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NORTH-SOUTH TYPE DYNAMICS OF RELATIVE ATOROIDAL
AUTOMORPHISMS OF FREE GROUPS ON A RELATIVE
SPACE OF CURRENTS

YASSINE GUERCH

ABSTRACT. This paper, which is the second of a series of three papers, studies
dynamical properties of elements of Out(Fy), the outer automorphism group
of a nonabelian free group Fy. We prove that, for every exponentially growing
outer automorphism of Fy, there exists a preferred compact topological space,
the space of currents relative to a malnormal subgroup system, on which ¢
acts by homeomorphism with a North-South dynamics behavior.

1. INTRODUCTION

Let n > 2. This paper is the second of a sequence of three papers where we study
the growth of the conjugacy classes of elements of F;, under iterations of elements
of Out(Fy), the outer automorphism group of a nonabelian free group of rank n.
An outer automorphism ¢ € Out(F,) is exponentially growing if there exist g € Fy,
a free basis B of F, and a constant K > 0 such that, for every m € N* we have

U (6™ ([9]) = ",

where fo5 (6™ ([g])) denotes the length of a cyclically reduced representative of
®™([g]) in the basis B. Such an element g is said to be exponentially growing
under iteration of ¢ and the set of elements of F, which have exponential growth
under iteration of ¢ is the pure exponential part of ¢. It is known, using for instance
the train track technology of Bestvina and Handel (see [BH]), that every element g
of F, which is not exponentially growing under iteration of ¢ is polynomially grow-
ing under iteration of ¢, that is, there exists an integer K € N such that, for every
m € N*, we have

ls (6™ ([9]) < (m + 1)¥.

Initiated by Svarc, Milnor and Wolf, and particularly developed by Guivarc’h,
Gromov and Grigorchuk, growth problems in groups are a major field of study in
geometric and dynamical group theory, see for instance [LS|[Manl[Hel|]. Many works
study the subfield of the element growths under iteration of group automorphisms
(see for instance [BFHILLevi[CU]), for instance in the context of hyperbolic groups.
See in particular [Coul for examples of intermediate growth rates. As another exam-
ple, Dahmani and Krishna [DS] found a sufficient condition for the suspension of an
automorphism of a hyperbolic group to be relatively hyperbolic, and this condition
is linked with the structure of the set of all elements of the hyperbolic group which
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have polynomial growth under iterations of the considered automorphism. Such
exponentially growing outer automorphisms of F; were already studied in distinct
contexts. For instance, Bestvina, Feighn and Handel [BFHI] used them to prove
the Tits alternative for Out(Fy).

If ¢ € Out(Fy,), we denote by Poly(¢) the set of elements g of F, such that g is
polynomially growing under iteration of ¢. Let Poly(H) =) seH Poly(¢). The aim
of this series of papers is to prove Theorem [Tl

Theorem 1.1. Letn = 3 and let H be a subgroup of Out(Fy,). There exists ¢ € H
such that Poly(¢) = Poly(H).

Informally, Theorem [[.T] shows that the exponential growth of a subgroup H of
Out(F,) is encaptured by the exponential growth of a single element of H. Indeed,
if g € Iy, has exponential growth for some element ¢ € H, then g has exponential
growth for an element ¢ € H given by Theorem [[.T] The proof relies on dynamical
properties of the action of outer automorphisms on some preferred topological space.
In this article, we study the dynamical properties of the elements of the subgroup
H of F, that will be used in [Gue2] in order to construct an element ¢ € H given
by Theorem [T}

Let ¢ € Out(F,) be an exponentially growing outer automorphism. In this
article, we construct natural (compact, metrizable) topological spaces X on which
a subgroup of Out(F,) containing ¢ acts by homeomorphisms with the additional
property that ¢ acts with North-South dynamics: there exist two proper disjoint
closed subsets of X such that every point of X which is not contained in these
subsets converges to one of the two subsets under positive or negative iteration of
¢. North-South dynamics are preferred tools to apply ping-pong arguments similar
to the ones of Tits [Tit] and are used to obtain structural properties of some groups.

The topological space X that we use in the proof of Theorem [I.1]is constructed
in such a way that it allows us to create a dictionary between dynamical properties
of the action of ¢ on X and growth properties of elements of F;, under iteration of ¢.
In order to construct X, we first need to detect all the elements g of F;, such that the
length of [g] with respect to any basis of F, grows at most polynomially fast under
iteration of ¢. Levitt [Lev] proved that there exist finitely many finitely generated
subgroups Hi, ..., Hy of Fy such that the conjugacy class of an element g of F}, is not
exponentially growing under iteration of ¢ if and only if ¢ is contained in a conjugate
of some H; for i € {1,...,k}. Moreover, the set A(¢p) = {[Hi],...,[Hk]} is a
malnormal subgroup system: for every i € {1,...,k}, the group H; is a malnormal
subgroup of F; and for all distinct subgroups A and B such that [A4],[B] € A(¢),
we have A n B = {e}. Every element of F, which is contained in a conjugate of
some H; with i € {1,...,k} has polynomial growth under iteration of ¢. Moreover,
we have Poly(¢) = U;_, U,er, 9Hig ™"

In [Guel], we constructed a compact, metrizable space, called the space of pro-
jectivised currents relative to A(¢), denoted by PCurr(Fy, A(¢)), which is the
space of projectivised Radon measures on the double boundary of Fy relative to
A(9), equipped with the weak-x topology (see Section [24] for precise definitions).
In [Guel], we proved that the set of currents associated with A(¢)-nonperipheral
conjugacy classes of elements of g of F;, that is, such that ¢ is not contained in
the conjugacy class of some H; with ¢ € {1,...,k}, is dense in PCurr(Fy, A(¢)).
Thus, the set of conjugacy classes of elements of F, whose length grows expo-
nentially fast under iteration of ¢ is dense in PCurr(Fy, A(¢)). If we denote by
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Out(Fy, A(¢)) the subgroup of Out(Fy) consisting of every element ¢ € Out(Fy)
such that ¥ (A(¢)) = A(¢), the group Out(Fy, A(¢)) acts by homeomorphisms on
PCurr(Fy, A(¢)) by pushing forward the measures. In this article, we prove Theo-
rem

Theorem 1.2 (See Theorem [B.1]). Let n > 3 and let ¢ be an exponentially growing
outer automorphism. The outer automorphism ¢ acts with North-South dynamics
on the space PCurr(Fy,, A(¢)).

In fact, we prove a slightly stronger result since we prove a uniform North-South
dynamics result, that is, the convergence in the North-South dynamics statement
can be made uniform on compact subsets of PCurr(Fy, A(¢)). As explained above,
North-South dynamics results given by Theorem [[2]will be a key point in the proof
of Theorem [[1]

Such dynamical results already appear in similar contexts. For instance, Tits
proved in [Tit] its alternative for linear groups using North-South dynamics and
ping-pong arguments. In the context of the mapping class group Mod(S) of a com-
pact connected orientable surface S of genus at least 2, pseudo-Anosov elements
act with North-South dynamics on the space of projectivised measured foliations
([Thu], see also the work of Ivanov [Ival]) or the curve complex [MM]. Using this
North-South dynamics, Ivanov [Ival (see also the work of McCarthy [McC]) later
proved a Tits alternative for subgroups of Mod(S). Similarly, North-South dy-
namics results were obtained for certain classes of outer automorphisms of Fj.
For instance, fully irreducible outer automorphisms act on the compactified Outer
space [LL] or the space of projectivised currents ([Mar], see also the work of Uyanik
[Uyal]) with a North-South dynamics and atoroidal outer automorphisms act on
the space of projectivised currents with a North-South dynamics [LU2,Uya2]. Clay
and Uyanik [CU] applied this result in the proof of the fact that, for every subgroup
H of Out(F,), either H contains an atoroidal outer automorphism or there exists
a nontrivial element g of F}, such that, for every element ¢ € H, there exists k € N*
such that we have ¢*([g]) = [g]. Such dynamical results were later extended to
relative contexts by Gupta [Gupll|Gup2]. We note that if F is a nonsporadic free
factor system and if ¢ € Out(Fy, F) is fully irreducible and atoroidal relative to F,
then Theorem Bl implies [Gupl], Theorem A]. Moreover, the North-South dynam-
ics result proved by Gupta is not sufficient to prove Theorem [[.2] since we also need
to deal with sporadic free factor systems.

In order to prove Theorem [[LT] we will need a slightly stronger result than The-
orem Indeed, let ¢ € Out(Fp) and let A(¢) = {[Hi],...,[Hr]}. Suppose
that ¢ preserves the conjugacy class of a corank one free factor A of Fy. Let
A(¢) A A be the malnormal subgroup system consisting in the conjugacy classes
of the intersection of the conjugates of the subgroups H; with ¢ € {1,...,k} with
A. By Theorem [[I2 there exist closed disjoint subsets Ay(¢p|a) such that the
outer automorphism ¢|4 € Out(A4, A(¢) A A) acts with North-South dynamics on
PCurr(A4, A(¢) A~ A) with respect to Ay (¢|a). There is a canonical embedding
PCurr(A, A(¢) A A) — PCurr(Fy, A(¢) A A), and we denote by Ay (¢) the image
of Ay (p|a) in PCurr(Fy, A(¢) A A). We will need to understand the dynamics of
¢ on the space PCurr(Fy,, A(¢) A A). As there might exist elements in Fy, which
have polynomial growth under iterations of ¢ and which are not contained in a
conjugate of A, one cannot apply Theorem to obtain a North-South dynamics
result. However, we obtain the following result.
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Theorem 1.3 (See Theorem [6.4). Let n > 3 and let ¢ € Out(Fy) be an expo-
nentially growing outer automorphism which preserves a corank one free factor A.
There exist two closed compact subsets Ai(@ of PCurr(Fy, A(¢) A A) such that the
following holds. Let Uy be open neighborhoods of Ay (¢) in PCurr(Fy, A(¢) A A) and
IA/J_F be open neighborhoods of Ay (¢) in PCurr(Fy, A(¢) A A). There exists M € N¥
such that for every n = M, we have

=" (PCurr(F,, A(¢) A A) — V) € Uy..

In [CU, Theorem 4.15], Clay and Uyanik proved an analogue of Theorem [[3]
in the context of atoroidal outer automorphisms of F,. In Theorem [[3] the two
closed subsets Ai(qﬁ) have nonempty intersection, so that Theorem [I3] is not a
North-South dynamics result as defined above. However, Theorem [[J] gives a
sufficiently precise description of the dynamics of ¢ for our considerations. The
intersection A+ (¢) N A_ (¢) corresponds informally to the polynomial growth part
of ¢. This intersection, denoted by K pg in the rest of the article, is the closure in
PCurr(Fy,, A(¢) A A) of the (A(¢) A A)-nonperipheral elements of F, which have
polynomial growth under iteration of ¢. In Section[3.3] we present a complete study
of the subspace Kpg in a more general context.

In fact, SectionBlis devoted to the study of the polynomial growth of an exponen-
tially growing outer automorphism. Following the works of Bestvina, Feighn and
Handel [BFHILBEFH2], of Feighn and Handel [FH| and of Handel and Mosher [HM],
we use appropriate relative train track representatives of a power of an exponen-
tially growing outer automorphism ¢ in order to describe A(¢) geometrically. It
gives rise to a (not necessarily connected) topological graph G* such that the fun-
damental group of every connected component G¥ of G* injects into Fy, and such
that the set {[m1(G¥)]}gxen,(qx) Where mi(GY) is viewed as a subgroup of [y, is
equal to A(¢) (see Proposition BI4]). We then use this characterization of A(¢) in
Section B3] in order to describe the subset Kpg.

We now sketch a proof of Theorem The proofs of Theorem and Theo-
rem [[.3] given in this paper are long and quite technical, this is why we postpone
the proof of Theorem [Tl in [Gue2]. Let ¢ € Out(F,) be exponentially growing.
The first step is to construct the closed subsets Ay (¢) associated with ¢ as de-
fined in Theorem This is done in Section dl In order to construct them,
we use as inspiration the construction given by Lustig and Uyanik in [LU2] (see
also [Uya2|Gupl]). We choose an appropriate relative train track representative
f: G — G of a power of ¢, where G is a graph whose fundamental group is isomor-
phic to Fy,. A current of A, (¢) is then constructed by considering occurrences of
paths in lim,, .o f™(e), where e is an edge in G whose length grows exponentially
fast under iteration of f (see Proposition [44]). Currents of A_(¢) are then defined
similarly using a representative of a power of ¢~!. We then prove Theorem in
Section Bl Let [u] € PCurr(Fy, A(¢)) — AL (¢p) be the current associated with a
A(¢)-nonperipheral conjugacy class [w] € F,. Then [w] is represented by a circuit
7w in the graph G. In order to show that we have lim,,_o ¢™([1]) € Ay (@), we
prove that the proportion of the path f™(~,,) which grows exponentially fast under
iteration of f tends to 1 as m goes to infinity. This fact is sufficient to prove that

lim ¢™([u]) € Ay (9)

m—00
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(see Lemma [B20). We then conclude the proof using the density of currents as-
sociated with nonperipheral elements in F;, proved in [Guel]. Theorem [[3is then
proved in Section [0l using a combination of Theorem and the description of the
space Kpg.

2. PRELIMINARIES

2.1. Malnormal subgroup systems of F,. Let n be an integer greater than 1
and let F, be a free group of rank n. A subgroup system of F, is a finite (possibly
empty) set A whose elements are conjugacy classes of nontrivial (that is distinct
from {1}) finite rank subgroups of F,. There exists a partial order on the set of
subgroup systems of Fy, where A; < A, if for every subgroup A; of Fy such that
[A1] € Ay, there exists a subgroup A, of F, such that [A2] € Az and A; is a
subgroup of As. The stabilizer in Out(F,) of a subgroup system A, denoted by
Out(Fy, A), is the subgroup of Out(F;) consisting of all elements ¢ € Out(F,) such
that ¢(A) = A.

Recall that a subgroup A of F}, is malnormal if for every element x € F,, — A,
we have zAx~! n A = {e}. A subgroup system A is said to be malnormal if every
subgroup A of F, such that [A] € A is malnormal and, for all subgroups Ay, Ay of
F, such that [A;],[A2] € A, if A} n Ag is nontrivial then A; = As. An element
g € F, is A-peripheral (or simply peripheral if there is no ambiguity) if it is trivial
or conjugate into one of the subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by
the free factor systems. A free factor system of Fy is a (possibly empty) set F
of conjugacy classes {[A1],...,[A]} of nontrivial subgroups Ay, ..., A, of F, such
that there exists an integer k € N with F, = Ay *...x A, % Fj. The free factor system
F is sporadic if (k + r, k) < (2,1) for the lexicographic order, and is nonsporadic
otherwise. Therefore, the sporadic free factor systems are those of the form {[C]}
where C has rank at least equal to n — 1 and those of the form {[A],[B]} with
F, = A= B. An ascending sequence of free factor systems F; < ... < F; = {[F,]}
of F, is called a filtration of F.

