγw
be the set consisting of all incomplete paths αi of γw such that αi P Λ1

γw

and rfn0pαiqs is a concatenation of paths in GPG and in NPG. Let Γ1
γw

be the
set consisting in all incomplete paths αi of γw such that αi P Λ1

γw
and rfn0pαiqs

has at least one complete factor of positive exponential length relative to rfn0pαiqs.
Note that Λ1

γw
“ Γγw

Y Γ1
γw

. Let �γw
exppΓγw

q (resp. �γw
exppΓ1

γw
q) be the sum of the

exponential lengths relative to γw of paths in Γγw
(resp. Γ1

γw
).

Subcase 1. Suppose that

�γw
exppΓγw

q

�γw
exppΛ1

γw
q

ě
24C2R

24C2R ` 1
.

Then

�γw
exppΓγw

q ě
24C2R

24C2R ` 1
�γw
exppΛ1

γw
q ě

24C2R ´ 1

24C2R
�γw
exppIncpγwqq.

Note that, for every n ě n0 and every path αi P Γγw
, we have �expprfnpαiqsq “ 0

by Lemma 3.18. By Claim 1, for every path αi such that αi P Λ1
γw

and αi R Γγw
,

and for every n P N
˚, the total exponential length of incomplete factors in rfnpαiqs

relative to rfnpαiqs is at most equal to 24C2�γw
exppαiq. Recall that, by Equation (20),

we have �γw
exppIncpγwqq “

ř

αiPΛγw YΛ1
γw

�γw
exppαiq. Thus, for every n ě n0, we have:

�
rfn

pγwqs
exp pIncprfnpγwqsqq ď

ř

αiPΛγw YΛ1
γw

�
rfn

pγwqs
exp pIncprfnpαiqsqq

ď
ř

αiPΛγw YpΛ1
γw

´Γγw q

24C2�γw
exppαiq

ď 24C2�γw
exppIncpγwqq ´ 24C2 24C2R´1

24C2R �γw
exppIncpγwqq

ď
1
R�γw

exppIncpγwqq.
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This concludes the proof of Lemma 5.21 when Subcase 1 occurs.

Subcase 2. Suppose that

�exppΓγw
q

�exppΛ1
γw

q
ă

24C2R

24C2R ` 1
.

Note that the assumption of Subcase 2 and Equation (21) imply that

�γw
exppΓ1

γw
q ě

1

24C2R ` 1
�γw
exppΛ1

γw
q ě

p24C2Rq2 ´ 1

p24C2Rq2

1

24C2R ` 1
�γw
exppIncpγwqq.

Since every path in Γ1
γw

has exponential length at most equal to p3.108qR6C12 `

1 ` 2C, by Lemma 5.7, up to taking a larger n0, for every path αi P Γ1
γw

such
that �exppαiq ą 0 and every n ě n0, the exponential length of a complete factor in
rfnpαiqs is at least equal to 3n´n0�exppαiq. Moreover, for every path αi P Γ1

γw
such

that �exppαiq “ 0 and every n ě n0, the exponential length of a complete factor
in rfnpαiqs is at least equal to 3n´n0 . By Lemma 5.6, for every n ě n0 and every
path αi P Γ1

γw
such that �exppαiq ą 0, the exponential length relative to rfnpαiqs of

a complete factor in rfnpαiqs is at least equal to

3n´n0�exppαiq ´ 2C ě p3n´n0 ´ 2Cq�exppαiq.

Thus, for every n ě n0 and every path αi P Γ1
γw

, the exponential length relative to
rfnpαiqs of a complete factor in rfnpαiqs is at least equal to

p3n´n0 ´ 2Cq�exppαiq.

Therefore, for every n ě n0, the sum of the exponential lengths of complete factors
in rfnpγwqs is at least equal to
(22)

p3n´n0 ´ 2Cq�γw
exppΓ1

γw
q ě p3n´n0 ´ 2Cq

p24C2Rq2 ´ 1

p24C2Rq2

1

24C2R ` 1
�γw
exppIncpγwqq.

By Claim 1, for every n P N
˚, we have �

rfn
pγwqs

exp pIncprfnpγwqsqq ď

24C2�γw
exppIncpγwqq. Recall that the goodness function is a supremum over split-

tings of the considered path. Thus, by Equation (22) for every n ě n0, since the
maps t ÞÑ

t
t`a are nonincreasing for every a ą 0, we have

gprfn
pγwqsq

ě
p3n´n0 ´ 2Cq

p24C2Rq
2

´1
p24C2Rq2

1
24C2R`1�

γw
exppIncpγwqq

p3n´n0 ´ 2Cq
p24C2Rq2´1

p24C2Rq2
1

24C2R`1�
γw
exppIncpγwqq ` �

rfnpγwqs
exp pIncprfnpγwqsq

ě
p3n´n0 ´ 2Cq

p24C2Rq
2

´1
p24C2Rq2

1
24C2R`1�

γw
exppIncpγwqq

p3n´n0 ´ 2Cq
p24C2Rq2´1

p24C2Rq2
1

24C2R`1�
γw
exppIncpγwqq ` 24C2�γw

exppIncpγwqq

ě
p3n´n0 ´ 2Cq

p24C2Rq
2

´1
p24C2Rq2

1
24C2R`1

p3n´n0 ´ 2Cq
p24C2Rq2´1

p24C2Rq2
1

24C2R`1 ` 24C2
,

which goes to 1 as n goes to infinity. Hence there exists n1 P N which is independent
of γw, such that, for every path γw as in Subcase 2 and every n ě n1, we have:
gprfnpγwqsq ě δ. This concludes the proof of Lemma 5.21 when Case 1 occurs.
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Case 2. Suppose that, contrarily to Case 1, we have

�γw
exppΛγw

q

�γw
exppIncpγwqq

ě
1

p24C2Rq2
.

Let α P Λγw
and consider the decomposition of the reduced path α into maximal

subsegments αp1q . . . αpkαq of exponential length relative to γw equal to 2000R3C6,
except possibly the last one of exponential length relative to γw less than or equal
to 2000R3C6. Let

Λp1q
γw

“

!

αpjq
| α P Λγw

, j P t1, . . . , kαu, �γw
exppαpjq

q “ 2000R3C6
)

,

Λp2q
γw

“

!

αpjq
| α P Λγw

, j P t1, . . . , kαu, �γw
exppαpjq

q ă 2000R3C6
)

.

Note that, since for every α P Λγw
, we have �γw

exppαq ě p3.108qR6C12 ` 1, we see
that

(23) |Λp1q
γw

| ě 120000R3C6
|Λp2q

γw
|.

Note that every element in Λ
p1q
γw Y Λ

p2q
γw has exponential length at most equal to

2000R3C6`1`2C by Lemma 5.6. By Lemma 5.11, there exists M P N
˚ depending

only on f such that for every n ě M and every reduced edge path α of exponential
length at most equal to p3.108qR6C12 ` 1 ` 2C, either rfnpαqs is a concatenation
of paths in GPG and in NPG or the following hold

(a) there exists a complete factor of rfnpαqs whose exponential length is at
least equal to 10C;

(b) the exponential length of an incomplete factor of rfnpαqs is at most equal
to 8C.

This applies in particular to every element α P Λ
p1q
γw Y Λ

p2q
γw and to every element

α P Λ1
γw

. For every αpjq P Λ
p1q
γw and every n ě M , let αpj,nq be the (possibly

degenerate) subpath of rfnpαpjqqs contained in rfnpαqs. Let Λ
p3q
γw be the subset of

Λ
p1q
γw consisting of all αpjq P Λ

p1q
γw such that �exppαpj,Mqq ď 80C2, and let Λ

p4q
γw “

Λ
p1q
γw ´ Λ

p3q
γw .

Suppose first that

(24) |Λp4q
γw

| ą
1

30000R3C6
|Λp3q

γw
|.

Therefore, as |Λ
p1q
γw | “ |Λ

p3q
γw | ` |Λ

p4q
γw |, by Equation (23), we have

|Λp2q
γw

| ď
30001R3C6

120000R3C6
|Λp4q

γw
| “ K0|Λp4q

γw
|,

where K0 is a constant depending only on C and R. Note that Λγw
“ Λ

p2q
γw YΛ

p3q
γw Y

Λ
p4q
γw and for every j P t2, 3, 4u, every path in Λ

pjq
γw has exponential length at most

equal to 2000R3C6. Thus, we see that

�γw
exppΛγw

q ď 2000R3C6
p|Λp2q

γw
| ` |Λp3q

γw
| ` |Λp4q

γw
|q ď K 1

0|Λp4q
γw

|

for some constant K 1
0 depending only on C and R.

Recall that if αpjq P Λ
p4q
γw , then �exppαpj,Mqq ą 80C2. Suppose towards a con-

tradiction that rfM pαpjqqs is a concatenation of paths in GPG and in NPG. Since

αpj,Mq is a subpath of rfM pαpjqqs, we have �
rfM

pαpjq
qs

exp pαpj,Mqq “ 0. By Lemma 5.6,



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 245

we see that �exppαpj,Mqq ď �
rfM

pαpjq
qs

exp pαpj,Mqq ` 2C “ 2C, which leads to a contra-

diction. Hence rfM pαpjqqs satisfies Assertions (a) and (b).
Note that αpj,Mq is a subpath of rfM pαpjqqs. Since �exppαpj,Mqq ą 80C2, since

every incomplete factor of rfM pαpjqqs has exponential length at most equal to 8C by
(b) and since an incomplete factor of rfM pαpjqqs is followed by a complete factor of
rfM pαpjqqs, we see that αpj,Mq contains a subpath of a complete factor of rfM pαpjqqs.
Since �exppαpj,Mqq ą 80C2 and since every incomplete subpath of rfM pαpjqqs has

exponential length at most equal to 8C, the path αpj,Mq must contain a subpath
αpj,Mq

1
such that the total exponential length of complete factors of αpj,Mq

1
is at

least equal to 10C.

Let α
pj,Mq

0 be the minimal concatenation of splittings of a fixed optimal splittings

of rfmpαpjqqs which contains αpj,Mq
1
. Let τ

pj,Mq

1 and τ
pj,Mq

2 be paths such that

rfM pαpjqqs “ τ
pj,Mq

1 α
pj,Mq

0 τ
pj,Mq

2 .

By Lemma 5.8 applied twice (once with γ “ α
pj,Mq

0 τ
pj,Mq

2 rfM pαpj`1q . . . α
pkαk

q

k qs

and γ1 “ α
pj,Mq

0 and once with γ´1 “ rfM pα
p1q

1 . . . αpj´1qqsτ
pj,Mq

1 α
pj,Mq

0 and γ´1
1 “

α
pj,Mq

0 ), we see that αpj,Mq contains a complete factor of rfM pγwqs of exponential

length at least equal to 10C ´ 4C “ 6C. By Lemma 5.6, the path αpj,Mq contains
a complete factor of rfM pγwqs of exponential length relative to rfM pγwqs at least
equal to C. By Lemma 5.7 (with γ a complete factor contained in αpj,Mq), for

every n ě M and every αpjq P Λ
p4q
γw , the path αpj,nq contains a complete subpath

of rfnpγwqs of exponential length at least equal to 3n´MC. By Lemma 5.6, for

every n ě M and every αpjq P Λ
p4q
γw , the path αpj,nq contains a complete subpath of

rfnpγwqs of exponential length relative to rfnpγwqs at least equal to 3n´MC ´ 2C.
Hence for every n ě M , the sum of the exponential length relative to rfnpγwqs of

complete factors contained in rfnpγwqs is at least equal to p3n´MC ´ 2Cq|Λ
p4q
γw |.

By Claim 1, for every n ě M , we have

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď 24C2�γw

exppγwq ď 24C2 1

1 ´ δ
�γw
exppIncpγwqq,

where the last inequality holds by Equation (20). Using the above equations and
the assumptions of Case 2, we see that

�
rfn

pγwqs
exp pIncprfnpγwqsqq ď 24C2 1

1´δ �
γw
exppIncpγwqq

ď 24C2 1
1´δ p24C2Rq2�γw

exppΛγw
q

ď 24C2 1
1´δ p24C2Rq2K 1

0|Λ
p4q
γw | “ K1|Λ

p4q
γw |,

where K1 is a constant depending only on C, R and δ. Thus, since the goodness
function is a supremum over all splittings of the considered path, for every n ě M ,
we have:

gprfnpγwqsq ě
p3n´MC´2Cq|Λp4q

γw
|

p3n´MC´2Cq|Λ
p4q
γw |`�

rfnpγwqs
exp pIncprfnpαqsqq

ě
p3n´MC´2Cq|Λp4q

γw
|

p3n´MC´2Cq|Λ
p4q
γw |`K1|Λ

p4q
γw |

“
3n´MC´2C

3n´MC´2C`K1
,

which converges to 1 as n goes to infinity. Hence there exists M 1 P N
˚ depending

only on f such that for every n ě M , we have gprfnpγwqsq ě δ. This proves
Lemma 5.21 in this case.
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Suppose now that contrarily to Equation (24), we have

(25) |Λp4q
γw

| ď
1

30000R3C6
|Λp3q

γw
|.

Then

|Λp1q
γw

| “ |Λp3q
γw

| ` |Λp4q
γw

| ď

ˆ

1 `
1

30000R3C6

˙

|Λp3q
γw

|.

Claim 2. Let n ě M , let αpjq P Λ
p2q
γw Y Λ

p4q
γw . The total exponential length of

incomplete factors of rfnpγwqs contained in αpj,nq is at most equal to 12C�exppαpjqq.

Proof. Let σ be an incomplete factor of rfnpγwqs which is contained in αpj,Mq. Then
one of the following holds:

(i) the path σ is an incomplete factor of rfnpαpjqqs;
(ii) the path σ contains a subpath which is complete in rfnpαpjqqs.

Note that the total exponential length of incomplete factors of rfnpγwqs which
satisfy (i) is bounded by the total exponential length of incomplete factors of
rfnpαpjqqs. Thus, by Lemma 5.12, the total exponential length of incomplete factors
of rfnpγwqs which satisfy (i) is bounded by 8C�exppαpjqq.

Suppose that σ satisfies (ii). Let αpj,nq “ a1ca2 be a decomposition of αpj,nq

where for every i P t1, 2u, the total exponential length of complete factors of
rfnpαpjqqs contained in ai is equal to 2C. By Lemma 5.8 applied to

γ “ rfn
pαpjq

qsrfn
pαpj`1q . . . α

pkαk
q

k qs and γ1 “ rfn
pαpjq

qs

and to

γ´1
“ rfn

pα
p1q

1 . . . αpj´1q
qsrfn

pαpjq
qs and γ´1

1 “ rfn
pαpjq

qs,

the path σ is contained in either a1 or a2. For every t P t1, 2u, let at “

b
ptq
1 b

ptq1

1 . . . b
ptq
s b

ptq1

st be a decomposition of at where, for every i P t1, . . . , stu, the

path b
ptq
i is an incomplete factor of rfnpαpjqqs and for every i P t1, . . . , stu, the path

b
ptq1

i is a complete factor of rfnpαpjqqs contained in at.

Suppose that there exists i P t1, . . . , s1u such that b
p1q

1

i is a complete factor of

rfnpγwqs. We claim that for every j ě i ` 1, the path b
p1q

1

j is a complete factor

of rfnpγwqs. Indeed, let n1 ě n and let j ě i ` 1. Then there is no identification

between an initial segment of rfn1
pb

p1q
1

j qs and an initial segment of rfnpγwqs not

intersecting αpj,n1
q as otherwise there would exist identifications with rfn1

pb
p1q

1

i qs,

contradicting the fact that b
p1q

1

i is complete. Similarly, there is no identification

between a terminal segment of rfn1
pb

p1q
1

j qs and a terminal segment of rfnpγwqs not

intersecting αpj,n1
q as otherwise there would exist identifications with rfn1

pcqs. The

claim follows. Similarly, if there exists i P t1, . . . , s2u such that b
p2q

1

i is a complete

factor of rfnpγwqs, then for every j ă i, the path b
p2q

1

j is a complete factor of

rfnpγwqs.
Hence we may assume that for every t P t1, 2u and every s P t1, . . . , stu, the path

b
ptq1

s is incomplete in rfnpγwqs. Therefore, for every t P t1, 2u, the whole path at is
incomplete in rfnpγwqs. Thus, in order to prove the claim, it suffices to bound the
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exponential lengths of a1 and a2. Let t P t1, 2u. By Lemma 3.17, we have

�exppatq ď

st
ÿ

i“1

�exppb
ptq
i q ` �exppb

ptq1

i q.