Given a free factor system F of Fy, a free factor of (Fy,F) is a subgroup A of
F, such that there exists a free factor system F' of F, with [A] € 7/ and F < F'.
When F = @, we say that A is a free factor of F,. A free factor of (Fy, F) is proper
if it is nontrivial, not equal to {[Fy]} and if its conjugacy class does not belong to
F.

Another class of examples of malnormal subgroup systems is the following one.
An outer automorphism ¢ € Out(Fy) is ezponentially growing if there exists g € Iy,
such that the length of the conjugacy class [g] of g in F}, with respect to some basis of
F, grows exponentially fast under iteration of ¢. If ¢ € Out(F,) is not exponentially
growing, then ¢ is polynomially growing. For an automorphism « € Aut(F,), we say
that « is exponentially growing if there exists g € F;, such that the length of g grows
exponentially fast under iteration of a. Otherwise, a is polynomially growing.

Let ¢ € Out(Fy) be exponentially growing. A subgroup P of F, is a polynomial
subgroup of ¢ if there exist k € N* and a representative a of ¢* such that a(P) = P
and «|p is polynomially growing.
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By [Levl Proposition 1.4], there exist finitely many conjugacy classes [Hy], ...,
[H] of maximal polynomial subgroups of ¢. Moreover, the proof of [Lev, Propo-
sition 1.4] implies that the set H = {[H1],...,[Hx]} is a malnormal subgroup sys-
tem. Indeed, Levitt shows that there exists a nontrivial R-tree T" in the boundary of
Culler and Vogtmann Outer space [CV] on which F;, acts with trivial arc stabilizers,
such that ¢ preserves the homothety class of T' and such that the groups H; ..., Hy
are elliptic in T. If two distinct subgroups A, B of F}, such that [A],[B] € H fix
distinct points in 7', then their intersection is trivial. If A and B fix the same point
x in T, then, up to taking a power of ¢, the element ¢ preserves [Stab(z)] and an
inductive argument on the rank using ¢|gian() (the rank of Stab(z) is less than
n by a result of Gaboriau-Levitt [GL]) shows that the intersection of A and B is
trivial. We denote this malnormal subgroup system by A(¢).

Note that if H is a subgroup of F, such that [H] € A(¢), there exists a repre-
sentative ®~1 of ¢! such that ®~1(H) = H and ®~!|x is polynomially growing.
Hence we have A(¢) < A(¢~!). By symmetry, we have

(1) Alg) = Alo™).

Let A be a malnormal subgroup system and let ¢ € Out(F,, A) be a relative outer
automorphism. We say that ¢ is atoroidal relative to A if, for every k € N*, the
element ¢ does not preserve the conjugacy class of any A-nonperipheral element.
We say that ¢ is expanding relative to A if A(¢) < A. Note that an expanding
outer automorphism relative to A is in particular atoroidal relative to .A. When
A = &, then the outer automorphism ¢ is expanding relative to A if and only if
for every nontrivial element g € Fy,, the length of the conjugacy class [g] of ¢ in
F;, with respect to some basis of F, grows exponentially fast under iteration of ¢.
Therefore, by a result of Levitt [Levl Corollary 1.6], the outer automorphism ¢ is
expanding relative to A = & if and only if ¢ is atoroidal relative to A = &.

Let A = {[A1],...,[A+]} be a malnormal subgroup system and let F be a free
factor system. Let ¢ € {1,...,r}. By [SW]| Theorem 3.14] for the action of A4; on
one of its Cayley graphs, there exist finitely many subgroups AZ(-l), e ,Agki) of A;
such that:

(1) for every j € {1,...,k;}, there exists a subgroup B of F, such that [B] € F
and Al(-j) = Bn Aj;

(2) for every subgroup B of F, such that [B] € F and B n A; # {e}, there
exists j € {1,..., k;} such that AEJ) =Bn A;

(3) the subgroup Agl) * Lk Az(.ki) is a free factor of A;.

Thus, one can define a new subgroup system as

FAA= O{[AS)], (AP

Since A is malnormal, and since, for every i € {1,...,r}, the group Agl) KLk Agki)

is a free factor of A;, it follows that the subgroup system F A A is a malnormal
subgroup system of Fy,. We call it the meet of F and A.

2.2. Graphs, markings and filtrations. Let n > 2. A marked graph is a pointed
(at a vertex *), connected, finite graph G (in the sense of [Ser]) whose fundamental
group is isomorphic to F; which is equipped with a marking, that is an isomorphism
p: Fn — m (G, *).
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We denote by VG (resp. EG) the set of vertices (resp. edges) of G. Given an
edge e of G, we denote by o(e) the origin of e, by t(e) the terminal point of e and
by e~! the edge of G such that o(e™!) = t(e) and t(e™!) = o(e). An edge path
v of length m is a concatenation of m edges v = ejes...e,, such that for every
ie{l,...,m—1}, we have t(e;) = o(e;+1). The length of ~y is denoted by £(7). The
edge path v is reduced if for every i € {1,...,m — 1}, we have ¢; # e;ll. A reduced
edge path is cyclically reduced if t(e,,) = o(e1) and e,, # e;'. A cyclically reduced
edge path is also called a circuit. For any edge path v, there exists a unique reduced
edge path homotopic to v relatively to endpoints, we denote it by [v].

Let G and G’ be two marked graphs. A graph map is a pointed homotopy
equivalence f: G — G’ such that f(VG) € VG’ and such that the restriction of
f to the interior of an edge is an immersion. Thus, for every edge e € EG, the
image f(e) determines a reduced edge path [f(e)]. Given ¢ € Out(F,) and (G, p)
a marked graph, a topological representative of ¢ is a graph map f: G — G such
that the outer automorphism class of p=t o fy 0 p € Aut(F},) is ¢.

Let f: G — G be a topological representative. Let w € F,. We denote by 7,
the unique circuit in G which represents the conjugacy class of w.

A filtration for G is an increasing sequence of f-invariant (not necessarily con-
nected) subgraphs @ = Go S G1 & ... & G, = G. Let r € {1,...,k}. The r-th
stratum in this filtration, denoted by H,., is the (not necessarily connected) closure
of G, — G,_1. For every r € {1,..., k}, there exists a square matrix M, associated
with the stratum H, called the transition matriz of H,. The rows and columns of
M, are indexed by the undirected edges in H,. and the entry associated with the
pair of undirected edges defined by (e, ¢’) € (EH,)? is the number of occurrences
of ¢’ and €/~1 in [f(e)].

Recall that a nonnegative square matrix M = (M; ;); ; is irreducible if for every
(i,7), there exists p = p(i,7) such that Mi’fj > 0 and that M is primitive if there

exists p € N* such that every entry of M? is positive. For r € {1,...,k}, we say
that the stratum H, is irreducible if its associated matrix is irreducible and we
say that H, is primitive if its associated matrix is primitive. Let r € {1,...,k}

and suppose that M, is irreducible. Then it has a unique real eigenvalue A, > 1
called the Perron-Frobenius eigenvalue. Let H, be an irreducible stratum. Then
H, is exponentially growing (EG) if A, > 1 and is nonexponentially growing (NEG)
otherwise. Finally, if the matrix associated with the stratum H, is the zero matrix,
then H, is called a zero stratum.

Let G be a marked graph of F;, and let K be a (possibly disconnected) subgraph
of G. The subgraph K determines a free factor system F(K) of F, as follows. Let
C1,...,Ck be the noncontractible connected components of K. Then, for every
i€ {l,...,k}, the connected component C; determines the conjugacy class [A4;] of
a subgroup A; of m1(G). Then the set {[A1],...,[Axr]} is a free factor system F(K)
of Fy.

Let 1 < ... < F; = {[Fa]} be a filtration of F,. A geometric realization of the
filtration is a marked graph G equipped with an increasing sequence

Q:GogGlg...ng:G

of subgraphs of G such that for every k € {1,...,i} there exists £ € {1,...,j} such
that F, = F(Gy).
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2.3. Train tracks and CTs. In this section we introduce the technology of train
tracks. Train tracks are a type of graph maps introduced by Bestvina and Handel
[BH]. Even though there exist outer automorphisms of F, which do not have a
topological representative which is a train track, every outer automorphism has a
power which has a topological representative called a completely split train track
map (CT). CT maps were introduced by Feighn and Handel [FH]. The definition of
a CT map being quite technical, we will only state the relevant properties needed
for the rest of the article. First we need some preliminary definitions.

Let G be a marked graph of F; and let f: G — G be a graph map. The map f
induces a derivative map Df: EG — EG on the set of edges as follows. For every
e € EG, the map Df(e) is equal to the first edge of the edge path f(e). A turn in
G is an unordered pair {ej, ez} of edges in G with o(e1) = o(ez). A turn {ey, ez}
is degenerate if e; = es, and is nondegenerate otherwise. A turn {ey,es} is illegal
if there exists k € N* such that {(Df)*(e1), (Df)*(e2)} is degenerate, and is legal
otherwise. An edge path v = ejes...¢; is legal if for every j € {1,...,i — 1}, the
turn {ej_l,ejH} is legal.

In order to deal with relative outer automorphisms, we also need a notion of
relative legal paths. Let @ = Gy € G1 & ... & G; = G be the geometric realization
of some filtration of F, which is f-invariant and let r € {1,...,5}. We say that a
turn {e;,es} is contained in the stratum H, if {e1,ea} S EH,. An edge path v of
G is r-legal if every turn in v that is contained in H, is legal. A connecting path
for H, is a nontrivial reduced path « in G,_; whose endpoints are in G,._1 N H,.
A path v in G is r-taken (or taken if 7 is r-taken for some r) if it is contained in
the reduced image of an iterate of an edge e € EHT, where H, is an irreducible
stratum. The height of a path 7 is the maximal r such that v contains an edge of
H,. We can now define the notion of a relative train track map due to Bestvina
and Handel [BH].

Definition 2.1. Let n > 3. Let G be a marked graph and let f: G — G be a
graph map equipped with an f-invariant filtration @ =Gy S G1 & ... & G; = G.
The map f is a relative train track map if, for each exponentially growing stratum
H,, the following holds:

(1) for every edge e € EH, and every k € N*, we have (Df)k(e) e EH,;

(2) for every connecting path v for H,, the reduced path [f(v)] is also a con-

necting path for H,;
(3) if 7y is a height r reduced edge path which is r-legal, then so is [f(7)].

In order to explain the properties of CT maps that we will use in this paper, we
will need some further definitions regarding edge paths in a graph.

Definition 2.2. Let n > 3 and let G be a marked graph of Fy equipped with an
f-invariant filtration @ = Go & G1 & ... & G; = G. Let  be an edge path of G.

(1) The path ~ is a periodic Nielsen path if there exists k € N* such that
[f%(7)] = 7. The minimal such k is the period, and if k = 1, then v is a
Nielsen path.

(2) A (periodic) indivisible Nielsen path ((p)INP) is a (periodic) Nielsen path
that cannot be written as a nontrivial concatenation of (periodic) Nielsen
paths.

(3) The path ~ is an ezceptional path if there exist a cyclically reduced Nielsen
path w, edges e1,eq € EG and integers dq,ds,p € Z* such that for every
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i€ {1,2}, we have f(e;) = e;w? and v = eywPe; . The value |p| is called
the width of ~.

Definition 2.3. Let n > 3, let G be a marked graph of F, and let f: G — G be a
relative train track map equipped with a filtration @ = Go £ G1 & ... € G; = G.
Let v be a reduced edge path or a circuit of G.
(1) A splitting of v is a decomposition of 7 into edge subpaths v = y172. ..
such that for every k € N* we have

[FE0] = [F ()] [ (),

that is one can tighten the image of f*(v) by tightening the image of every
f¥(7;) (where o(v) is the base point in the case where 7 is a circuit).

(2) Let v be a circuit. A circuital splitting is a splitting v = 7 ...7; of v such
that for every k € N*, the concatenation [f*(71)]...[f*(7:)] defines a path
whose initial and terminal directions are distinct.

(3) Let v = y172 .. .7; be a splitting of . The splitting is complete if for every
je{1,...,4}, the subpath ~; is one of the following:

an edge in an irreducible stratum;

an INP;

an exceptional path;

a connecting path in a zero stratum that is both maximal (for the

inclusion in +) and taken.

Let n > 2, let G be a marked graph of F, and let f: G — G be a relative train
track map with respect to a filtration @ = Go & G1 & ... & G; = G. Let y be an
edge path of G. Such paths in the above list are called splitting units. When ~ has
a complete splitting, we say that v is completely split.

Definition 2.4 ([HM| Fact 2.16]). Let p € {0,...,5}. Let v = y172...7; be a
splitting of . This splitting is complete relatively to G), or relatively complete
if there is no ambiguity, if for every j e {1,...,4}, the subpath ~; is one of the
following:

e a splitting unit of height at least equal to p + 1;
e a subpath in G,.

We now describe some properties of CT maps whose complete definition can be
found in [FH| Definition 4.7].

Proposition 2.5. Letn > 3 and let G be a marked graph of F,. Let f: G — G be
a completely split train track (CT) map. Then f satisfies the following properties.

(1) The map f is a relative train track map and every stratum in G is either
irreducible or a zero stratum [FH| Definition 4.7].

(2) If H, is an NEG stratum, then H, consists of a single edge e,.. Moreover,
either e, is fized by f or f(e.) = e,u, where w, is a nontrivial completely
split circuit in G,_1. The terminal endpoint of each NEG stratum is fized
[FH, Lemma 4.21].

(3) For every filtration element G, the stratum H, is a zero stratum if and
only if H, is a contractible component of G, [FH, Lemma 4.15].

(4) For every zero stratum H,., there exists a unique £ > r such that Hy is an
EG stratum and, for every vertex v e VH,, we have ve VH,. nVH; and
the link of v is contained in VH, 0V H, [FH| Definition 4.7].
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(5) Ewvery periodic Nielsen path has period one [FH, Lemma 4.13].

(6) For every edge e in an irreducible stratum, the reduced path f(e) is com-
pletely split. For every taken connecting path v in a zero stratum, [f(vy)] is
completely split [F'H, Definition 4.7].

(7) Every completely split path or circuit has a unique complete splitting (see
[FH, Lemma 4.11]).

(8) If v is an edge path, there exists kg € N* such that for every k = ko, the
reduced path [f* ()] is completely split [FH, Lemma 4.25].

(9) If H, is an EG stratum, there is at most one INP p, of height r. The initial
edges of p. and p; ! are distinct oriented edges in H, |[FH, Corollary 4.19].

(10) If H, is a zero stratum, no Nielsen path intersects H, in at least one edge
[HM, Fact 1.1.43].

(11) Let H, be an NEG stratum such that H,. = {e.}, such that f(e,) = eyu,
and such that u, is not trivial. There exists an INP o which intersects H,
nontrivially if and only if u, is a Nielsen path and there exists s € Z such
that o = eyue,;t [FH, Definition 4.7].

Definition 2.6. Let n > 2 and let G be a marked graph of Fy,. Let f: G — G be
a CT map. Let H, be an NEG stratum and let e, be the edge of H,.. Let u, be
such that f(e,) = e,u,. The edge e, is called a fized edge if u, is trivial, a linear
edge if u, is a Nielsen path and a superlinear edge otherwise.

Lemma 2.7 ([HM, Fact 1.39]). Let n = 2 and let G be a marked graph of Fy,. Let
f: G — G be a CT map. Let v be a Nielsen path. Then ~y is completely split, and
all terms in the complete splitting of v are fixed edges and INPs.

Lemma 2.8 ([HM| Fact 1.41]). Let n > 2 and let G be a marked graph of Fy,. Let
f:G— G be a CT map.
(1) Let H, be a zero stratum and let H, be the EG stratum given by Proposi-
tion [Z5(4). There does not exist an INP of height (.
(2) Let H, be an EG stratum and let p, be an INP of height r. Then p, has
a decomposition p, = agbyay ...bgap where, for every i € {0,...,k}, the
subpath a; is a nontrivial path contained in H, and for everyie {1,...,k},
the subpath b; is a Nielsen path contained in G,._1.

An INP is an FG INP if the maximal stratum it intersects is an EG stratum
and is an NEG INP otherwise. Note that, by Proposition [2.3)(9), there exist only
finitely many EG INPs.

Lemma 2.9. Letn > 2. Let ¢ € Out(Fy). Suppose that there exists a CT map
f: G — G representing a power of ¢. Let v be a nontrivial path in a zero stratum.

There does not exist a reduced edge path v = o' where « is either an INP or a
fized edge.

Proof. Suppose towards a contradiction that such a path v = o' exists. Let H,.
be the zero stratum containing +’. Note that, by Proposition 2.5(10), the path
a does not contain edges in H,.. By Proposition 25(4), there exists £ > r such
that Hy is an EG stratum and such that any edge adjacent to a vertex in H, and
not contained in H, is in Hy. Hence a has height at least ¢. Since H, is an EG
stratum, the path « is not a fixed edge. Hence « is an INP. By Lemma [Z8(1), the
height of « is not equal to £. Let j > ¢ be the height of a. We distinguish between
three cases according to the nature of the stratum H;. By Proposition 2.5[10), the
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stratum H; is not a zero stratum. Hence, by Proposition 2.5(1), the stratum H; is
irreducible. By Proposition 2.5(11), if H; is an NEG stratum, then « is of the form
o= ejwkegl, where e; € Hj, k is an integer and w is a closed Nielsen path in G;_;.
But then e;l is adjacent to a vertex in H,. This contradicts Proposition 2:5(4)
since j > ¢. If H; is an EG stratum, then by Lemma [28(2), the path « is the
concatenation of subpaths in H; and Nielsen paths of height at most j — 1, and o
ends with an edge in H;. By Proposition [2.5)(4), we see that j = ¢. This contradicts

Lemma [28|(1). O

Theorem 210 due to Feighn and Handel is the main existence theorem of the
CT maps.

Theorem 2.10 ([FH, Theorem 4.28, Lemma 4.42]). Let n > 3. There ezists a
uniform constant M = M(n) = 1 such that for every ¢ € Out(F,) and every ¢M -
invariant filtration C of F,, there exists a CT map f: G — G that represents ¢M
and realizes C.

2.4. Relative currents. In this section, we define the notion of currents of Fy
relative to a malnormal subgroup system. The section follows [Guel] (see the work
of Gupta [Gupl] for the particular case of free factor systems and Guirardel and
Horbez |GH] in the context of free products of groups). It is closely related to the
notion of conjugacy classes of A-nonperipheral elements of Fy,.

Let 0xFy be the Gromov boundary of F,. The double boundary of F, is the
quotient topological space

PFy = (0 Fn X 00 Fy\A) / ~,

where ~ is the equivalence relation generated by the flip relation (z,y) ~ (y, ) and
A is the diagonal, endowed with the diagonal action of F,,. We denote by {z,y} the
equivalence class of (z,y).

Let T be the Cayley graph of F, with respect to a free basis 8. The boundary
of T is naturally homeomorphic to 0, F, and the set 0?F, is then identified with
the set of unoriented bi-infinite geodesics in T'. Let v be a finite geodesic path in
T. The path v determines a subset in 02F, called the cylinder set of v, denoted
by C(v), which consists of all unoriented bi-infinite geodesics in T that contain .
Such cylinder sets form a basis for a topology on 02F,, and in this topology, the
cylinder sets are both open and closed, hence compact. The action of F, on 0*F,
has a dense orbit.

For every nontrivial subgroup A of Fy, let T4 be the minimal A-invariant sub-
tree of T. Let A = {[A1],...,[Ar]} be a malnormal subgroup system of F,. By
malnormality of A, there exists L € N* such that for all distinct subgroups A, B
of Fy such that [A],[B] € A, the diameter of the intersection T4 N T is at most
L (see for instance [HM| Section I.1.1.2]). Let i € {1,...,r}. Let I'; be the set of
subgroups B of F, such that there exists gg € Fy such that B = gBAl-g];1 and the
tree T contains the base point e of T. Note that, by malnormality of A, for every
i€ {l,...,r}, the set T'; is finite. For an element w € Fy, let ¥, be the geodesic
path in T starting at e and labeled by w. Let C; be the set of elements w of Fy
such that the length of 7, is equal to L + 2 and, for every B € I';, the path 7, is
not contained in Ts. Let ¢ = (;_, C;. Since we are looking at geodesic paths of
length equal to L + 2, the set € is finite. Moreover, it only depends on the choice
of A, B and L.
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Lemma 2.11 ([Guell Lemma 2.3]). Let B, T, A = {[A441],...,[A]}, L € N¥,
Ty,...,Ty, € be as above. The finite set € = € (Ay,...,Ax) is nonempty. More-
over, it satisfies the following properties:

(1) every A-nonperipheral cyclically reduced element g € F, has a power which
contains an element of € as a subword;

(2) for every A-nonperipheral cyclically reduced element g € Fy, if ¢4 is the
geodesic ray in T starting from e obtained by concatenating infinitely many
edge paths labeled by g, there exists an edge path in cq labeled by a word in
¢ at distance at most L + 2 from \J;_y Uper, TB;

(3) if v is a path in T which contains a subpath labeled by an element of €,
then for every i € {1,...,7} and every g € Fy, the path «y is not contained
mn TgAig_l .

Let A be a nontrivial subgroup of Fy of finite rank. The induced A-equivariant
inclusion 0, A < 0 F, induces an inclusion 0?4 «— 02F,. Let

PA=J U @ (gg).
i=1geF,
Let 0%(F,, A) = 0?F, — 0% A be the double boundary of F, relative to A. This subset
is invariant under the action of F, on 0?F, and inherits the subspace topology of
0%F,.

Lemma 2.12 ([Guell Lemma 2.5]). Let Cyl(€) be the set of cylinder sets of the
form C(v), where the element of F, determined by the geodesic edge path ~y contains
an element of € as a subword. We have

A= ] co.
C(7)eCyl(¥)

In particular, the space 0*(Fy, A) is an open subset of 0> F,.

Lemma 2.13 ([Guell, Lemma 2.6, Lemma 2.7]). Letn > 3 and let A be a malnor-
mal subgroup system of F,. The space 0%(F,, A) is locally compact and the action
of Fy on 0%(F,, A) has a dense orbit.

We can now define a relative current. Let n > 3 and let A be a malnormal
subgroup system of Fy. A relative current of (F,,.A) is a (possibly zero) F,-invariant
Radon measure p on 0%(F,, A). The set Curr(F,,.A) of all relative currents on
(F,, A) is equipped with the weak-* topology: a sequence (jt, )nen in Curr(Fy, AN
converges to a current p € Curr(Fy,.A) if and only if for every Borel subset B <
0*(Fy, A) such that u(0B) = 0 (where 0B is the topological boundary of B), the
sequence (fin(B))nen converges to u(B).

The group Out(Fy, A) acts on Curr(Fyp,.A) as follows. Let ¢ € Out(Fy, A), let
® be a representative of ¢, let p € Curr(Fy, A) and let C' be a Borel subset of
0%(F,, A). Then, since ¢ preserves A, we see that ®~1(C) € d%(F,,A). Then we
set

$(1)(C) = n(@~1(0)),
which is well-defined since p is Fy-invariant.

Every conjugacy class of nonperipheral element g € F, determines a relative
current 7y, as follows. Suppose first that g is root-free, that is g is not a proper
power of any element in F,. Let v be a finite geodesic path in the Cayley graph
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T. Then np4(C(7)) is the number of axes in T' of conjugates of g that contain the
path 7. If g = h* with k > 2 and h root-free, we set Mgl = kn[n]- Such currents are
called rational currents.

Let G be a pointed connected graph whose fundamental group is isomorphic to
F,. Let G be the universal cover of G. There exists a (nonunique, but fixed) Fy-
equivariant quasi-isometry m: G — T which extends uniquely to a homeomorphism
m: 0uG — OxFy. Therefore, if 5 is a reduced edge path in é, we can define the
cylinder set in 0?F, defined by ¥ as

Cw(Y) = C([m@)))-

Let v be a reduced edge path in G and let ¥ be a lift of v in G. Let u € Curr(Fy, A).
We define the number of occurrences of v in p as

(2) s = m(Cx(7))-

For every such graph G, we fix once and for all the quasi-isometry m: G—>T.
Therefore, when the graph G is fixed, we will generally omit the mention of m. We
also define the simplicial length of u as:

lull = D7 <esmy-
eeEG
For any given reduced edge path 7, the functions (v,.> and ||.| are continuous,
linear functions of Curr(Fy, A).

Let p € Curr(Fy,, A). The support of p, denoted by Supp(p), is the support of
the Borel measure p on 0%(F,, A). We recall that Supp(u) is a closed subset of
02(F,, A).

In the rest of the article, rather than considering the space of relative currents
itself, we will consider the set of projectivised relative currents:

PCurr(Fy, A) = (Curr(Fy, A) — {0})/ ~,

where pi ~ v if there exists A € R¥ such that 4 = Av. The projective class of a
current p € Curr(Fy, A) will be denoted by [u]. We have the following properties.

Lemma 2.14 ([Guell Lemma 3.3]). Letn > 3 and let A be a malnormal subgroup
system of F,. The space PCurr(Fy, A) is compact.

Proposition 2.15 ([Guell Theorem 1.1]). Let n > 3 and let A be a malnormal
subgroup system of F,. The set of projectivised rational currents about nonperipheral
elements of Fy is dense in PCurr(Fy, A).

3. THE POLYNOMIALLY GROWING SUBGRAPH OF A CT MAP

In this section, let n > 3 and let F be a free factor system of F,. Let ¢ €
Out(Fp, F). Let f: G — G be a CT map with filtration & = Go € G; € ... &
G, = G representing a power of ¢ and such that there exists p € {1,...,k— 1} such
that F(G,) = F.

We construct a subgraph of G, called the polynomially growing subgraph of G and
denoted by Gpg, which encaptures the information regarding polynomial growth
in the graph G. We then define a notion of length relative to Gpg, called the
exponential length, which measures the time spent by an edge path outside of Gpg.
Finally, we construct a subspace of PCurr(Fy, F) which consists in the currents
whose support maps to Gpg.
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3.1. Definitions and first properties. We define in this section the polynomially
growing subgraph G pg of G and prove some of its properties.

Definition 3.1.

(1) Let Gpg be the (not necessarily connected) subgraph of G whose edges are
the edges e of G in an NEG stratum such that for every k € N*, the path
[£*(e)] does not contain a splitting unit which is an edge in an EG stratum.

(2) Let Np be the set of all Nielsen paths in G.

(3) Let Npi be the subset of N, consisting in all Nielsen paths which are
either EG INPs or concatenations of (at least 2) nonclosed EG INPs.

(4) Let Z be the subgraph of G whose edges are the edges contained in a zero
stratum.

Note that, by Lemmal[27] every path in Np, (and hence every path in Np¢) has
a complete splitting consisting in fixed edges and INPs. Since a complete splitting
is unique by Proposition 25(7), if 7 is a reduced path in Npg, then the splitting
of 7 given in Definition [B.I)(3) is the complete splitting of . Moreover, v is either
an EG INP or the complete splitting of v has at least two splitting units and all of
them are nonclosed EG INPs. In particular, the set Npg does not contain Nielsen
paths such that one of their splitting units is either a fixed edge or an NEG INP.
Moreover, a Nielsen path which is a concatenation of at least 2 splitting units and
such that one of them is a closed EG INP is not in Npg. Excluding such paths from
Npg ensures a finiteness result for Npg (see Lemma [335(1)). Informally, paths in
Npq play the role of low-dynamics bridges between connected components of Gpg
(see Figure[l). We will see in Proposition B.I4] that a cycle in G has polynomial
growth under iteration of f if and only if it is a concatenation of paths in Gpg and
paths in Npg.

Gpa Gpa

FIGURE 1. A path v in Mpg between two connected components of Gpg

Note that, with p defined at the beginning of Section Bl one can similarly define
the polynomially growing subgraph of G, denoted by G pg, 7, which is the subgraph
Gpe N Gp. We can also define similarly Ny 7, Npg,7 and Zx by considering the
paths of N, Npg and Z contained in G,,.

We now recall a lemma due to Bestvina and Handel regarding r-legal paths.