For every i P t1 . . . , stu, the path b
ptq
i satisfies (i) and we already have a bound on

the total exponential length of such paths. Moreover, since the total exponential
length of complete factors of αpj,nq contained in at is at most equal to 2C, we have

st
ÿ

i“1

�exppb
ptq1

i q ď 2C.

Thus, the total exponential length of incomplete factors of rfnpγwqs contained in
αpj,Mq is at most equal to

8C�exppαpjq
q `

2
ÿ

t“1

st
ÿ

i“1

�exppb
ptq1

i q ď 8C�exppαpjq
q ` 4C ď 12C�exppαpjq

q,

where the last inequality follows from the fact that every element of Λ
p2q
γw YΛ

p4q
γw has

positive exponential length. �

By Claim 2 and Lemma 5.6, for every n ě M and every αpjq P Λ
p2q
γw Y Λ

p4q
γw ,

the total exponential length relative to rfnpγwqs of incomplete factors in the sub-
path of rfnpγwqs contained in rfnpαpjqqs is at most equal to 12C�γw

exppαpjqq ` 2C ď

14C�γw
exppαpjqq. Hence by definition, for every n ě M and every path αpjq P

Λ
p2q
γw Y Λ

p4q
γw , we have

�rfn
pγwqs

exp pIncprfn
pγwqsq X αpj,nq

q ď 14C�exppαpjq
q.

We claim that, for every n ě M , every element in Λrfnpγwqs is contained in an
iterate of an element in Λγw

. Indeed, note that, by the choice of M (in the above
application of Lemma 5.11), for every element α P Λ1

γw
, the exponential length of

an incomplete factor in rfnpαqs is at most equal to 8C. Hence an incomplete factor
of rfnpαqs whose exponential length is at least equal to p3.108qR6C12 ` 1 cannot
be contained in an iterate of an element of Λ1

γw
. The claim follows.

Therefore, using Equation (25) for the third inequality, the value of

�
rfM

pγwqs
exp pΛrfM pγwqsq is at most equal to

ř

αpjqPΛ
p3q
γw

�exppαpj,Mqq `
ř

αpjqPΛ
p4q
γw

�
rfM

pγwqs
exp pIncprfM pγwqsq X αpj,Mqq

`
ř

αpjqPΛ
p2q
γw

�
rfM

pγwqs
exp pIncprfM pγwqsq X αpj,Mqq

ď 80C2|Λ
p3q
γw | ` 14C

ř

βPΛ
p4q
γw

�exppβq ` 14C
ř

αPΛ
p2q
γw

�exppαq

ď 80C2|Λ
p3q
γw | ` 14Cp2000R3C6q|Λ

p4q
γw | ` 14C

ř

αPΛ
p2q
γw

�exppαq

ď 80C2|Λ
p3q
γw | ` C|Λ

p3q
γw | ` 14C

ř

αPΛ
p2q
γw

�exppαq

ď 81C2|Λ
p3q
γw | ` 14C

ř

αPΛ
p2q
γw

�exppαq.
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Since by Equation (23)
ˆ

1 `
1

30000R3C6

˙

|Λp3q
γw

| ě |Λp1q
γw

| ě 120000R3C6
|Λp2q

γw
|,

we have |Λ
p3q
γw | ě 60000R3C6|Λ

p2q
γw |. Hence we have

�
rfM

pγwqs
exp pΛrfM pγwqsq ď 81C2|Λ

p3q
γw | ` 14C

ř

αPΛ
p2q
γw

�exppαq

ď 81C2|Λ
p3q
γw | ` p14Cqp2000R3C6q|Λ

p2q
γw |

ď 81C2|Λ
p3q
γw | ` 2C|Λ

p3q
γw | “ 83C2|Λ

p3q
γw |.

Suppose first that

�
rfM

pγwqs
exp pΛrfM pγwqsq

�
rfM pγwqs
exp pIncprfM pγwqsqq

ă
1

p24C2Rq2
.

Then we can apply Case 1 to conclude the proof of Lemma 5.21. Indeed, Case 1
gives a larger M 1 ě M such that for every n ě M 1, either

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

1

R
�rfM

pγwqs
exp pIncprfM

pγwqsqq

(this is the conclusion of Subcase 1) or else gprfnpγwqsq ě δ (this is the conclusion
of Subcase 2). Recall that, by Lemma 5.12 and Lemma 5.6, we have

�rfM
pγwqs

exp pIncprfM
pγwqsqq ď 10C�γw

exppIncpγwqq.

Hence, if the first conclusion occurs, we have

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

1

R
�rfM

pγwqs
exp pIncprfM

pγwqsqq ď
10C

R
�γw
exppIncpγwqq,

which gives the desired result.
Otherwise, we have

p24C2Rq
2�rfM

pγwqs
exp pΛrfM pγwqsq ě �rfM

pγwqs
exp pIncprfM

pγwqsqq.

Let n ě M . By Lemma 5.12 and Lemma 5.6, we have

�
rfn

pγwqs
exp pIncprfnpγwqsqq ď �exppIncprfnpγwqsqq ď 8C�exppIncprfM pγwqsqq

ď 10C�
rfM

pγwqs
exp pIncprfM pγwqsqq.

Recall that the exponential length of every path α P Λ
p3q
γw is equal to 2000R3C6.

Hence we have

�
rfn

pγwqs
exp pIncprfnpγwqsqq

�γw
exppIncpγwqq

“
�

rfn
pγwqs

exp pIncprfnpγwqsqq

�
rfM pγwqs
exp pIncprfM pγwqsqq

�
rfM

pγwqs
exp pIncprfM pγwqsqq

�γw
exppIncpγwqq

ď
10Cp24C2Rq2�

rfM
pγwqs

exp pΛrfM pγwqsq

�γw
exppΛγw

q

ď
10Cp24C2Rq2p83C2|Λ

p3q
γw |q

2000R3C6|Λ
p3q
γw |

ď
10C

R
.

This concludes the proof of Lemma 5.21. �
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In Proposition 5.22, we need to work with CT maps that represent both an
(almost) atoroidal outer automorphism and its inverse. We therefore introduce the
following conventions.
Let f 1 : G1 Ñ G1 be a CT map representing φ´M , which exists by Theorem 2.10.
We denote by K 1 the constant similar to the constant K given above Lemma 5.6
and by Cf 1 the bounded cancellation constant given by Lemma 4.9. We set C 1 “

maxtK 1, Cf 1 u as in Equation (6). We denote by Gp1 the invariant subgraph of
G1 such that FpGp1 q “ F , by �F 1 the corresponding F-length and by �exp1 the
corresponding exponential length. Let g1 be the corresponding goodness function.
If w P Fn, we denote by γ1

w the corresponding circuit in G1.
We also need a result which shows that the exponential length is invariant by

Fn-equivariant quasi-isometry. In order to prove this, we need some additional
definitions. Let G be a connected (pointed) graph whose fundamental group is

isomorphic to Fn and let rG be the universal cover of G. Let φ P OutpFnq be an
exponentially growing outer automorphism.

Let pG be the graph obtained from rG as follows. We add one vertex vgA for every
left class gA, with g P Fn and A is a subgroup of Fn such that rAs P Apφq and

we add one edge between vgA and a vertex v of rG if and only if the vertex v is

contained in the tree TgAg´1 . The graph pG is known as the electrification of rG (see
for instance [Bow]).

For a path γ in G, we denote by rγ a lift of γ in rG. Let pγ be the path in pG
constructed as follows. Let rγ “ a1b1 . . . akbk be the decomposition of rγ such that,
for every i P t1, . . . , ku, the path bi is contained in some tree TgiAig

´1
i

with gi P Fn,

Ai a subgroup of Fn such that rAis P Apφq and bi is maximal for the property of
being contained in such a tree TgiAig

´1
i
. Then pγ is a path pγ “ a1c1 . . . akck where,

for every i P t1, . . . , ku, the path ci is the two-edge path whose endpoints are the
endpoints of bi and the middle vertex of ci is vgiAi

.
Note that the path pγ is not uniquely determined. Indeed, it is possible that there

exists i P t1, . . . , ku such that bi is contained in two distinct trees TA and TB with
rAs, rBs P Apφq. However, if pγ and pγ1 are two such paths associated with rγ, then
�ppγq “ �ppγ1q.

Note that if γ “ ab for some reduced edge paths a, b, then

�ppγq ď 2�ppaq ` 2�ppbq.

Indeed, a maximal subpath of γ contained in some TA with rAs P Apφq is either
contained in a, in b or is a concatenation of paths of a and b contained in TA.
Moreover, if e is an edge of G contained in some TA with rAs P Apφq, then �ppeq “ 2.
Thus, the inequality holds.

Proposition 5.22. Let n ě 3, let φ P OutpFnq and let f : G Ñ G be a CT map
representing a power of φ.

(1) There exists a constant B0 ě 1 such that, for every element w P Fn with
�exppγwq ą 0, we have:

1

B0
�exppγwq ď �pxγwq ď B0�exppγwq.
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(2) Let f 1 : G1 Ñ G1 be a CT map representing a power of φ´1. There exists a
constant B ą 0 such that, for every element w P Fn, we have:

1

B
�exp1 pγ1

wq ď �exppγwq ď B�exp1 pγ1
wq.

Proof. p1q Recall the definition of the graph G˚ from just above Lemma 3.12. We

can turn the graph G˚ into a metric graph by assigning, to every edge e P 	EG˚,
the length equal to the length of the path pG˚ peq in G. Since the graph G˚ is finite,
there exists a constant B1 such that the diameter of every maximal subtree of G˚

is at most B1. Let B0 “ 2B1 ` 2.
Let w P Fn. Let γw “ a1b1 . . . akbk be the decomposition of γw with a1 and

bk possibly empty such that, for every i P t1, . . . , ku, the path bi is a maximal
concatenation of paths in G1

PG and in NPG and, for every i P t1, . . . , ku and every
edge e of ai, we have �γw

exppeq “ 1. Note that by the definition of the exponential
length we have

�exppγwq “

k
ÿ

i“1

�paiq.

Let A be a subgroup of Fn such that rAs P Apφq. Let i P t1, . . . , ku and let α be a
subpath of ai whose lift is contained in TA. By Proposition 3.14, the subpath α is
contained in a concatenation of paths in GPG and inNPG. Since ai does not contain
any concatenation of paths in GPG and NPG, the path α is a proper subpath of an
EG INP. By the definition of C (see Equation (6)), we see that �pαq ď C. Thus,
we have: �paiq ď C�ppaiq and

�exppγwq ď C
k

ÿ

i“1

�ppaiq.

Claim. Let A be a subgroup of Fn such that rAs P Apφq. Let β be a subpath of
γw such that a lift of β is contained in TA. There does not exist i P t1, . . . , ku such
that both β X bi and β X bi`1 are not reduced to a point.

Proof. Suppose towards a contradiction that such an element i P t1, . . . , ku exists.
Then ai`1 is contained in β. By the above, the path ai`1 is contained in an EG INP
σ. Since both bi and bi`1 are concatenations of paths in G1

PG and NPG, the path
ai`1 must contain the initial or the terminal segment of σ. Since β is contained in
a concatenation of paths in GPG and in NPG by Proposition 3.14, the EG INP σ
must be contained in β and β X ai`1 Ď σ. This contradicts the maximality of the
paths bi and bi`1. �

Hence β is either contained in biai`1 or in ai`1bi`1. Let i P t1, . . . , ku and let
β be a maximal subpath of γw containing edges of ai and such that a lift of β is
contained in some TA with A a subgroup of Fn such that rAs P Apφq. By the claim,
the path ai has a decomposition ai “ c`

i dic
´
i such that c`

i and c´
i are possibly

trivial, lifts of c`
i and c´

i are contained in trees TA` and TA´ with A` and A´

subgroups of Fn such that rA`s, rA´s P Apφq and one of the following holds:

(a) β Ď di;
(b) β X ai ‰ β and β X ai P tc`

i , c
´
i u.
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Note that for every i P t1, . . . , ku, we have �p paiq ď �p pdiq ` 4. Then

�pxγwq ě

k
ÿ

i“1

�p pdiq ě

k
ÿ

i“1

p�p paiq ´ 4q “

k
ÿ

i“1

�ppaiq ´ 4k.

Moreover, if β is a path which satisfies the hypothesis of the claim, then there exists
at most one i P t1, . . . , ku such that β X bi is not reduced to a point. Therefore, we
see that �pxγwq ě k. Thus, we have

�exppγwq ď C
k

ÿ

i“1

�ppaiq ď Cp�ppγwq ` 4kq ď 5C�ppγwq.

This proves the first inequality of Assertion p1q.
We now prove the second inequality. For every i P t1, . . . , ku, there exists a

unique path b˚
i Ď G˚ such that p˚pb˚

i q “ bi. Let i P t1, . . . , ku. Since G˚ is a finite

graph, there exist (possibly trivial) reduced paths β˚
i , δ

˚
i and δ˚

1

i such that:

(i) the path β˚
i is a circuit;

(ii) the paths δ˚
i and δ˚

1

i are contained in maximal trees of G˚;

(iii) we have b˚
i “ δ˚

i β
˚
i δ

˚
1

i .

By Lemma 3.12(1), the paths p˚pδ˚
i q, p˚pβ˚

i q and p˚pδ˚
1

i q are reduced edge paths

of G. By definition of B1, we have �pδ˚
i q, �pδ˚

1

i q ď B1. Since p˚pβ˚
i q is a circuit which

is a concatenation of paths in GPG and in NPG, by Proposition 3.14, there exists
a subgroup Hi of Fn such that rHis P Apφq and the conjugacy classes of elements

of Fn represented by p˚pβ˚
i q are contained in rHis. Hence the length of {p˚pβ˚

i q is

bounded by 2 and the length of the path pbi is bounded by 2`2B1 “ B0. Therefore,
since �exppγwq ą 0, we have

�ppγwq ď

k
ÿ

i“1

2�ppaiq ` 2�ppbiq ď

k
ÿ

i“1

p4�paiq ` 2B0q ď p2B0 ` 4q

k
ÿ

i“1

�paiq

“ p2B0 ` 4q�exppγwq.

This proves Assertion (1).
p2q Let f 1 be as in Assertion p2q and let w P Fn. Suppose first that �exppγwq “ 0.
Then γw is a concatenation of paths in G1

PG and in NPG. By Proposition 2.5(4)
and Lemma 2.9, there does not exist an edge in a zero stratum which is adjacent
to a concatenation of paths in GPG and in NPG. Since zero strata are contractible
by Proposition 2.5(3), it follows that γw is a concatenation of paths in GPG and in
NPG. By Proposition 3.14, there exists a subgroup A of Fn such that rAs P Apφq

and w P A. Since Apφq “ Apφ´1q by Equation (1), by Proposition 3.14, we have
�exp1 pγ1

wq “ 0. So we may suppose that �exppγwq ą 0 and that �exp1 pγ1
wq ą 0. By

Assertion p1q, in order to prove Assertion p2q, it suffices to prove that pG and pG1 are
Fn-equivariantly quasi-isometric. Since Apφq is a malnormal subgroup system, this
follows from [Bow, Theorem 7.11] and [Hru, proof of Theorem 5.1]. �
Proposition 5.23. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 5.15.
Let f 1 : G1 Ñ G1 be as in the above convention. Let δ P p0, 1q and let W be a
neighborhood of KPGpφq in PCurrpFn,F ^ Apφqq. There exists n0 P N

˚ such that
for every n ě n0 and every nonperipheral element w P Fn such that ηrws R W , one
of the following holds:

gprfn
pγwqsq ě δ
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or

g
1
prf 1n

pγ1
wqsq ě δ.

Proof. Let w P Fn be a nonperipheral element such that ηrws R W . Let R “
10C

p1´δq2
8C 1B2. We use the alternative given by Lemma 5.21 with the constants δ

and R. If the first alternative of Lemma 5.21 occurs, then we are done. Suppose
that gprfnpγwqsq ă δ. There exists n0 P N

˚ depending only on f such that for every
n ě n0, we have

�rfn
pγwqs

exp pIncprfn
pγwqsqq ď

10C

R
�γw
exppIncpγwqq.

By Lemma 5.14, since gprfnpγwqsq ă δ, we have gpγwq ă δ. Thus, we see that

�γw
exppIncpγwqq ě p1 ´ δq�exppγwq.