Lemma 3.2 ([BH, Lemma 5.8]). Let f: G — G be a relative train track map. Let
H, be an EG stratum. Suppose that o = ai1bias...apby is the decomposition of
an r-legal path into subpaths a; < H, and b; < G,_1 (where a1 and by might be
trivial). Then for every i € {1,...,¢}, the path f(a;) is a reduced edge path and

[f(o)] = fla)[f (b)) f(a2) ... f(ae)[f(be)]-



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 175

Note that if H, is an EG stratum and if o = a1bjas...apbs is an r-legal path
as in Lemma B2 then for every ¢ € {1,...,¢}, as a; < H,, the path a; grows
exponentially fast under iteration of f. Hence, by Lemma the path o grows
exponentially fast under iteration of f. We now prove some results regarding paths

in Npg.

Lemma 3.3. Let o be an EG INP.

(1) There do not exist nontrivial subpaths ¢,d of o such that o = cdc.
(2) Let~ e {ot'}. There do not exist paths 1, 2,73 such that o is nontrivial,

Proof.

Y1 or 3 is montrivial and o = y1y2 and ¥ = Y27y3.

(1) Let r be the height of 0. Suppose towards a contradiction that such
a decomposition o = cdc exists. By [BH, Lemma 5.11], there exist two
distinct r-legal paths « and 8 such that ¢ = «f and such that the turn
{Df(a=1),Df(B)} is the only height r illegal turn. Moreover, there exists
a path 7 such that [f(a)] = ar and [f(B)] = 77!8. Hence c is contained
in « and in 8 and is r-legal. Thus, there exist two paths d; and ds such
that o = ed; and 8 = dse.

First we claim that for every k € N*, there exists a path 73 such that
[f¥(a)] = a7y, and [f*(8)] = 7, '8. The proof is by induction on k. The
base case follows from the existence of 7. Suppose now that 7;,_1 exists.
We have:

[ ()] = [f(eme-1)] = [f(@)][f (Te-1)] = aT[f(15-1)] = a7,

where the second equality comes from the fact that « is r-legal, that « ends
with an edge in H, and from Lemma Similarly, we have [f*(B)] =
Ty 13. This proves the claim.

We now claim that, up to taking a power of f, there exists a cycle e such
that [f(c)] = aeB. Indeed, by Proposition [Z5(9), the path o starts and
ends with an edge in H,.. Hence the path c starts and ends with an edge in
H,. Since c is r-legal, we see that the length of [f*(c)] goes to infinity as k
goes to infinity by Lemma [3:2l But, for every k € N*, there exists a path 7
such that [f*(a)] = ar; and [f*(8)] = 7, ' 3. By Lemmal[32] since c is the
initial segment of o and since « is r-legal, there is no identification between
[f(c)] and [f(d1)]. Thus, there exists k; € N* such that [f*1(c)] starts with
. Similarly, there exists ko € N* such that [f*2(c)] ends with 8. Thus, up
to taking a power of f, and since the paths « and 8 are r-legal, we may
suppose that there exists a (reduced) cycle e such that [f(c)] = aef.

Finally, we claim that the cycle e is trivial. Indeed, since the paths «
and [ are r-legal, and since c¢ starts and ends with an edge in H,, we see
that

[f(a)] = [f()][f(d1)] = aeB[f(d1)]

and

[F(B)] = [f(d2)][f(c)] = [f (da)]re.
Recall that there exists k € N* such that [f(a)] = a7y, and [f(8)] = 7}, ' 8.
This implies that 7, = e[f(d1)] and that 7, = [f(d2)]ae, that is 7, =
e ta~1[f(d2)]~!. This shows that e = e, that is, e is trivial. This proves
the claim.
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Therefore, we see that [f(c)] = o = o. But o contains a height r illegal
turn, whereas ¢ is an r-legal path. This contradicts Proposition 2.5(1) and
Definition 2Ik(3). This concludes the proof of (1).

(2) Let 0,7 be as in the assertion of the lemma. Suppose towards a con-
tradiction that there exist three paths ~1,72,7v3 such that 5 is nontriv-
ial and ¢ = 172 and 7 = ~27y3. Suppose first that v = . Then ei-
ther the two copies of 75 in ¢ overlap or there exists a path 74 such that
0 = 9y472. The first case is not possible as otherwise ¢ would contain two
illegal turns. This contradicts the fact that o contains a unique illegal turn
(see [BH| Lemma 5.11]). The second case is not possible by Lemma [B3(1).
Suppose now that v = o=, But 0! = 754, . Therefore we see that
Yo 1 — 45, that is, 79 is trivial. This leads to a contradiction. This concludes
the proof. |

We now recall a result, due to Feighn and Handel which will be used in the proof
of Lemma

Lemma 3.4 ([FH, Corollary 4.12]). Let f: G — G be a CT map and let 0 =
01...05 be the complete splitting of a path o of G. If T is an initial segment of o

with terminal endpoint in some o; with j € {1,...,s}, then T = o1...0j_14; is a
splitting of T, where p; is the initial segment of o; contained in 7.
In particular, if T is a nontrivial Nielsen path, then, for every i€ {1,...,5}, the

path o; is a Nielsen path and if o; is not a single fived edge then u; = 0.

Lemma 3.5.

(1) There are only finitely many paths in Npg.

(2) Let 7,7 be paths in Npg. Suppose that v has a decomposition v = 172
such that 7o is an initial segment of v'. Then y1,v2 € Npg and v1v' € Npg.

(3) Let v,7" be paths in Npg. Suppose that v' < . Then one of the following
holds:
(a) there exist (possibly trivial) paths v1,ve € Npg such that v = y17y ve;
(b) there exists an INP o in the complete splitting of v such that v < o

and ' is not an initial or a terminal segment of o.

(4) Let v,7" be two paths in Npg. Suppose that there exist three paths V1, V2
and 3 such that v = y172, v = 7;173 and the path 173 is reduced. Then
v2 € Npg and v1v3 € Npg.

Proof. (1) First note that, since there are only finitely many EG strata in G,
there are only finitely many EG INPs by Proposition 2Z5(9). Let v be a
path in Npg which is a concatenation of at least 2 nonclosed EG INPs.
Let v = 01 ...0k be the complete splitting of v given by Lemma 271 As
~ is a concatenation of nonclosed EG INPs, every splitting unit of ~ is a
nonclosed EG INP.

By Proposition [Z5(9), an INP contained in the complete splitting of
v is entirely determined by its height. For every i € {1,...,k}, let r;
be the height of o;. Let i € {2,...,k}. Since o; is not closed, by [HM|
Fact 1.42(1)(a)], one of the endpoints of o; is not contained in G,,_;. Since
there exists a unique INP of height r; by Proposition2.5(9), either r;—; < r;
orr; < Ti_q.
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We treat the case 1 < ro, the case ro < 1 being similar. We claim that,

for every i € {1,...,k — 1}, we have r; ;1 > r;. The proof is by induction
on i. The base case is true by hypothesis. Let i € {2,...,k — 1}. Since
ri—1 < i, the origin of ¢; is contained in G,,_; and the terminal point of
o; is not contained in G,,_1. Thus, the first edge of 0,41 is contained in
G — Gy, _1. Since there exists a unique INP of height r; we necessarily have
r; < ri+1. Thus, the sequence of maximal heights of INPs in ~ is (strictly)
monotonic. Since there are only finitely many EG strata, there are only
finitely many paths in Mpg. This concludes the proof of (1).
Let v, € Npg and let v = 172 be as in the assertion of the lemma. We
claim that 5 € Npg and that the splitting units of v, are splitting units
of both v and «/. This will conclude the proof of Assertion (2) because v,
will be a concatenation of splitting units of «, that is, it will be either an
EG INP or a concatenation of nonclosed EG INPs (cf. Definition B.11(3)).
Hence we will have v, € Npg and 717 € Npg.

We show that 73 is a concatenation of INPs which are splitting units of 7.
A similar proof will show that the splitting units of v, will also be splitting
units of v. Indeed, the path 4 has a splitting 7' = 005 ... o}, which consists
in EG INPs. Let 7’ be the height of ¢f. By Proposition 2.5(9), there exists
a unique unoriented INP of height v’ and this INP starts and ends with an
edge in H,.

Let o be the INP of v which has a decomposition ¢ = 0102, where o9
is a nontrivial initial segment of 7'. As every splitting unit of v is an EG
INP, so is 0. Let r be the height of o. Since the first edge of o7} is of height
r’, we cannot have r’ > r.

If r = 7/, then by the uniqueness statement in Proposition [Z59), we see
that o] € {o,07'}. Note that if oy is nontrivial, there exist reduced paths
71, T2 such that ¢ = oy7 and of = 7y72. This contradicts Lemma B3|(2)
applied to o and of. Thus, we see that 0 = o] and o] S 7».

If ' < r, then by Lemma [2.§(2), the path ¢ has a decomposition o =
ayby ...bp_1ar such that, for every i € {1,...,k}, the path a; is a path
contained in H,. and for every i € {1,...,k—1}, the path b; is a Nielsen path
in G,_1. Hence there exists i € {1,...,k—1} such that o} is contained in b;.
Therefore, we see that 0] € 0 € v. As g} €/, wesee that o] € vy = v».
If 49 = of, then we are done. Otherwise, the path 7, contains an edge of
oh. As o} is an EG INP, the same argument as for o} shows that o} S s,
and an inductive argument shows that ~ys is a concatenation of INPs in the
splitting of 4/. Hence ~y, is a Nielsen path. Therefore, we see that v3 € Npg
and that v is composed of splitting units of 4'. Similarly, we see that o
is composed of splitting units which are splitting units of both v and ~'.
Hence 71 is composed of splitting units of . This concludes the proof of
(2).

Let v, 7/ be as in the assertion of the lemma. Let v = o1...0x be the
complete splitting of v and let v = o ...07, be the complete splitting of
+', which exist by Lemma [Z7l Recall that every splitting unit of both ~
and ' is an EG INP. There exists i € {1,...,k} such that o; contains an
initial segment of o}. We claim that o/ is either equal to o; or 4/ is strictly
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contained in ;. Indeed, let r be the height of o; and let r’ be the height of
o}. Since the first edge of o} is of height 7/, we cannot have r’ > r.
Suppose first that v’ < r. By Lemma[2:J|(2), the path ¢; has a decompo-

sition o; = a1by ... by_1a, such that, for every i € {1,...,p}, the path a; is
a path in H, and for every j € {1,...,p— 1}, the path b; is a Nielsen path
in G,_1. Hence there exists j € {1,...,p — 1} such that o} is contained in
b;.

We claim that, for every £ € {1,...,m}, the splitting unit o} is contained

in b;. The proof is by induction on ¢. For the base case, we already know
that of < b;. Suppose that for some ¢ € {2,...,m}, the path o, ; is
contained in b;. By Proposition 25(9), the path o; ends with an edge in
H,. Hence the path a, is nontrivial. Since o}_, is contained in b;, the path
o, intersects o; nontrivially. Let r, be the height of oj. Recall that o} is
an EG INP. By Proposition [Z5(9), the path o) starts with an edge in H,,.
Hence rp < 7. Suppose towards a contradiction that r, = r. Then, by the
uniqueness statement of Proposition 25(9), we see that o) € {o;"'}. As o;
contains an initial segment of o}, there exist three paths vq, 72 and 73 of
G such that 7o is nontrivial and o; = 172 and o), = y27y3. Since oj_, is
contained in o;, the path 7, is nontrivial. This contradicts Lemma [33](2).
Therefore we have r, < r. But then ¢, cannot intersect a;41. This implies
that o} is contained in b;. This proves the claim and the fact that 7' < o;
and ' is not an initial or a terminal segment of o;.

Suppose now that r = r’. By the uniqueness statement of Proposi-
tion Z5(9), we see that o} € {s'}. As o; contains an initial segment of
o}, there exist three paths 1, 72 and 3 of G such that v, is nontrivial
and 0; = 7172 and o] = Y27v3. By Lemma [3:3(2), we necessarily have that
~v1 and 73 are trivial. Thus, we see that o; = o}. Therefore, 4’ is an ini-
tial segment of o;...0 and is a Nielsen path. By Lemma [3.4] for every
J€{l,...,m}, we have o;y; 1 = 0. Thus, there exist (possibly trivial)
paths 71,72 € Npg such that v = 437'y2. This concludes the proof of (3).
Let v, 7', 71, 72 and 3 be as in the assertion of the lemma. Let v = a7 ...y
and v’ = f1 ... B¢ be the complete splittings of v and 7’ given by Lemma 2.7
By definition of AMpg, every splitting unit of v and 4/ is an EG INP.

Let i € {1,...,k} be such that «; contains the first edge of v2. Let j €
{1,...,¢} be such that 3; contains the last edge of v; *. We claim that a; =
v2 and that §; < 75 '. By Lemma B4 applied to v, * and v~ !, there exists
a path J; contained in «; such that the decomposition vo = §;;41 ... g
is a splitting of 7o. Similarly, there exists a path 53 in §; such that 5 =
Bi...Bj-10} is a splitting of 75 L. By Proposition ZZ5(9), an EG INP starts
with an edge of highest height and an EG INP is entirely determined by
its height. Hence ap = 51_1. Note that the paths ;41 ... ax_1 and
Ba .. ~5j—159 satisfy the same hypotheses as d;a;11...ar and 57 ... ﬂj,lég.
Applying the same arguments, we see that ¢ = j and for every s € {1,...,j—
1}, we have s = a,;lsﬂ. Hence we see that §; = 5}71.

Let r be the height of «; and let r’ be the height of 3;. Note that by
Proposition Z5)(9) applied to «; and 3;, the path §; ends with an edge in
H, and 5;_1 ends with an edge in H,.. Therefore, we see that r = r’. By
uniqueness of EG INPs of height 7; given by Proposition [Z5(9), and since



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 179

Y173 is reduced, we see that a; = Bj_l, that o; < v2 and that 8; < 72_1.
This shows that s is a path in Apg. By Assertion (2) applied to v and
2, the path 7 is contained in AMpg. Similarly, we see that the path ~3 is
contained in Npg. Since the path 173 is reduced, we see that v1y3 € Npg.
This concludes the proof. O

Lemma 3.6. Let v and v be two reduced edge paths in G which are concatena-
tions of paths in Gpg and Npg. Suppose that there exist three paths v1, 2 and
v3 such that v = y172, 7' = 72_173 and 173 s reduced. Then o and 173 are
concatenations of paths in Gpg and Npg.

Proof. Let v = bgayb; . ..arbg be the decomposition of the path + such that for
every i € {0,..., k}, the path b; is in Gpg and for every i € {1,...,k}, the path a;
is a maximal subpath of v contained in N'pg. The existence of the paths a; follows
from Lemma B2(2). Let v/ = docidy ... cede be the similar decomposition of +'.
Let e be the initial edge of 7s.