Let γ2 be the reduced circuit in G such that rfn0pγ2qs “ γw. Since gpγwq ă δ and
rηrwss R KPGpφq, by Lemma 5.21, we see that

�γw
exppIncpγwqq ď

10C

R
�γ

2

exppIncpγ2
qq.

We have

�exp1 prf 1n0pγ1
wqsq ě

1
B �exppγ2q ě

1
B �γ

2

exppIncpγ2qq

ě
1
B

R
10C �γw

exppIncpγwqq ě
1
B

p1´δqR
10C �exppγwq

ě
1
B2

p1´δqR
10C �exp1 pγ1

wq “ 8C 1 1
1´δ �exp1 pγ1

wq.

But by Lemma 5.12, we have:

�
rf 1n0 pγ1

wqs

exp1 pIncpf 1n0pγ1
wqq ď �exp1 pIncpf 1n0pγ1

wqq ď 8C 1�exp1 pγ1
wq.

Therefore, we see that

g1
prf 1n0pγ1

wqsq “ 1 ´
�

rf 1n0 pγ1
wqs

exp1 pIncprf 1n0pγ1
wqsq

�exp1 prf 1n0pγ1
wqsq

ě 1 ´ p1 ´ δq “ δ ą 0.

By Lemma 5.16, we see that there exists n1 ě n0 depending only on f 1 such that
for every n ě n1,

g
1
prf 1n

pγ1
wqsq ě δ.

This concludes the proof. �

Proposition 5.24. Let φ P OutpFn,Fq and let f : G Ñ G be as in Remark 5.15.
Let U` be a neighborhood of Δ`pφq, let U´ be a neighborhood of Δ´pφq, let V be a
neighborhood of KPGpφq. There exists N P N

˚ such that for every n ě 1 and every
F ^ Apφq-nonperipheral w P Fn such that ηrws R V , one of the following holds

φNn
pηrwsq P U` or φ´Nn

pηrwsq P U´.

Proof. Let δ P p0, 1q and let w P Fn be a nonperipheral element with ηrws R V .
By Proposition 5.23, there exists n0 P N

˚ such that for every n ě n0, we have
gprfnpγwqsq ě δ or g1prf 1npγ1

wqsq ě δ. By Lemma 5.20(1), there exists n1 ě n0 such
that for every n ě n1, we have

φNn
pηrwsq P U` or φ´Nn

pηrwsq P U´.

This concludes the proof. �
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Proposition 5.24 gives a result of North-South dynamics outside of a neighbor-
hood of KPGpφq. As KPGpφq is empty for a relative expanding outer automorphism
by Lemma 3.28(1), we can now prove Theorem 5.1.

Proof of Theorem 5.1. Let φ P OutpFn,Fq be an expanding outer automorphism
relative to F . By Lemma 3.28, we have KPGpφq “ ∅. Let U` be a neighborhood of
Δ`pφq and let U´ be a neighborhood of Δ´pφq. By Proposition 5.24, there exists
N P N

˚ such that for every n ě 1 and every nonperipheral element w P Fn, we have

φNn
pηrwsq P U` or φ´Nn

pηrwsq P U´.

Recall that, by Proposition 2.15, the rational currents are dense in PCurrpFn,F ^

Apφqq. Hence we can apply [LU2, Proposition 3.3] to see that φ2N has generalized
North-South dynamics. Then, using [LU2, Proposition 3.4], we conclude that φ has
generalized North-South dynamics. �

6. North-South dynamics for almost atoroidal relative outer

automorphism

Let n ě 3 and let F be a free factor system of Fn. Let φ P OutpFn,Fq be an
almost atoroidal outer automorphism (see Definition 4.3). Let F ď F1 ď F2 “

trFnsu be a sequence of free factor system given in this definition. We use the
convention of Remark 5.19. We will show a result of North-South type dynamics
for φ (see Theorem 6.4). Note that if Apφq ‰ trFnsu the simplices Δ˘pφq are
still defined. Note that, by Lemma 3.28(3) and Lemma 5.18(4), for every current
μ P CurrpFn,F ^Apφqq, we have ‖μ‖F1

ą 0. Let KPGpφq be the set of polynomially
growing currents of φ. Note that, combining Lemma 4.8 and Lemma 5.18(5), we
have KPGpφq X Δ˘pφq “ ∅. Let

pΔ˘pφq“trtμ ` p1 ´ tqνs |t P r0, 1s, rμs P Δ˘pφq, rνs P KPGpφq, ‖μ‖F1
“‖ν‖F1

“1u

be the convexes of attraction and repulsion of φ.
In order to promote a global North-South type dynamics, we need to construct

contracting neighborhoods of pΔ˘pφq. To this end, following Clay and Uyanik [CU],
we introduce a notion of goodness for currents of PCurrpFn,F ^ Apφqq.

Let f : G Ñ G be as in Remark 5.15. By Lemma 3.22, there exists N P N
˚ such

that, for every edge e of G ´ G1
PG, we have �expprfN peqsq ě 4C `1. Let CN “ CfN

be a constant associated with fN given by Lemma 4.9. Let L ą 0 be such that for
every path γ of G of length at least L, we have �prfN pγqsq ě CN ` 1. The constant
L exists since fN lifts to a quasi-isometry on the universal cover of G. Let Pcs be
the finite set of paths of the form γ “ γ1eγ2, where, for every i P t1, 2u, the path γi
has length equal to L, the path e is an edge in G ´ G1

PG and γ1eγ2 is a splitting of
γ. In Lemma 6.1(2), we prove in particular that Pcs is not empty. We will denote
by pγ the edge e.

Let rμs P PCurrpFn,F ^ Apφqq. Recall the definition of Ψ0 just above Def-
inition 3.26. By Lemma 3.28(1), p2q, we have φpKPGpφqq “ KPGpφq. Hence,
for every current rμs R KPGpφq, we have Ψ0pφpμqq ą 0. Thus, for every current
rμs P PCurrpFn,F ^ Apφqq ´ KPGpφq, we can define the completely split goodness
gpμq of μ by

gpμq “
1

Ψ0pφN pμqq

ÿ

γPPcs

xγ, μy .
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Observe that the function g is continuous and that it defines a well-defined contin-
uous function PCurrpFn,F ^ Apφqq ´ KPGpφq Ñ R.

Lemma 6.1. Let f : G Ñ G be as in Remark 5.15.

(1) Let w P Fn be such that �exppγwq ą 0. We have gprfN pγwqsq ě gpηrwsq.
(2) For every rμs P Δ`pφq, we have gprμsq ą 0.

Proof. p1q The proof of this assertion is similar to the one of [CU, Lemma 4.9 (2)].
Let γ P Pcs be such that

@

γ, ηrws

D

ą 0. Then γ Ď γw. For every occurrence of γ in

γw, by the choice of L, CN and by Lemma 4.9, the path rfN pγwqs contains rfN ppγqs,
which has exponential length at least equal to 4CN ` 1. Therefore, Lemma 5.8
implies that the path rfN pγwqs contains a subpath of rfN ppγqs of exponential length
at least 1 which is a complete factor of rfN pγwqs relative to GPG. Hence we have:

�expprfN
pγwqsqgprfN

pγwqsq ě

ÿ

γPPcs

@

γ, ηrws

D

.

By Lemma 3.27, we have

Ψ0pφN
pηrwsqq “ �expprfN

pγwqsq “ Ψ0pηrφN pwqsq “ �exppγφN prwsqq.

Therefore, we have
gprfN

pγwqsq ě gpηrwsq.

p2q Let rμs P Δ`pφq. Since rμs is a convex combination of extremal points of Δ`pφq

and since for every element γ P Pcs, the application xγ, .y is linear, it suffices to
prove the result for every extremal point of Δ`pφq. So we may suppose that rμs is
an extremal point of Δ`pφq.

Let Gi be the minimal subgraph of G such that FpGiq “ F1. Since rμs is
extremal and since φ|F1

is expanding relative to F , by Proposition 4.4, there exists
an expanding splitting unit σ in Gi whose initial direction is fixed by f and such
that, for every path γ P PpF1 ^ Apφqq, we have

xγ, μy “ μpCpγqq “ lim
nÑ8

xγ, rfnpσqsy

�F1
prfnpσqsq

.