Claim. There exists i € {0, ..., k} such that b; contains e if and only if there exists
j€140,...,¢} such that the edge e~ ! is contained in d;.

Proof. The proof of the two directions being similar, we only prove one direction.
Suppose that there exists i € {0,...,k} such that b; contains e. Suppose towards
a contradiction that there exists j € {1,...,¢} such that e~! is contained in ¢;. It
follows that there exists an EG INP o of ¢; such that e™! is contained in o. Let
r be the height of 0. Let 6! be the subpath of ¢ contained in v, '. Note that,
as 72_1 is an initial segment of ', the path §~! is an initial segment of o. By
Proposition Z5(9), the path §~1 starts with an edge in H,. As § is contained in
v, the terminal edge of § is an edge in an EG stratum. Since every edge in Gpg
is contained in an NEG stratum, there exists s € {1,...,k} such that as contains a
terminal segment of 4.

Since the initial edge e of 7, is not contained in as by hypothesis, the path §
contains the initial segment ¢’ of as. Hence the terminal segment 6'~! of a; ! is the
initial segment §'~! of 0. By Lemma [3.5)(2) applied to a;! and ¢ and Lemma 3.4
the path ¢! is contained in Npg and is a concatenation of splitting units of . As
o contains a unique splitting unit, this implies that 6’ = 0. As &’ € §~! < o, we
see that ! = 0.

Note that the edge 6! ends with e!. But o ends with an edge in an EG stratum
by Proposition 25(9), that is, e~! is an edge in an EG stratum. But every edge in
b; is contained in an NEG stratum by definition of Gpg. This contradicts the fact
that e € b;. This concludes the proof of the claim. a

Suppose first that there exists ¢ € {1,...,k}, such that e is contained in b;. By
the above claim, there exists j € {0,...,¢} such that e~! is contained in dj. Let
7 and 7' be such that v = bgaiby ...a;7y2 and v/ = 72_17’cj+1 ...dy. Note that
T C b and 7 < dj. Then we have v1 = bgaib;...a;7 and 73 = 7"Cj+1...d[.
Since the path 7173 is reduced, so is 77/. Moreover the reduced edge path 77/ is
contained in Gpg and v17y3 = boaiby ... a;77'cjy1 ... dg is a concatenation of paths
in Gpg and in Npg. Let 6” be the maximal subpath of b; contained in 7. Then
vo = 6"a;y1...by is a concatenation of paths in Gpg and in Npg.

Suppose now that there exists i € {1,...,k} such that the initial edge e of o
is contained in a;. By the above claim, there exists j € {1,...,¢} such that e~!
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is contained in ¢;. Let ¢’ be the terminal segment of a; contained in v,. By
Proposition [Z5(9), the terminal edge €’ of §’ is an edge in an EG stratum. Since
Gpc does not contain any edge in an EG stratum, there exists s < j such that ¢,
contains e’ 1.

We claim that s = j. Indeed, suppose towards a contradiction that s < j. Let
5~ " be the terminal segment of ¢, whose first edge is ¢/~'. Then ¢ is a terminal
segment of a; and ¢ is an initial segment of c;!. By Lemma B.5(2) applied to a;
and c;!, the path § is a concatenation of splitting units of a; and c;!. If § is
properly contained in §’, there exists an EG INP ¢ which is a splitting unit of a;
and such that the last edge of ¢ is the last edge of ¢’ not contained in §. But, by
Proposition 25(9), the terminal edge e, of ¢ is in an EG stratum. However, the
first edge of ds (which is the edge e, 1) is in Gpg. This leads to a contradiction.
Hence 6 = ¢’. But J intersects ¢; nontrivially. Hence we have s = j.

Therefore, 8! is contained in ¢;. We claim that "' is an initial segment of
¢;. Indeed, otherwise let € be the initial segment of ¢; whose endpoint is the origin
of &~1. By Proposition E5(9), the first edge of € is an edge in an EG stratum.
Hence there exists p > i such that a, contains the terminal edge of ¢~'. Let e !
be the subpath of €' contained in ap. Then €' is an initial segment of ap and €
is an initial segment of ¢;. By Lemma B.5(2) applied to a;l and c;, the path € is
a concatenation of splitting units of a,, ! and ¢;. But since € is properly contained
in ¢; as it does not intersect 6’7, the path € is adjacent to a splitting unit of c;.
Since an EG INP starts with an edge in an EG stratum by Proposition 235(9), the
path b,_; ends with an edge in an EG stratum. This contradicts the fact that b,_1
is contained in Gpg.

Hence &'~ is an initial segment of ¢; and ¢’ is a terminal segment of a;. Let 7 and
7' be two paths such that a; = 76’ and ¢; = §'~!'7/. By Lemma[3.5(4) applied to a;
and ¢;, the path ¢ is in Npg and the path 77/ is in Npg. Hence v = 7hja;41 ... b
and y1y3 = boaib1...a;77'cjq1 ... dp are concatenations of paths in Gpg and in
Npg. O

Lemma 3.7. Let v be a closed Nielsen path of G. Then - is a concatenation of
paths in Gpag and in Npg.

Proof. Let « be a closed Nielsen path of G. We prove the result by induction on
the height r of . If » = 0, there is nothing to prove. Assume that » > 1. By
Lemma 2.7 the path v is completely split, and every splitting unit in its complete
splitting is either an INP or a fixed edge. Let v = o7 ... 0% be the complete splitting
of . For every i € {1,...,k}, let r; be the height of o;. We prove that for every
i€ {1,...,k}, the path o; is a concatenation of paths in Gpg and in Npg.

Let i € {1,...,k}. If 0; is a fixed edge, it is contained in Gpg. Suppose that o;
is an NEG INP. By Proposition 2Z5(11), there exist an edge e,, € EHW a Nielsen
path win G,,_1 and an integer s € Z* such that o; = emwse;il. Moreover, we have
f(er,) = e, w. Hence for every j € N* we have [f/(e,,)] = e,,w’/. Since w is a
Nielsen path, by Lemma[2.7], the path w is completely split and its complete splitting
consists of fixed edges and INPs. Thus, for every j € N* the complete splitting of
[f7(e,,)] does not contain splitting units which are edges in EG strata. By definition
of Gpg, we have e,, € EGpc. Moreover, by the induction hypothesis, the path
w? is a concatenation of paths in Gpg and in Npg. Hence o; is a concatenation
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of paths in Gpg and in Npg. Finally, if o; is an EG INP, then it is contained in
Npg. Hence v is a concatenation of paths in Gpg and in Npg. O

Lemma 3.8. Let v be either an NEG INP or an exceptional path. Then - is a
concatenation of paths in Gpg and in Npg.

Proof. We claim that there exist edges e, e and a closed Nielsen path w such that
v = eqwey ! and, for every i € {1,2}, we have f(e;) = e;w® for some d; € Z*. If v
is an exceptional path, it follows from the definition. If 7 is an NEG INP, let r be
the height of v. Then H, is an NEG stratum. As -y is a Nielsen path, we can apply
Proposition [Z5[(11) to conclude the proof of the claim. Since e; and ey are linear
edges, for every k € N*, the paths [f*(e;)] and [f¥(e1)] do not contain splitting
units which are edges in EG strata. Thus e; and e; are contained in Gpg. By
Lemma, [3.7, the path w is a concatenation of paths in Gpg and in Npg. Hence ~
is a concatenation of paths in Gpg and in Npg. O

Lemma 3.9. Let v be a Nielsen path in G. Then ~ is a concatenation of paths in
Gpc and in Npg.

Proof. By Lemma 27 the path 7 is completely split, and every splitting unit in
its complete splitting is either an INP or a fixed edge. Let v = 07 ...0; be the
complete splitting of v. Let i € {1,...,k}. If o; is a fixed edge, then o; is contained
in Gpg. If 0y is an NEG INP then, by Lemma 8.8 the path o; is a concatenation
of paths in Gpg and in Npg. If o; is an EG INP then, by definition, we have
0; € Npg. Hence v is a concatenation of paths in Gpg and in Npg. O

Lemma 3.10.

(1) Let v be an edge in Gpg (resp. an edge in Gpg 7). The path [f(7)] is a
concatenation of paths in Gpg and in Npg (resp. a concatenation of paths
in Gpg,r and in Npg ).

(2) Let v be an edge path contained in Gpg (resp. an edge path in Gpg r).
The path [f(v)] is a concatenation of paths in Gpg and in Npg (resp. a
concatenation of paths in Gpg,r and in Npg r).

(3) Let ~y be an edge path which is a concatenation of paths in Gpg and in Npg
(resp. a concatenation of paths in Gpg F and in Npg, r). The path [f(7)]
is a concatenation of paths in Gpg and in Npg (resp. a concatenation of
paths in Gpg F and in Npg,F).

Proof. We prove Assertions (1), (2), (3) for paths in Gpg and in Npg, the proofs
for paths in Gpg,r and Npg r being similar, using the fact that f(G,) = G,.
(1) Let v be an edge of Gpg. By definition of G p¢, the edge v is an edge in an
NEG stratum. By Proposition 25(6), the path [f(y)] is completely split.
Let [f(7)] = 71 -..7m be the complete splitting of [f(v)]. Since v is an
edge in an NEG stratum, by Proposition 2.5(2), we have v = ~.
Suppose towards a contradiction that [f(7y)] is not a concatenation of
paths in Gpg and in Npg. It follows that there exists i € {1,...,m} and
an edge e of ; which is not contained in Gpg and is not contained in a
subpath of [f ()] contained in Npg. Hence 7; is not an EG INP nor a fixed
edge. By Lemma 3.8 the path v; cannot be an NEG INP or an exceptional
path. Hence +; is either an edge in an irreducible stratum or a maximal
taken connecting path in a zero stratum.
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Suppose first that «; is a maximal taken connecting path in a zero stra-
tum. By Proposition 2.5(4), the path 7; cannot be adjacent to an edge in
an NEG stratum nor an edge in a zero stratum. As y; = 7, we see that
1 = 3 and that 7;_1 ends with an edge in an EG stratum. By Lemma 2.9
(applied to v = 4;-17;), the path v;_; is not an EG INP. Therefore we see
that v;_1 is an edge in an EG stratum. This contradicts the definition of
the edges in Gpg.

Hence we are reduced to the case where v; is an edge in an irreducible
stratum. Therefore, we have 7; = e. By definition of Gpg and as e ¢ EG PG,
there exists k € N* such that [f¥(v;)] contains a splitting unit which is an
edge in an EG stratum. This contradicts the fact that « is contained in
G pg. This concludes the proof of (1).

(2) Let v be a path in Gpg. We prove by induction on the length of 4 that
[f(7)] is a concatenation of paths in Gpg and in Npg. The case where
is an edge follows from Assertion (1). Suppose now that the length of v is
at least equal to 2. Let e be the last edge of v and let 7/ be an edge path
such that v = «’e. Hence ' and e are paths in Gpg. By the induction
hypothesis, the paths [f(7')] and [f(e)] are concatenations of paths in Gpg
and in AMpg. It remains to show that identifications between [f(7')] and
[f(e)] do not create paths which are not concatenations of paths in G pg and
in Npg. Let o, B and o be paths such that [f(Y)] = ao, [f(€/)] = o718
and «f is reduced. By Lemma B.6] applied to [f(7)] and [f(e’)], the path
[f(7)] is a concatenation of paths in G pg and in Npg. This concludes the
proof of (2).

(3) Let v be a concatenation of paths in G pg and in Npg. Let vy =711 - - - v
be a decomposition of v such that for every i € {1,...,k}, the path ~; is
a maximal subpath of v in NMpg and for every ¢ € {0,...,k}, the path
~; is a path in Gpg. Such a decomposition is possible by Lemma [B5](2).
We prove the result by induction on k. If £k = 0, the proof follows from
Assertion (2). Suppose that the result is true for ¥ < k. Then the paths
v =YY - Ve—17s—q and " = vy, satisty the induction hypothesis.
Hence the paths [f(7/)] and [f(v”)] are concatenations of paths in Gpg
and in Npg. Let o, B and o be three paths such that [f(7/)] = af,
[f(v")] = B7'o and af is reduced. By Lemma [B.6, the path [f(v)] = ac
is a concatenation of paths in Gpg and in Npg. This concludes the proof.

O

For Lemma [B.II]l we recall a definition due to Bestvina, Feighn and Handel
([BEHI, Section 6], see also [HM), Definition II1.1.2]). Let H,, be the EG stratum of
G of maximal height r,. By Proposition [2:5(9), there exists at most one unoriented
INP p,, of height 7 (we suppose that p,, is a point if such a nontrivial INP
does not exist). Following [HM, Definition III.1.2], let Z,, be the subgraph of G
consisting of all edges ¢’ such that for every m € N* and every splitting unit o of
[f™(€')], the path ¢ is not an edge in H,, . Let {(Z,,, p,, ) be the set consisting of
the following paths:

(i) pathsin Z,,;

(ii) paths in {p.,,p;'};
iii) concatenations of paths in Z,. and in {p,,,p;'}.
+ + T4+
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Note that <Zr+,pr+> contains every path in G, _;.

Lemma 3.11. The set <ZT+,pT+> contains every path which is a concatenation of
paths in Gpg and in Npg.

Proof. 1t suffices to prove that <ZT o Pr +> contains every edge of Gpg and every
EG INP. Let e be an edge in Gpg. By definition of Gpg, for every k € N*, the
complete splitting of [f*(e)] does not contain a splitting unit which is an edge in an
EG stratum. In particular, for every k € N*, the complete splitting of [f*(e)] does
not contain a splitting unit which is an edge in H,.,. Hence e € Z,, and Gpg is a
subgraph of Z,, . Let p be an EG INP and let  be the height of p. By definition
of ro, we have r < ry. If r = ry, by Proposition 25(9), we have p € {pu,p;j},
hence we have p € <ZT+,pT+>. If r < 74, then p is contained in G, _;. Hence p is
contained in <Zr s Pr +> by the above remark. ([l

We now define a graph which will be used in the proof of Lemma Let G*
be the finite, not necessarily connected, graph defined as follows:

(a) vertices of G* are the vertices in Gpg and the endpoints of EG INPs in G
which are not in Gpg;

(b) we add one edge between two vertices corresponding to vertices in G p¢ if
there exists an edge in G pg between them;

(c) we add one edge between two vertices corresponding to the endpoints of an
EG INP.

Note that we have a natural continuous application pgs: G* — G which sends
an edge as defined in (b) to the corresponding edge in Gp¢e and which sends an
edge as defined in (c) to the corresponding EG INP in G. Let x € VG*.

Lemma 3.12.