By Lemma 5.18(5), since the path rfnpσqs is contained in Gi and, for every path
γ P PpF ^ Apφqq, the above limit is finite, we have

lim
nÑ8

xγ, rfnpσqsy

�F1
prfnpσqsq

“ lim
nÑ8

xγ, rfnpσqsy

�expprfnpσqsq
.

Hence it suffices to prove that there exists γ P Pcs such that

lim
nÑ8

xγ, rfnpσqsy

�expprfnpσqsq
ą 0.

Let e be an edge ofG ´ G1
PG. Note that, since σ is a splitting unit, for everym P N

˚,
the path rfmpσqs is completely split. Hence an occurrence of e in limmÑ8rfmpσqs

is contained in a splitting unit of limmÑ8rfmpσqs which is either an INP or is
equal to e. By Lemma 3.8 if an INP γ1 contains e, there exists γ1

0 P NPG such that
e Ď γ1

0 Ď γ1. For every m P N
˚, we denote by Npm, eq the number of occurrences of

e or e´1 in rfmpσqs which are splitting units of rfmpσqs and by EGINP peq the set
of all EG INPs containing e. Note that, since the set NPG is finite by Lemma 3.5,
so is the limit

lim
nÑ8

ÿ

γPEGINP peq

xγ, rfnpσqsy

�expprfnpσqsq
.
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Since for every m P N
˚, we have

xe, rfm
pσqsy “ Npm, eq `

ÿ

γPEGINP peq

xγ, rfn
pσqsy ,

we see that the limit

lim
mÑ8

Npm, eq

�expprfmpσqsq

exists. We claim that there exists an edge e of G ´ G1
PG such that

lim
mÑ8

Npm, eq

�expprfmpσqsq
ą 0.

Indeed, note that, by Lemma 3.24, for every m P N
˚, since rfmpσqs is PG-relative

completely split, we have

�expprfm
pσqsq “

ÿ

eP�EpG´G1
PGq

Npm, eq.

Hence
ÿ

eP�EpG´G1
PGq

lim
mÑ8

Npm, eq

�expprfmpσqsq
“ 1,

which implies the claim.
Let e0 be an edge of G ´ G1

PG which satisfies the claim. Since, for every m P N
˚,

the path rfmpσqs is completely split, if an occurrence of e0 or e´1
0 in rfmpσqs is a

splitting unit and if γ is a path in rfmpσqs of the form γ “ γ1e0γ2 or γ “ γ1e
´1
0 γ2,

then such a decomposition of γ is a splitting of γ. Thus, if �pγ1q “ �pγ2q “ L, then
the path γ is in Pcs and it contains the occurrence of e0. Hence since μ “ μpσq, we
have

lim
mÑ8

Npm, e0q

�expprfmpσqsq
“

ÿ

γPPcs,e0Ďγ

xγ, μy ą 0.

Therefore, there exists γ P Pcs such that xγ, μy ą 0 and gprμsq ą 0. �

Lemma 6.2. Let f : G Ñ G be as in Remark 5.15. Let U˘ be open neighborhoods
of Δ˘pφq. There exist open neighborhoods U 1

˘ Ď U˘ of Δ˘pφq such that φ˘1pU 1
˘q Ď

U 1
˘.

Proof. The proof is similar to the one of [CU, Lemma 4.13]. We prove the result
for Δ`pφq, the proof for Δ´pφq being symmetric.

By Lemma 6.1(2), for every rμs P Δ`pφq, we have gprμsq ą 0. By compactness
of Δ`pφq and continuity of g, there exists δ0 ą 0 such that, for every μ P Δ`pφq,
we have gpμq ě δ0. Let δ P p0, δ0q. Let U` be a neighborhood of Δ`pφq. Since
the function g is continuous, there exists an open neighborhood U0

` Ď U` of Δ`pφq

such that, for every rμs P U0
`, we have gprμsq ą δ. Up to taking a smaller U0

`, we
may suppose that KPGpφq X U0

` “ ∅ (this is possible since KPGpφq is compact
and Δ`pφq XKPGpφq “ ∅). In particular, by Lemma 3.27, for every nonperipheral
element w P Fn such that ηrws P U`

0 , we have �exppγwq ą 0.

Let w P Fn be a nonperipheral element such that ηrws P U`
0 . By Lemma 6.1(1),

we have

gprfN
pγwqsq ě gpηrwsq ą δ.
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By Lemma 5.20(1), there exists M ě N such that, for every w P Fn such that
ηrws P U0

`, we have φM prηrwssq P U0
`. Let

U 1
` “

M´1
č

i“0

φi
pU0

`q.

Since φpΔ`pφqq “ Δ`pφq by Proposition 4.12, the set U 1
` is an open neighborhood

of Δ`pφq which is stable by φ by density of rational currents (see Proposition 2.15)
and continuity of φ. This concludes the proof. �

Lemma 6.3. Let f : G Ñ G be as in Remark 5.15. Suppose that the outer auto-
morphism φ is almost atoroidal relative to F . Let F ď F1 ď F2 “ tFnu be as in
the beginning of this section. Let i P t1, . . . , k ´ 1u be such that FpGiq “ F1. Let
pV˘ be open neighborhoods of pΔ˘pφq. There exist open neighborhoods pV 1

˘ of pΔ˘pφq

contained in pV˘ such that φ˘p pV 1
˘q Ď pV 1

˘.

Proof. The proof follows [CU, Lemma 4.14]. We prove the result for pΔ`pφq, the

proof for pΔ´pφq being symmetric.
Given rμs P PCurrpFn,F ^ Apφqq ´ KPGpφq, a finite set of reduced edge paths

P in G and some ε ą 0 determine an open neighborhood Nprμs,P, εq of rμs in
PCurrpFn,F ^ Apφqq ´ KPGpφq as follows:

Nprμs,P, εq

“

"

rνs P PCurrpFn,F ^ Apφqq ´ KPGpφq

ˇ

ˇ

ˇ

ˇ

@γ P P,

ˇ

ˇ

ˇ

ˇ

xγ, νy

Ψ0pνq
´

xγ, μy

Ψ0pμq

ˇ

ˇ

ˇ

ˇ

ă ε

*

.

Since KPGpφq is compact, if ε is small enough, this defines an open neighborhood
of rμs in PCurrpFn,F ^ Apφqq. For a subset X Ď PCurrpFn,F ^ Apφqq ´ KPGpφq,
let

NpX,P, εq “

ď

rμsPX

Nprμs,P, εq.

For L ą 0, let P`pLq be the set of reduced edge paths in Gi of length at most
equal to L which are not contained in any concatenation of paths in GPG,F1

and
NPG,F1

. By Lemma 5.18(3), the set P`pLq is also the set of reduced edge paths in
Gi of length at most equal to L which are not contained in any concatenation of
paths in GPG and NPG. Let rμs P Δ`pφq and let t P r0, 1s. Let

KPGprμs, tq “ trp1 ´ tqν ` tμs | rνs P KPGpφq, ‖ν‖F1
“ ‖μ‖F1

“ 1u.

Remark that
pΔ`pφq “

ď

rμsPΔ`pφq,tPr0,1s

KPGprμs, tq.

Let ε ą 0. Let Vpolypεq “ rΨ´1
0 pp´ε, εqqs. It is clear, by the continuity of Ψ0 and

Definition 3.26 of KPGpφq, that
Ş

εą0 Vpolypεq “ KPGpφq. Let t P p0, 1s and let
rμs P Δ`pφq be such that ‖μ‖F1

“ 1. By Lemma 5.18(5), we have Ψ0pμq “ 1. Let

Vpolyprμs, t, εq “

"

rνs P PCurrpFn,F ^ Apφqq

ˇ

ˇ

ˇ

ˇ

‖ν‖F1
“ ‖μ‖F1

“ 1,
tp1 ` εq ą Ψ0pνq ą tp1 ´ εq

*

.

Note that, since Ψ0pμq “ 1, we have rνs P Vpolyprμs, t, εq if for rνs such that ‖ν‖F1
“

1, we have

tΨ0pμqp1 ` εq ą Ψ0pνq ą tΨ0pμqp1 ´ εq.
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Let

V8prμs, tq “

č

LÑ8,εÑ0

NpKPGprμs, tq,P`pLq, εq X Vpolyprμs, t, εq.

Claim 1. For every rμs P Δ`pφq and every t P p0, 1s, we have V8prμs, tq “

KPGprμs, tq.