(1) If v is a nontrivial reduced path in G*, so is pgx (7).
(2) The homomorphism

P T(G* x) — m (G, pex(x))
induced by pg+ is injective.

Proof. (1) Let v be a reduced path in G*. Suppose towards a contradiction
that pg= () is not a reduced path in G. Thus, there exist an edge ¢ € EG
and two paths a and b such that pgs(y) = aee™!b. Let e* be an arc in v
such that pgx(e*) = ee~ 1. Note that, by definition of pg+, the application
pa+ sends edges of G* to reduced edge paths in G. In particular, the path
e* is not contained in a single edge of G*. As the image of an edge in G*
by pg= is either an edge in G or an edge path, we see that the path e* is
contained in at most two edges of G*.

Let eq,e3 € G* be such that e* € ejey. Suppose first that pgs(e1) and
pax(e2) are edges in Gpg. Then pgx(e1) = e and pgx (e2) = e~ 1. But, as
7 is reduced, we have e; # e;'. This implies that pg« (e1) # pax (e2) L.

Suppose now that pg«(e1) is an edge in Gpg and pgx(e2) is an EG
INP. By Proposition 25(9), the first edge of pgx(e2) is an edge in an EG
stratum. By definition, every edge in Gp¢ is an edge in an NEG stratum.
Hence the turn {pg«(e1) ™!, pa«(e2)} is nondegenerate. Therefore, we see
that pgx (e*) # ee L.
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Finally, suppose that pgx(e1) and pgx(e2) are EG INPs. for every i €
{1,2}, let r; be the height of pg«(e;). By Proposition 25(9), the last edge
of pgx(e1) is in H,, whereas the first edge of pg«(e2) is in H,,. Hence if
r1 # ro, there is no identification between pg« (e1) and pg= (e2). Therefore,
we have pgx (e*) # ee™t. If 11 = ro, then by the uniqueness statement in
Proposition ZH(9), we have pgx(e2) € {pgx(e1),pgx(e1)~'}. Hence ey €
{el,el_l}. As v is a reduced path, we see that es = e;. Hence e; is a
loop and pgx(e1) is a closed EG INP. By Proposition [Z5(9), the initial and
terminal edges of pgx(e1) are distinct unoriented edges. Hence the path
pax(e1)pgx (e2) is a reduced path and pgx(e*) # ee™1. As we have ruled
out every case, we see that such a path e* does not exist. This concludes
the proof of Assertion (1).

(2) Let 7 be a nontrivial reduced closed path in G* based at x. By Assertion (1),
the path pgx(7y) is a nontrivial reduced closed path in G. Therefore, the
kernel of py is trivial. |

Lemma 3.13. The application [f] which sends a circuit o in G to [f(a)] preserves
the set of circuits which are concatenations of paths in Gpg and in Npg. Moreover,
[f] restricts to a bijection on the set of circuits which are concatenations of paths
in Gpg and in Npg.

Proof. The first part follows from Lemma [310(3). By [HM, Lemma III.1.6 (2), (5)],
the application [f] preserves <ZT+,pT+> and restricts to a bijection on the set of
circuits of <ZT+,pT+>. By Lemma [B.I1] concatenations of paths in Gpg and in
Npg are contained in <ZT s Pr +>. By Lemma BI0, the application [f] preserves
concatenations of paths in Gpg and in Npg. In particular, this shows that [f] is
injective when restricted to the set of paths which are concatenations of paths in
GPG and in Npg.

For surjectivity, let a be a circuit in G which is a concatenation of paths in G pg
and in Npg and let z be a vertex in o which is either an endpoint of an edge in
G p¢ or an endpoint of an EG INP contained in «. Note that by Proposition 2:5(2),
the endpoint of every edge in Gp¢ is fixed by f. Moreover, the endpoint of every
EG INP is fixed by f. Therefore, f fixes . The circuit a naturally corresponds to
a circuit o in G*. Let 2’ be the vertex of o’ corresponding to = (which exists by
the choices made on ). Since [f] preserves concatenations of paths in Gpg and in
Np¢ by Lemma B.I0, the application [f] induces an application

[flgx: m(G*,2") - 7 (G*, ).

Note that, by Lemma B2l the group m1(G*,2’) is naturally identified with a
subgroup of 71 (G, z). By [BFHIl Lemma 6.0.6], the application [ f]gx is a bijection.
Hence there exists a closed path 8" in G* such that [f]g=([8']) = /. Let 8 be the
circuit corresponding to 5’ in G. Then 3 is a concatenation of paths in Gpg and

in Npg and [f(B)] = a. O

Proposition 3.14. Let n = 3. Let ¢ € Out(Fy, F) be an exponentially growing
outer automorphism, let f: G — G be a CT map representing a power of ¢. Let
w € Fy. There exists a subgroup A of F, such that [A] € A(¢) and w € A if and
only if the circuit v, of G associated with w is a concatenation of paths in Gpg
and in Npg.



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 185

Proof. Suppose first that 7, is a concatenation of paths in Gpg and in Npg. We
claim that v, has polynomial growth under iteration of f. By Proposition 2.5(8),
there exists m € N* such that [f™ (v, )] is completely split. By Lemma BI0(3), the
path [ f™ ()] is a concatenation of paths in Gpg and in Npg. Hence every splitting
unit of [f™(yy)] is either an edge of Gpg or an INP. Let [f™(vw)] = 71...7% be
the complete splitting of [ f™ (v, )]. For every ¢ = m, we have

k
fZ'Yw Z JM’YJ

Therefore, it suffices to prove that, for every j € {1,. .., k}, there exists a polynomial
P; € Z[X] such that for every i € N*, we have

ULf ()] = O(P(i)).-

Claim. There exists a polynomial P € Z[X] such that for every edge e € EGpg
and every i € N* we have

(LS (e)]) = O(P ().

Proof. As there are finitely many edges in Gpg, it suffices to prove the claim for
a single edge ¢ € EGpg. Let e € EGpg. By Proposition 23(2), there exists a
cyclically reduced, completely split circuit w of height less than the one of e and
such that f(e) = ew. By Lemma[3T0(1), the path w is a concatenation of paths in
Gp(; and in Npg.

We prove the claim by induction on the height of e. Suppose first that e has
minimal height in Gpg. By minimality of e, the path w does not contain a splitting
unit which is an edge in Gpg. Hence w is either trivial or a path in Npg, that
is, a closed Nielsen path. If w is trivial then e is a fixed edge and P = 1 satisfies
the claim. Suppose that w is a closed Nielsen path. For every i € N* we have
[fi(e)] = ew®. Hence £([f*(e)]) < if(w) + 1. Then the polynomial P(i) = if(w) + 1
satisfies the assertion of the claim. This proves the base case.

Suppose now that e has height r. Let w = w; ... wy be the complete splitting
of w. Recall that, for every reduced path z in G, we have [f([f(z)])] = [f*(z)].
Thus, for every ¢ € N*. we have

[F(e)] = ewr ...w[f(wi)]... [f(wi)] ... [F7 (w)] - [F7 (wn)]-

Hence, for every ¢ € N* we have

k i—1

ULFE]) =1+ >0 DT (we))).

(=14=0

Hence it suffices, for every £ € {1,...,k}, to find a polynomial P, € Z[X] such that,
for every i € N* we have

U(Lf* (we)]) = O(Pe(i)).
Let £ € {1,...,k}. As w is a concatenation of paths in Gpg and in Npg, every
splitting unit of w is either an edge in Gpg or an INP. If w, is an edge in Gpg,
the polynomial Py exists using the induction hypothesis. If wy is an INP, then the

polynomial P;(i) = ¢(wy) satisfies the conclusion of the claim. This proves the
existence of the polynomial P. ([l
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Let j € {1,...,k}. If v is an edge in Gpg which is a splitting unit of [f™ (v.)],
by the above claim, the polynomial P; exists. If v; is an INP, then the polynomial
Py(x) = £(v;) satisfies the conclusion. Thus, the path 7, has polynomial growth
under iteration of [f]. Therefore, [w] has polynomial growth under iteration of ¢.
By the definition of A(¢), there exists a subgroup A of Fy such that [A] € A(¢)
and w € A.

Conversely, suppose that there exists a subgroup A of F} such that [A] € A(¢)
and w € A. Let m € N* be such that [f™(v,)] is completely split, which exists
by Proposition 23(7). Since [w] has polynomial growth under iteration of ¢, there
does not exist a splitting unit of [ f™ ()] which is an edge in an EG stratum or a
superlinear edge with exponential growth.

Suppose towards a contradiction that a splitting unit o of [f™(7,,)] is contained
in a zero stratum. By Proposition [Z5(3), every zero stratum of G is contractible.
As [f™(vw)] is a cycle, it is not contained in a zero stratum. By Proposition 2:5(4),
every edge adjacent to ¢ and not contained in the same stratum as ¢ is in an EG
stratum. Thus, there exists a splitting unit o’ of [ f™ (74 )] such that oo’ S [f™ (V)]
and the first edge of ¢’ is in an EG stratum. Hence ¢’ is either an edge in an EG
stratum or an INP. But, by Lemma[2.9, the path ¢’ is not an INP. This shows that
¢’ is an edge in an EG stratum. This contradicts the fact that [w] has polynomial
growth under iteration of ¢.

Therefore, every splitting unit of [f™(v,,)] is either an INP, an exceptional path
or an edge in an NEG stratum whose iterates by f do not contain splitting units
which are edges in EG strata. Edges in the last category are precisely the edges
in Gpg. By Lemma and Lemma every INP and every exceptional path
is a concatenation of paths in Gpg and in Npg. Thus, the path [f™(v,)] is a
concatenation of paths in Gpg and in Npg. By Lemma B3], the circuit v, is a
concatenation of paths in Gpg and in Npg. O

Let F be a nonsporadic free factor system of F, and let ¢ € Out(Fyp, F). We
say that ¢ is fully irreducible relative to F if no power of ¢ preserves a proper free
factor system F’ of Fy such that 7 < F'. Corollary will be used in [Gue2]. Tt
is a well-known result but we did not find a precise statement in the literature.

Corollary 3.15. Letn > 3 and let F be a nonsporadic free factor system of Fy,. Let
¢ € Out(Fy, F) be a fully irreducible outer automorphism relative to F. There exists
at most one (up to taking inverse) conjugacy class [g] of root-free F-nonperipheral
element of F, which has polynomial growth under iteration of ¢. Moreover, the
conjugacy class [g] is ¢-periodic.

Proof. Let f: G — G be a CT map representing a power of ¢ and let G’ be a
subgraph of G such that F(G') = F. Since ¢ is irreducible relative to F and
since F is nonsporadic, we see that G — G’ is an EG stratum H,. Let [g] be the
conjugacy class of a root-free F-nonperipheral element g of F;,. Then v, has height
.

Suppose that [g] has polynomial growth under iteration of ¢. By Proposi-
tion B14] the circuit -, is a concatenation of paths in Gpg and in Npg. Since
¢ has height r and since H, is an E'G stratum, every subpath « of v, contained
in H, is contained in a concatenation of INPs of height r. By Proposition 25(9),
there exists at most one INP o of height r. Moreover, one of its endpoints is not
contained in G’ = G,_; (see [HM| I.Fact 1.42]). Hence o is necessarily a closed
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EG INP. Since the endpoint of ¢ is not in G,_; and since v, is a concatenation of
paths in Gpg and Npg, we see that -, is an iteration of the closed path o. Since
g is root-free, we have v, = o*!. This concludes the proof. O

3.2. The exponential length of a CT map. In this section, we define the expo-
nential length function Leqp, and its relative version £r, of paths in CT maps. We
compute its value for some paths in G. Let G'»; = Gpg U Z (see Definition B.I])
and let G’PG!}- =Gpc.r v Zr.

Let v be a reduced edge path in G. By Lemma [3.5(2), every path of Npg which
is contained in - is contained in a unique maximal subpath of  contained in Npg.
Thus, the path v has a unique decomposition into edge paths v = yoviv1 ... V7%
where:

(1) for every i € {0,...,k}, the path ; is a maximal path in Npg contained in
v (where 79 and 7, might be trivial);
(2) for every v € Npg contained in ~, there exists ¢ € {1,...,k} such that
v S i
Such a decomposition of -« is called the exponential decomposition of yv. Note that
the exponential decomposition of v is not necessarily a splitting of v. We denote
by NE&*(7) the set consisting of all paths ;, with ¢ € {0,...,k}. Similarly, v has
a decomposition o = apaja ... &b, oy, where for every i € {0,...,m}, the path «;
is a maximal path in Npg, 7 and for every 7' € Npg, # contained in ~, there exists
i€ {l,...,k} such that v/ < «;. Such a decomposition is called the F-exponential
decomposition of v. We denote by 15“5”‘}-(7) the set consisting of all paths «;, with
i€{0,...,m}.

Definition 3.16.

(1) Let v be a reduced edge path in G. The exponential length of v, denoted
by Lezp(7y), is:

lap() =t(10G=Chg) = Y, ((anG=Chg).

AENBE (7)

(2) Let v be a reduced edge path in G. The F-exponential length of v, denoted
by 6.7:(7% is:

£;(7)z£(’ymm)— 3 e(Mme}).

aENPE ()

(3) Let v be a reduced edge path in G and let v = ~y{7y1...7,7 be the
exponential decomposition of v. A PG-relative complete splitting of the
path + is a splitting v = &3 ...d,, such that for every ¢ € {1,...,m}, the
path d; is one of the following paths:

e a splitting unit of positive exponential length not contained in some
v; for 1 € {0,..., k};
e a maximal taken connecting path in a zero stratum;
e a subpath of v which is a concatenation of paths in Gpg and paths in
NPG-
We call the above paths PG-relative splitting units. If ~ is a circuit,
a PG-relative circuital complete splitting of ~ is a circuital splitting of
which is a PG-relative complete splitting of ~.
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(4) A factor of a PG-relative completely split edge path  is a concatenation
of PG-relative splitting units of some given PG-relative complete splitting

of .
Note that if v is an edge path of G, then l¢.,(7) = 0. Indeed, two paths 7 and
72 contained in NpZ*(y) are either equal or disjoint. Let v = vyovi71 - - 7Y be
the exponential decomposition of v. For every i € {1,...,k}, we have

éexp(%) = 2(7; NG — GiPG)

and
k
leap(7) = Z Leap(77)-
i=1

We prove the existence of PG-relative complete splittings in Lemma Note
that a PG-relative complete splitting of a reduced edge path ~ is not necessarily
unique. Indeed, it might be possible that one can split a PG-relative splitting unit
of v which is a concatenation of paths in Gpg and in Npg into two PG-relative
splitting units which are concatenations of paths in Gpg and in Npg.