Proof. The inclusion KPGprμs, tq Ď V8prμs, tsq being immediate since Ψ0 is linear
and vanishes on KPGpφq, we prove the converse inclusion. Let ν P V8prμs, tq. By
Definition 4.5 of Δ`pφq, for every rμ1s P Δ`pφq and for every reduced edge path γ
not contained in Gi, we have xγ, μ1y “ 0. Hence, by Lemma 5.18(4), the current
rμs is entirely determined by the cylinder sets determined by reduced edge paths
contained in Gi which are not contained in concatenation of paths in GPG,F1

and
NPG,F1

. By Lemma 5.18(3), the current rμs is entirely determined by the cylinder
sets determined by reduced edge paths contained in Gi which are not contained in
concatenation of paths in GPG and NPG.

Let γ be a reduced edge path which is contained in Gi and which is not con-
tained in a concatenation of paths in GPG and NPG. By Lemma 3.28, for every
projective current rν 1s P KPGpφq, the support of ν 1 is contained in B2Apφq. By
Proposition 3.14, if g P Fn is such that there exists a subgroup A of Fn such that
rAs P Apφq and g P A, then γg is a concatenation of paths in GPG and NPG. In
particular, if γ1 is a path of G such that tg`8, g´8u P Cpγ1q, then γ1 is contained
in a concatenation of paths in GPG and in NPG. In particular, since γ is not con-
tained in a concatenation of paths in GPG and in NPG, for every projective current
rν 1s P KPGpφq, we have xγ, ν 1y “ 0.

Suppose that ‖ν‖F1
“ ‖μ‖F1

“ 1. By Lemma 5.18(5), we also have Ψ0pμq “ 1.
There exists λ ą 0 such that for every path γ which is contained in Gi and which
is not contained in a concatenation of paths in GPG and NPG, we have xγ, νy “

xγ, λtμy. We claim that ν´λtμ P CurrpFn,F ^Apφqq and that rν´λtμs P KPGpφq.
Indeed, for the first part, it suffices to show that for every path γ P PpF1^Apφqq, we
have pν´λtμqpCpγqq ě 0. This follows from the fact that, for every path γ P PpF1^

Apφqq such that γ Ď Gi, the path γ is not contained in a concatenation of paths in
GPG and in NPG. Hence we have xγ, νy “ xγ, λtμy. Moreover, if γ P PpF1 ^Apφqq,
then we have μpCpγqq “ 0. This shows that ν ´ λtμ P CurrpFn,F ^ Apφqq.

We now prove that rν ´λtμs P KPGpφq. Otherwise, by Lemma 3.28, the support
of ν ´ λtμ is not contained in B2Apφq. By Proposition 3.14, there exists a path γ
which is not contained in a concatenation of paths in GPG and in NPG such that

xγ, ν ´ λtμy ą 0.

Consider a decomposition of γ “ a1b1 . . . akbk where, for every j P t1, . . . , ku, the
path aj is contained in G ´ Gi and, for every j P t1, . . . , ku, the path bj is contained
in Gi with a1 and bk possibly empty. By Lemma 5.18(1), (2) and Remark 5.19, up
to taking a larger path γ, we may suppose that b1 is nontrivial. By Lemma 5.18(2)
and Remark 5.19, for every j P t1, . . . , ku, the path aj is contained in GPG. Since
γ is not contained in a concatenation of paths in GPG and NPG, there exists
j P t1, . . . , ku such that bj is not contained in a concatenation of paths in GPG

and NPG. But then xbj , νy “ xbj , λtμy, that is xbj , ν ´ λtμy “ 0. By additivity of
ν ´ λtμ, we have

xγ, ν ´ λtμy ď xbj , ν ´ λtμy “ 0.
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This contradicts the choice of γ. Hence rν ´ λtμs P KPGpφq. Therefore, we have
Ψ0pν ´ λtμq “ 0. Since rνs P V8prμs, tq and since ‖ν‖F1

“ ‖μ‖F1
“ 1, we see that

Ψ0pνq “ tΨ0pμq.

By linearity of Ψ0 and the fact that Ψ0pμq “ 1, we have

t “ tΨ0pμq “ Ψ0pνq “ λtΨ0pμq “ λt.

Since t ą 0 and Ψ0pμq “ 1, we have λ “ 1. Suppose first that t ‰ 1. Let
ν 1 “

1
1´t pν´tμq, so that rν 1s P KPGpφq and ‖ν 1‖F “ 1. Then rνs “ rp1´tqν 1 `tμs P

KPGprμs, tq. Thus, we have V8prμs, tq “ KPGprμs, tq.
Suppose now that t “ 1. Then Ψ0pνq “ 1 “ ‖ν‖F . We claim that if γ P

PpF1^Apφqq is such that νpCpγqq ą 0, then γ Ď Gi. Indeed, otherwise there would
exist an edge e contained in G ´ Gi such that νpCpeqq ą 0. By the description
of G ´ Gi given in Lemma 5.18(1), p2q and additivity of the current ν, we can
choose the edge e P G ´ Gi in such a way that e P GPG. This would imply that
‖ν‖F1

ą Ψ0pνq “ 1, a contradiction. The claim follows. But, since for every path
γ P PpF1 ^Apφqq such that γ Ď Gi, we have νpCpγqq “ μpCpγqq, we see that ν “ μ
and that ν P KPGprμs, 1q. This concludes the proof of the claim. �

Since pΔ`pφq is compact, there exist L ą 0 and ε ą 0 such that, for every
rμs P Δ`pφq and every t P p0, 1s, we have

V prμs, t, L, εq “ NpKPGprμs, tq,P`pLq, εq X Vpolyprμs, t, εq Ď pV`.

When t “ 0, there exists ε ą 0 such that Vpolypεq Ď pV`. Let s P p0, 1q, and let V
be an open neighborhood of KPGpφq such that, for every rνs P V with ‖ν‖F1

“ 1,
we have:

(26) Ψ0pνq ă s.

For every rμs P

´

Np pΔ`pφq, pP`pLq, εq ´ V
¯

X pΔ`pφq, there exist rμpolys P KPGpφq,

rμexps P Δ`pφq and t P p0, 1s such that

rμs “ rtμexp ` p1 ´ tqμpolys.

By Lemma 6.1(2), for every rμs P Δ`pφq, we have gprμsq ą 0. By compactness of
Δ`pφq and continuity of g, there exists δ1 ą 0 such that, for every μ P Δ`pφq, we

have gpμq ě δ1. Since Np pΔ`pφq, pP`pLq, εq ´ V X pΔ`pφq is compact, and since the
function g is continuous, there exists δ1

0 ą 0 such that the set U “ g
´1

ppδ1
0,`8qq is

an open neighborhood of pNp pΔ`pφq, pP`pLq, εq ´ V q X pΔ`pφq intersecting V . Note
that U X KPGpφq “ ∅. We set

pV 1
` “

¨

˝

ď

rμsPΔ`pφq,tPp0,1s

V prμs, t, L, εq Y Vpolypεq

˛

‚X pU Y V q .

Let δ0 and M0 be the constants given by Lemma 5.20(2) for the above choices of
ε ą 0 and L ą 0. Up to replacing δ0 with a smaller constant and M0 with a larger
one, we may suppose that δ0 and M0 also satisfy the conclusion of Lemma 5.20(1)
for U as well (where the open neighborhood W ofKPGpφq needed in Lemma 5.20(1)
is such that W Ď V ´ U).

Claim 2. There exists N P N
˚ such that φN p pV 1

`q Ď pV 1
`.
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Proof. Let w P Fn be a nonperipheral element such that ηrws P pV 1
`. Suppose first

that ηrws P U X pV 1
`. Since ηrws R KPGpφq, by Lemma 3.27, we have �exppγwq ą 0.

By Lemma 6.1(1), we have:

gprfN
pγwqsq ě gpηrwsq ą δ1

0.

By Lemma 5.20(1), there exists M ě M0 `N such that, for every w P Fn such that

ηrws P U X pV 1
` and every n ě 1, we have φMnprηrwssq P U X pV 1

` Ď pV 1
`.

Suppose now that ηrws P V X pV 1
`. By Lemma 3.28(3) and Lemma 5.18(4) for

every projective current rμs P PCurrpFn,F ^ Apφqq, we have ‖μ‖F1
ą 0. For a

projective current rμs P PCurrpFn,F ^ Apφqq, let

ΨF1
prμsq “

Ψ0pμq

‖μ‖F1

.