In the rest of the section, we describe some properties of the exponential length.

Lemma 3.17. Let vy be a reduced edge path in G and let vy = ~1y2 be a decomposition
of v into two edge paths. We have:

gemp(v) < gezp (’71) + gewp(’YZ)-
Proof. 1t is immediate that
Uy G —=Ghp) =l nG—=Gpg) + U2 G—Gpy).

Let i € {1,2}. Let v € NE&“(7;). Then there exists v € Np&*(y) such that
~" € +". In particular, we have

DU NG =Gy
YIENBE (1)
> ) U nG=Gre)+ D). U nG=Ghy).

Y ENPE (M) VENPE (v2)

By definition of the exponential length, this concludes the proof. O

Note that we do not necessarily have equality in Lemma B.I7l Indeed, let v =
~v1v2 be as in Lemma 317l Suppose that the endpoint of v is contained in a path

v of Np&*(y). Then +' is not necessarily a concatenation of paths in Np&*(y1)

and Np@*(v2). Therefore, we might have:

Dy NG =Gy
Y ENPE(Y)
> ) U nG=GChe)+ Y Uy nG=Ghy),
Y ENPE (M) VENPE (v2)
and a strict inequality in Lemma [317 In particular, a proper subpath of v might
have greater exponential length than ~ itself. For instance, if v is a reduced path

in G such that £c;p(y) = 0, it is possible that there exists a proper subpath " of
such that le.,(7") > 0. However, there exists a bound, depending only on G, on the
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difference of the exponential length of a subpath of v and the exponential length of
v (see Lemma [5.6]).

If v is a path in G such that £, () = 0, we do not necessarily have £, ([f(7)]) =
0. Indeed, if v is an edge in a zero stratum such that [ f(y)] contains a splitting unit
which is an edge in an EG stratum, we have £¢,,([f(7)]) > 0. However, Lemma
[B.I8 describes an important situation where the map f preserves the property of
having zero exponential length.

Lemma 3.18. Let v be a reduced edge path which is a concatenation of paths in
Gpc and in Npg. For every n € N, we have Leyp,([f™(7)]) = 0.

Proof. Since the [f]-image of a concatenation of paths in Gpg and in Npg is a
concatenation of paths in Gpg and in Npg by Lemma B.I0] it suffices to prove
the result for n = 0. Let v be a concatenation of paths in Gpg and in Npg. Let
Y = YY1 - -V Vk be the exponential decomposition of : for every i € {1,...,k},
the path ; is a maximal subpath of v in AN'pg and for every i € {0, ..., k}, the path
~} is a path in Gpg. Note that for every i € {1,...,k}, we have v, € Np&*(v). By
definition of the exponential length, we have leyp(y) = Zf:o lewp(7i) = 0. O

Corollary 3.19. Let v be a path of Npe. Then Legy(y) = 0. In particular, if
v s either a closed Nielsen path, an NEG INP or an exceptional path, we have

gemp (’7) =0.

Proof. By Lemma [3.9] the path v is a concatenation of paths in G pg and in Npg.
By Lemma BI8 we have l.;,(7) = 0. The second assertion follows from Lem-
mas 3.7 and B8 |

Lemma 3.20. Let v be a completely split edge path and let v = vy ...V be its
complete splitting. Let v' € NE&*(y). Then either v is a concatenation of splitting
units of v or there exists i € {1,...,m} such that v < ~;. Moreover, the complete
splitting of v is a PG-relative complete splitting of ~y.

Proof. Let e be the first edge of 4" and let 7 € {1, ..., m} be such that e is contained
in ;. Let o be the splitting unit of 4’ containing e. By Proposition 25(9), the edge
e is in an EG stratum. Hence ~; is either an edge in an EG stratum, an exceptional
path or an INP. Since ' is a Nielsen path, and since ; is a splitting unit of -,
we see that 7; is not an edge in an EG stratum. If ; is either an NEG INP or
an exceptional path, then Proposition 25(11) implies that ; starts and ends with
edges in NEG strata whose height is strictly higher than the one of e. Since the
height of e is equal to the height of o, we see that =; contains o. An inductive
argument shows that +’ is contained in ~;.

Suppose now that v; is an EG INP. By Lemma [35)2) applied to v; and v/, either
~" is contained in v; or ; is the initial segment of 7/. If 4/ is contained in ~;, by
maximality of 7/, we see that v/ = 7;. Suppose that 4 is the initial segment of the
completely split edge path ~; ...~%. Then Lemma B4 implies that +' is a factor of
.

The last assertion of the lemma follows from the following observations. Every
splitting unit of v which is either an INP or an exceptional path is a concatenation
of paths in Gpg and in Npg by Lemma B8 Moreover, by the first assertion of
the lemma, every splitting unit of v which is an edge in an irreducible stratum
not contained in Gpg does not intersect a path in Ng&*(y). Hence the complete
splitting of v is a PG-relative complete splitting. O
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PG-relative completely split edge paths are well-adapted to the computation of
the exponential length as explained by Lemma [3.211

Lemma 3.21. Let v be a PG-relative completely split edge path and let v =
ay ...ap be a PG-relative complete splitting.

(1) For every path v € NE&*(v), there exists a minimal concatenation of PG-

relative splitting units & of v such that v/ < 6; every PG-relative split-
ting unit of § is a concatenation of paths in Gpg and in Npg; for every
PG-relative splitting unit 8’ of §, the intersection 8’ N+’ is an element of
NEE ().
¢ ¢
(2) We have legp(y) = Di_q beap(as) and Lr(y) = X, _1 Lr(a;).

Proof. (1) Let v = v0v{71-..7. 7 be the exponential decomposition of v where,
for every i € {0,. .., k}, we have v; e Np&*(vy). Let i € {0,...,k}. Let je {1,...,¢}
be such that «; contains an initial segment of 7;. By Proposition 25(10), the
splitting unit «; is not contained in a zero stratum. Moreover, by definition of the
PG-relative splitting units, if «; is an edge in an irreducible stratum of positive
exponential length, it is not contained in 7;. Hence, by the description of PG-
relative splitting units, the path «; is a concatenation of paths in Gpg and in
Npg.

By Proposition [Z5[(9), the path ~; starts with an edge in an EG stratum. Hence
there exists a path f§; in NF&*(a;) which contains an initial segment of ;. By
maximality of 7;, we see that 3; < ;. Suppose first that 8; = ;. Then setting
0 = a; proves the first assertion. Suppose now that 5; & ;. By Lemma [B5)(2)
applied to y = ;' and 7/ = Bj_l, the path [Bj_l%-] is a path in Mpg. Therefore, by
Proposition [Z5(9), the path [6;1%-] starts with an edge in an EG stratum. Note
that, as «; is a concatenation of paths in Gpg and in Npg, if a; contains the
first edge e of [Bj_l'yl-], then e would be contained in an EG INP contained in o;.

Since f; is a maximal subpath of «; in Npg, we see that [,6’;1%] is contained in
v = ajt1...04 and is in NFE*(v"). We can thus apply the same arguments to
the paths [B;lfyi] and v”. This concludes the proof of (1).

The proof of (2) follows as the exponential length and the F-length are computed
by removing paths in Gpg and in Npg. As all subpaths in G pg are contained in a

splitting unit of v and as subpaths in Npg are obtained by concatenating paths in
H§=1 B (o), we see that legp(y) = Zle Legp(a;) and £x(y) = 25:1 lr(a;). O

The following property of the exponential length allows us to pass, if needed, to
a further iterate of the CT map f.

Lemma 3.22. For every edge e of G — G'p(;, we have
Jim Legp([f"(e)]) = o0 and lim £x([f"(e)]) = o0

Moreover, the sequences (Leyp([f™(€)]))nen and (Lx([f™(€)]))nen grow exponentially
fast.

Proof. We prove the result concerning /.., the proof of the result concerning fr
follows from the fact that for every reduced edge path v in G, we have £¢,p,(7y) <
27(7y). Let e be an edge of G — G'p(;. Since every iterate of e is completely split by
Proposition [2.5(6) and since there exists an iterate of e which contains a splitting
unit which is an edge in an EG stratum, we may suppose that e is an edge in an EG
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stratum H,.. Since H, is an EG stratum, the number of edges in [f"(e)] n H, grows
exponentially fast as n goes to infinity. Therefore the number of splitting units of
[f™(e)] which are edges of H, grows exponentially fast and lim,,_, leqp ([ (€)]) =
0. |

Lemma 3.23. There exists ng € N* such that for every k = ng and every PG-
relative completely split edge path ~y, we have Loz ([fF(7)]) = Lewp(7)-

Proof. Let v =~v1...7v; be a PG-relative complete splitting of v. By Lemma [3.21]
it suffices to prove the assertion for every subpath ~;, with i € {1,...,k}. Let i €
{1,...,k}. If v; is a concatenation of paths in Gpg and in Npg, then Ley, ([ f(7:)]) =
Legp(y:) = 0 by Lemma BI8 If v; is a maximal taken connecting path in a zero
stratum, we have legp(7;) = 0. Hence fegpy ([f(7i)]) = Lewp(7i). In the other cases, v;
is an edge in an irreducible stratum which is not contained in Gpg. By Lemmal[3.22]
we have lim,, o Leap([f™(7i)]) = 0. Hence there exists ng € N* such that, for every
k = no, we have £eyp ([ F7(7i)]) = Lexp(vi)- Since there exist only finitely many edges
in irreducible strata, the integer ng may be chosen to be independent of ~; with
ie{l,...,k}. O

Lemma [3.24] in this section shows that the exponential length of a PG-relative
completely split edge path encaptures the splitting units which are edges with ex-
ponential growth under iteration of f.

Lemma 3.24. Let v be a PG-relative completely split edge path, let v = v1...7k
be a PG-relative complete splitting and let i € {1,...,k}. Then Lezp(vi) > 0 if and
only if v; is an edge in an irreducible stratum not contained in Gpg. In particular,
the value Leyp(7y) is the number of splitting units which are edges in G — G'pg.

Proof. Suppose first that v; is either a concatenation of paths in Gpg and in Npg
or a maximal taken connecting path in a zero stratum. By Lemma B.I8 we have
Lewp(y:) = 0. Suppose that ~; is an edge in an irreducible stratum which is not
contained in Gpg. Since there does not exist an EG INP of length 1, by definition
of the exponential length, we have £y, (7;) = 1 > 0. This concludes the proof of the
first part of the lemma. The computation of £.;,(y) follows from Lemma [32T)(2).

O

3.3. The space of polynomially growing currents. In this section, let F be
a free factor system and let ¢ € Out(Fy, F) be an exponentially growing outer
automorphism. Recall the definition of A(¢p) and F A A(¢) from Section [ZT1 We
define a subspace of PCurr(Fy, F A A(¢)), called the space of polynomially growing
currents. It consists of the currents whose support is contained in 02.A4(¢) (see
Lemma B28)). In order to define it, we first need to show that the exponential
length extends to a continuous function W: PCurr(F,, F A A(¢)) — R. The space
of polynomially growing currents will then be defined as a level set of V.

We first need some preliminary results concerning paths in Npg. For a path
v € Npg, let NZZ () be the subset of Np which consists of all paths 7' € Npg
such that v € 7/ and 7/ is minimal for this property. Let v € N3Z(v). By
Lemma [3.5(3), either v is properly contained in an INP o of the complete splitting
of 7' or there exist (possibly trivial) paths 1,72 € Npg such that v = y1y72. By
minimality, either v, or s is trivial. Moreover, Lemma [B.4] shows that, in this case,
splitting units of the complete splittings of 71, 72 and 7 are splitting units of ~'.



192 YASSINE GUERCH

Thus the set N, ;CJTC (7) can be partitioned into three disjoint subsets:
Npc () = N;(J;F,INP(W HN;CJJF,left( JUNZE right (V)

where N;g)INP(W) is the set of paths in N7 (7) such that one of their splitting
units properly contains 7, N;gyleft (7) is the set of paths 7' € J\/'gér () such that
v = my and N3G o (7) is the set of paths o/ € NE& (y) such that o/ = 7.
One can also define similarly the three sets Npd yp (), Npgepe () and

;ér”ght #(7) as the restriction to the paths in N3d ;np(7), ;ér’left(v) and
NEG right(7) contained in G,. We emphasize on the fact that a path in NE& inp(Y)
might contain several occurrences of the path v. However, a path in N/ ;55 le ft('y) or
in ;g,”ght(*y) contains a unique occurrence of v. Indeed, let 7' € N33 left( ) (the
proof for J\/';érmight(w) being similar). Then v = 1y, with 71 € Npg and o = 7.
Let 3 be an occurrence of v which contains an edge of v;. By Lemma [33)(2), the
path 3 cannot intersect vo nontrivially. Hence 3 S ;. Hence 71 € Npg and vy,
contains an occurrence of . This contradicts the minimality of +'.

Lemma 3.25. Let y be a path in Npg. Let v1,72 be two distinct paths in NpZ (7).
Suppose that there exist three paths p1, pa, i3 such that y1 = pipa, v2 = oty and
v is contained in uy. Then v, € N;aleft (), 12 € N;&L’Tight(v) and pg = 7.

Proof. By Lemma [3.5(2), the path ps belongs to Apg and contains «. Since 7,
and 7, are minimal paths of AMpg for the property of properly containing =y, we
have po = 7. Therefore, we see that v = p1y and 2 = yus. This shows that
Y1 € N;g)left(y) and that v, € N;g)”ght(”y). O

Lemma B.28] implies that an occurrence of ~ in the intersection of paths in
pa (7) is well-controlled. Following Lemma 25 we then define N ;,.(v) to be

the set of paths of the form 'yl'y'yg, where v,y € NPG’leﬁ( ) and yy2 € NPG’Tight(y).
We define similarly the set PG 1.7 (7) to be the set of all paths in N;glr('y) con-
tained in Gp. As for N3g . 7, (v) and NZ& 000 (7), a path in NEE (y) contains a
unique occurrence of .

Given two paths v and 7' of G let N(v/, ) be the number of occurrences of v and
7 liny. Let ee E(G — G'5¢;). Using the finiteness of Npg (see Lemma B.5(1)),
let

Ul Curr(Fp, F A A(g)) = R
be the continuous function sending v to
> (- Y AN+ Y Ga)e(vn G- Ghg).
VENPG ey YeENEE () Y ENEE 1 ()
Let
UG : Curr(Fy, F A A(9)) = R
be the continuous function

‘I’f)(’/) = Z \I’é,

e E(G—Glpg)
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and let ¥g: Curr(Fy, F A A(¢)) — R be the continuous linear function
Uo(v) = H Seesaar 0 - V)
H(Sees@marn @) — $0w).