Then, by definition of V and by Lemma 3.27, we have

ΨF1
prηrwssq “

�exppγwq

�F1
pγwq

ă s.

If rηrwss P KPGpφq, then since φpKPGpφqq “ KPGpφq, we are done. Therefore, we
may suppose that rηrwss R KPGpφq and, by Lemma 3.27, for every n P N

˚, we have

�expprfnpγwqsq ě 1. Let R ą 1 be such that 1

1`
Rp1´δ0q

10C p1´sq
ď ε. By Lemma 5.21,

one of the following assertions holds:

(1) gprfM pγwqsq ě δ0,
(2) �expprfM pγwqsq ď

10C
p1´δ0qR�exppγwq.

First assume that Assertion p1q holds. Let rμφM prwsqs P Δ`pφq be the projective

current associated with φM prwsq given by Lemma 5.20(2). Let

t “ ΨF1
prηφM prwsqsq.

We claim that rηφM prwsqs P V prμφM prwsqs, t, L, εq. Indeed, we clearly have

rηφM prwsqs P VpolyprμφM prwsqs, t, εq.

By Lemma 5.20(2), for every reduced edge path γ P P`pLq, we have

ˇ

ˇ

ˇ

ˇ

ˇ

@

γ, ηφM prwsq

D

Ψ0pηφM prwsqq
´

@

γ, μφM prwsq

D

Ψ0pμφM prwsqq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Therefore we have rηφM prwsqs P NpKPGprμφM prwsqs, tq,P`pLq, εq. The claim follows

by definition of V prμφM prwsqs, t, L, εq. By definition of pV 1
`, we see that φ

M prηrwssq “

rηφM prwsqs P pV 1
`.

Suppose now that Assertion p2q holds. We claim that rηφM prwsqs P Vpolypεq. By

Lemma 5.18(1), (2) and Remark 5.19, the graph G ´ Gi consists in edges in GPG.
By Lemma 5.18(6), we have

�F1
prfM

pγwqsq ´ �expprfM
pγwqsq “ �F1

pγwq ´ �exppγwq.
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Hence we have

ΨF1
prηφM pγwqsq “

�expprfM pγwqsq

�F1
prfM pγwqsq

“
�expprfM pγwqsq

�expprfM pγwqsq ` �F1
prfM pγwqsq ´ �expprfM pγwqsq

“
�expprfM pγwqsq

�expprfM pγwqsq ` �F1
pγwq ´ �exppγwq

“
1

1 `
�F1

pγwq´�exppγwq

�expprfM pγwqsq

ď
1

1 `
Rp1´δ0q

10C

�F1
pγwq´�exppγwq

�exppγwq

ď
1

1 `
Rp1´δ0q

10C

�F1
pγwq´�exppγwq

�F1
pγwq

ď
1

1 `
Rp1´δ0q

10C p1 ´ sq
ď ε.

Note that Ψ´1
F1

pp0, εqq Ď Vpolypεq. Thus, we have

φM
prηrwssq “ rηφM prwsqs P Vpolypεq Ď pV 1

`.

Therefore, by density of the rational currents (see Proposition 2.15) and continuity

of φ, we have φM p pV 1
`q Ď pV 1

`. This proves Claim 2. �

Let

pV 2
` “

M´1
č

i“0

φi
p pV 1

`q.

Since φp pΔ`pφqq “ pΔ`pφq, the set pV 2
` is an open neighborhood of pΔ`pφq which is

stable by φ by construction. This concludes the proof. �

Theorem 6.4. Let n ě 3. Let F ď F1 ď tFnu be a sequence of free factor systems
such that the extension F1 ď tFnu is sporadic. Let φ P OutpFn,Fq be such that φ
preserves F ď F1 ď tFnu and φ|F1

is an expanding automorphism relative to F .

Let pΔ˘pφq be the convexes of attraction and repulsion of φ and Δ˘pφq be the
simplices of attraction and repulsion of φ. Let U˘ be open neighborhoods of Δ˘pφq

in PCurrpFn,F ^ Apφqq and pV˘ be open neighborhoods of pΔ˘pφq in PCurrpFn,F ^

Apφqq. There exists M P N
˚ such that for every n ě M , we have

φ˘n
pPCurrpFn,F ^ Apφqq ´ pV¯q Ď U˘.

Proof. The proof is similar to [CU, Theorem 4.15]. We replace φ by a power so that
φ satisfies Remark 5.15. By Lemmas 6.2 and 6.3, we may suppose that φpU`q Ď U`

and that φp pV`q Ď pV`. Let M be the exponent given by Proposition 5.24 by

using U` “ U` and U´ “ V “ pV´. For every current rμs P PCurrpFn,F ^

Apφqq ´φM p pV¯q, we have φM prμsq P U` since φ´M prμsq R pV´. Therefore, for every

rμs P PCurrpFn,F ^ Apφqq ´ pV´, we have φ2M prμsq P U` and for every n ě M , we
have φ2nprμsq P U` since φpU`q Ď U`. Therefore for every n ě M , we see that

φ2n
pPCurrpFn,F ^ Apφqq ´ pV´q Ď U`.

A symmetric argument for φ´1 shows that φ2 acts with generalized North-South
dynamics. By [LU2, Proposition 3.4], we see that φ acts with generalized North-
South dynamics. This concludes the proof. �
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Corollary 6.5. For every open neighborhood pV´ Ď PCurrpFn,F ^ Apφqq of pΔ´,
there exist M P N

˚ and a constant L0 such that, for every current rμs P

PCurrpFn,F ^ Apφqq ´ pV´, and every m ě M , we have

‖φm
pμq‖F ě 3m´ML0‖μ‖F .

Proof. Let f : G Ñ G be as in Remark 5.15. By Lemma 6.1(2), there exist a
constant δ ą 0 and an open neighborhood U of Δ`pφq such that, for every projective
current rμs P U , we have gprμsq ě δ. We first prove Corollary 6.5 for currents
rμs P U . By Proposition 2.15, it suffices to prove the result for rational currents.
By Lemma 6.1(1), since U X KPGpφq “ ∅, for every element w P Fn such that
rηrwss P U , we have gprfN pγwqsq ě δ. By Lemma 5.16(1) and Lemma 5.3, there
exists a constant K1 ą 0 depending on δ such that for every m ě N and for every
element w P Fn such that rηws P U , we have

�expprfm
pγwqsq ě TELpm ´ N, rfN

pγwqsq ě 3m´NK1�expprfN
pγwqsq.

Since PCurrpFn,F^Apφqq´ pV´ is compact and sinceKPGpφq Ď pV´, by Lemma 3.27
and Lemma 3.28(3), there exists a constant K2 ą 0 such that for every m ě N and

for every element w P Fn such that rηrwss P U , we have
�expprfN

pγwqsq

�F prfN pγwqsq
ě K2. Thus,

we have

�F prfm
pγwqsq ě �expprfm

pγwqsq

ě 3m´NK1�expprfN
pγwqsq ě 3n´MK1K2�F prfN

pγwqsq.

We set K3 “ K1K2. By compactness of PCurrpFn,F ^ Apφqq and Lemma 3.28(3),
there exists L ą 0 such that for every current rμs P PCurrpFn,F ^ Apφqq, we have
‖φN

pμq‖F
‖μ‖F

ě L. Hence for every m ě N and for every element w P Fn such that

rηrwss P U , we have

�F prfm
pγwqsq ě 3m´NK3L�F pγwq.

Hence the proof follows when rμs P U .
We now prove the general case. By Theorem 6.4, there exists M1 P N

˚ such

that, for all m ě M1 and rμs P PCurrpFn,F ^ Apφqq ´ pV´, we have φmprμsq P U .
Let M “ M1 ` N . By the above, Lemma 3.27, the density of rational currents

(see Proposition 2.15) and continuity of φ, for every current rμs R pV´, for every
n ě M , we have

‖φn
pμq‖F ě 3n´MK3L‖φM1pμq‖F .

By compactness of PCurrpFn,F ^ Apφqq and Lemma 3.28(3), there exists L1 ą 0

such that for every current rμs P PCurrpFn,F ^ Apφqq, we have ‖φM1pμq‖F
‖μ‖F

ě L1.

Hence for every n ě M , we have

‖φn
pμq‖F ě 3n´MK3LL

1‖μ‖F .
This concludes the proof. �
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