Definition 3.26. The space of polynomially growing currents, denoted by Kpg(f),
is the compact subset of PCurr(Fy, F A A(¢)) consisting of all projective classes of
currents [v] € PCurr(Fy,, F A A(¢)) such that:

\I/(J(l/) = 0.
Finally, we define the F-simplicial length function ||| z: Curr(Fp, F AA(P)) - R

1
Wir=5( X ew

EGE(G G/PG]:)
- Y (aw- Y NG
veNpa,F,eSy W'EN;:;,}'(V)

+ Z <’7’,V>) ('ymG GPGf>)
VENFE 107 ()

Lemma 3.27. Let w € F, be a nonperipheral element with conjugacy class [w],
associated rational current np,, and associated reduced edge path v, in G. Then

\IIO( ) = Eewp(%u)
||77[w]H.7: = E]-'(’Yw)

Therefore np,) € Kpa(f) if and only if

Legp(Yw) = 0.

In particular, there exist a basis B of F, and a constant C > 0 such that, for every
F n A(p)-nonperipheral element g € Fy, we have ||njgll7 € N* and

ts([g]) = Cllngg |l 7.
Proof. We prove the result for Wo, the proof for [|n,|| being similar. First note
that
Z <6777[w]> =20(yw N G — GlPG)a
eeE(G—-Glhy)
where the factor 2 follows from the fact that the sum on the left hand side is over
oriented edges. Therefore, it remains to prove that

(3) Upim) =2 Y (v G—Ghg).
YENEE (yw)
Let v € Npg. Then the value
oy = Y e N+ D e
VENEE () VENEE 1 (1)
measures the number of occurrences of v or y~! in 7, which are not induced by an

occurrence of a path 7' € Npg containing properly v or v~! and contained in 7.
Indeed, an occurrence of 7y in a path ' € Apg containing properly v will be counted
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in Z’Y'EN;Z; ") <'y’, n[w]>N('y’,'y). Moreover, if an occurrence of  is contained in

two distinct paths 71,72 € N3Z (v), Lemma 327 ensures that this occurrence is
contained in a path v3 € N7, (7). Therefore, the value

- Z o)) NGO ) + 2 )
VENEE M) VENLE 1.(1)
measures an occurrence of v or vy~ ! in a larger path, and each such occurrence will
be counted exactly once. Therefore, the equation below Equation (B]) measures the
number of occurrences of v and vy~ in NE&*(7,,). Since the sum in the definition
of Wj is over oriented edges, the value W{(n,) is exactly twice the number of oc-
currences of v and 4y~ in N3 (v,,). Thus, Equality (B) holds. The last assertions
of Lemma then follow by definitions of Kpg(f) and of ££. |

Note that the proof of Lemma also shows that, for every edge
ee E(G—Ghy)

and every nonperipheral element w € Fy, the value:

lemu)) = )] (<%77[w]>— > Oy NGO

veNpa,eSy ’Y’E/\/’;g (v)
/
+ Z <’Y 777[w]>)N(%€)

"/'e-/\/;g,“- ('7)

measures the number of occurrences of e in 7, which are not contained in a path of
PE(Yw). Thus, for every nonperipheral element and every edge e € E(G — G'p2),
we have:

o= 2 (o= Y ) N@L)

veNPpG,eSy YENFEE ()
+ )] <7'777[w]>)N(%€) = 0.
'Y'EN;g,zr('V)

The density of rational currents given by Proposition 2.15] and the continuity of
(e, .y then show that for every current v € Curr(Fy, F A A(¢)) and every edge
ee E(G = Gpy), we have :

ew- Y (- Y GwNE.)
YeNpG,eSy ’Y'EN;CJ;(’Y)
n Z <,7/, y>>N(’y,e) = 0.
YENEE 1 (7)
Lemma 3.28. Let n > 3 and let F be a free factor system. Let ¢ € Out(Fy, F)

be an exponentially growing outer automorphism. Let f: G — G be a CT map
representing a power of ¢.

(1) If[v] € Kpg(f), then Supp(v) S 0%(Fy, F A A(9)) n 0% A(¢). In particular,
if ¢ is expanding relative to F, then Kpa(f) = @.
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(2) Conversely, if v e Curr(Fy, F A A(¢)) is such that the support Supp(v) of
v is contained in 0*(Fy, F A A(})) n 02 A(¢), then [v] € Kpg(f). Thus we
have

Kpa(f) = {[1] € BCurr(Fa, F 1 A) | Supp() € (Fa, F 1 A(6)) 0 A(6)}.
(3) If v e Curr(Fy, F A A(¢)), we have ||v]|F =0 if and only if v = 0.

Proof. The proof of (3) being identical to the proof of (1) and (2) replacing G'pq;
and Npg by Gpg 7 and Npg. 7, we only prove (1) and (2). For the proof of
both (1) and (2), let B be a free basis of F, and let T be the Cayley graph of Fy
associated with B. Let € (A(¢)) be the set of elements of F, associated with A(¢)
given by Lemma[2ZTTl Recall that Cyl(€'(A(¢))) is the set of cylinder subsets of the
form C(v), where v is a geodesic edge path in T starting at the base point whose
associated element w € Fy, contains a word of € (A(¢)) as a subword.

(1) Let v € Curr(Fy, F AA(¢)) nonzero be such that Supp(v) is not contained in
0%(Fn, FAA($))n02A(¢). Then Supp(v)nd?(Fy, A(¢)) # 9. Hence the re-
striction of v to 0%(Fy, A(¢)) induces a nonzero current v’ € Curr(Fy, A(9)).
By Lemma applied to A = A(¢) and v/, there exists C(y) € € (A(¢))
such that v(C(y)) > 0. Let w be the element of F, associated with ~,
and let 7/, be the reduced circuit in G associated with the conjugacy class
of w. Up to taking a larger geodesic edge path v/ 2 ~ in T such that
v(C(v")) > 0 (which exists by additivity of v), we may suppose that w is
cyclically reduced.

By Lemma [2Z1T(3), the path v is not contained in any tree T4 with
[A] € A(¢). As w is cyclically reduced, the translation axis in T of w
contains 7. This shows that {w™® w=®} ¢ 0%A(¢) and that w is not
contained in any subgroup A with [A] € A(¢). By Proposition BI4] the
circuit v/, is not a concatenation of paths in Gpg and in Npg. Therefore,
there exists an edge e € E(G — G'pg) (contained in 7/,) such that

ew- Y (- Y GwNE)

veNpG,eSy VeNTE ()

+ Z <7/,V>>N(’y,e) > 0.

VENEE 1.()

Thus, we see that Uo(v) > 0 and that [v] ¢ Kpg(f). The second part of
(1) follows from the fact that if ¢ is expanding relative to F, then 02A(¢) <
0%F. This proves (1).

(2) Let v € Curr(Fy, F A A()) be such that Supp(v) € 0%(Fu, F A A(9)) N
0%2A(4). Let e be an edge such that (e,v) > 0. By Lemma [B5(1), there
exists a constant C; > 0 such that, for every path v € Npg, we have
(") < C;. Recall the definition of the graph G* and the application
pax: G¥ — G. from Lemma 312l Let Cs be the length of a maximal path
in a maximal forest of pgx (G*). Let C' = max{2C1, Cs}.

Claim. Let 7y, §; and d2 be reduced paths such that v = §1eda, £(61), £(d2) = 2C and
{y,v) > 0. Let v = v97i71 - .- 7Yk be the exponential decomposition of  (where,
for every i € {0, ..., k}, the path v; is contained in Npg). Either e € EG’PG or e is
contained in an EG stratum and there exists i € {0,. .., k} such that e < ;.
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Proof. Since Supp(v) € 0?(F,, F A A(¢)) n 02A(¢), there exist a subgroup A of F,
such that [A] € A(¢), and two elements a and b of A such that the geodesic path in
G representing {a*®, b*®} € 02 A contains a lift of . If b = a1, then + is contained
in an iterate of a and, by Proposition 314l v is contained in a concatenation of
paths in Gpg and Npg. The claim follows in this case. So we may assume that
b # a~'. Suppose first that the axes Ax(a) and Ax(b) of a and b are disjoint.
Then there exist k,# € N* such that v is contained in the axis of a=*b¢. Thus, by
Proposition B.14] + is contained in a concatenation of paths in Gpg and Npg and
the claim follows in this case.

Suppose now that Ax(a) N Ax(b) # @. Let 4/, and 7} be the reduced circuit in G
associated with a and b. Then + is contained in the union of v/, U~;. Recall that, by
Proposition [B.14] the paths v/, and 7, are concatenation of paths in Gpg and Npg.
Hence there exist reduced circuits a and 3 in G* and reduced arcs 7, 7. in G* such
that pgx () = 7, and p*(B) = ~;, and such that pgs (7) = v and pex (7.) = e. By
the choice of C, and as £(d1),£(d2) = 2C, one can remove an initial and a terminal
segment of 7 so that the resulting path 7’ is nontrivial, is contained in a subgraph
of G* with no leaf and is such that £(pg= (7)) = 2C + 1. Thus, there exist subpaths
T, 71,74, T4 of 7 and a reduced circuit § of G* such that:

(i) Upgx(11)), U(pgx(12)) = C,
(il) 7 = 7] 7]{TeTHTY,
(iil) 7/ = 71{7e7) S 6.
By Lemma [BT2(1), the path pg(d) is a reduced circuit which contains e. Since
Upgx (1)), Lpex(15)) = C = 2C4, if ' € Np&(pg=(0)) is such that e < /,
then ' < 7{ers. Hence it suffices to prove the claim for v = pgx(d). As J is a
concatenation of paths in Gpg and in Mpg, the claim follows. O

Suppose towards a contradiction that there exists an edge e € G — G5 such
that:

-3 (Gw- Y &N

'YGNPG#EQ’Y 'YIGN;(J; (’y)

+ Z <~y',u>)N(fy,e) > 0.

YENEE 1 (1)

By additivity of v, there exists a reduced path 7 of length 4C + 1 such that
the path ~o has a decomposition vy = y1ev2, where for every i € {1,2}, the path ~;
has length equal to 2C and we have v(C(v)) > 0. By the above equation, we can

choose vy such that if v/ € NE& (7o), then 7' does not contain e. Thus we have

e ¢ G and e is not contained in a subpath of NF&*(y0). This contradicts the

above claim and this concludes the proof. ([l

Let F be a free factor system and let ¢ € Out(Fy, F) be an exponentially growing
outer automorphism. Note that, by Lemma and since for every k € N*, we
have A(¢) = A(¢*), the space Kpg(f) does not depend on the CT map f and
does not depend on the chosen power of ¢. Therefore, we will simply write Kpg ()
instead. Moreover, since A(¢) = A(¢™1), we see that Kpg(¢) = Kpg(p™?).

For Lemma 329 let C; > 0 be a constant such that for every v € Npg, we
have {(y) < Cy. It exists since Npg is finite by Lemma B.5(1). Let L be the
malnormality constant associated with A(¢) as defined above Lemma [Z17] and let
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Co = max{C1,L}. Let € be the set of elements of F, associated with F A A(¢)
given above Lemmal[ZTTl Let P(F A .A(¢)) be the set of reduced paths « in G such
that C(v) € Cyl(€), £(v) > Cy and ~ is not contained in a concatenation of paths
in GPG,]—‘ and NPG7F-

Lemma 3.29. Letn > 3, let F be a free factor system of Fy, and let ¢ € Out(Fy, F)
be an exponentially growing outer automorphism. We have

PR FrA) = ) cw.
VEP(FAA($))

Proof. Let Ay,..., A, be subgroups of F, such that F A A(¢) = {[A1],...,[4A]}
and € = €(A4,...,A,). By Lemma [Z12] we have

P FaA)= | Cw.
C(7)eCyl(¥)

Note that, for every path v € G, we have

C(y) = lJ  Cke.

ecEG L(ye)>L(v)
Hence we have

P (Fo, F A A(9)) = U ().

C(7)eCyl(€) £(v)>Co

So it suffices to prove that we can restrict our considerations to paths v which
are not contained in a concatenation of paths in Gpg r and Npg r. Let v be
a path such that C(y) € Cyl(¥) and 4(vy) > Cp. By Lemma 2TI[(3), the path
7 is not contained in any tree T, 4,,-1 with g € F; and i € {1,...,r}. Thus, by
Proposition B.I14] there does not exist a circuit in G, which contains v and which
is a concatenation of paths in Gpg,r and Npg #. Moreover, it is not contained in
any path of ANpg since £(v) > C;.

Suppose that 7 is contained in a concatenation of paths in Gpg r and Npg,
(which is not a circuit by the above). Recall the definition of G* and pgs from
Lemma and let G% = pai (Gp). By the above paragraph, either there does
not exist an immersed path (not necessarily an edge path) v* in G% such that
pex(v*) = 7 or there exists an immersed path v* in G% such that pgs(7*) = v
and v* is not contained in a circuit of G% (recall that G% might contain univalent
vertices). In the first case, we have £z(v) > 0. In the second case, since G* is finite,
by Lemma [3.12] up to considering y~!, there exists d € N* such that for every path
of 4/ such that v’ is a reduced path in G and £(yy') = £() + d, the path ¥4’ is not
the image by pg+ of an immersed path in G%. Thus we have £z(vy') > 0. Using
the fact that

co-  |J cte
eeEG,E('ye)>£('y)
we can replace v by paths 7" such that v € 4” and " is not contained in a
concatenation of paths in Gpg r and Npg, . This concludes the proof. O

Let v be a nonzero current in Curr(Fy, F A A(¢)). By Lemma B28|(3), we have
lvl|= # 0. The following result characterizes limits in PCurr(F,, F A A(¢p)). The
result is due to Kapovich [Kap, Lemma 3.5] for a nonrelative context.
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Lemma 3.30. Letn > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F)
be an exponentially growing outer automorphism. Let ([pn])nen be a sequence of
projective relative currents in PCurr(Fy, F A A(p)) and let [u] € PCurr(Fp, F A
A(9)). Let G be a graph whose fundamental group is isomorphic to F, and such
that there exists a subgraph G, of G such that F(G,) = F. Then nlgxgo[un] = [p] if

and only if, for every reduced edge path v € P(F A A(¢)), we have

) lim eHn) _

n=% unllr - llellF
Proof. Suppose first that lim [,un] = [p]. Thus there exists a sequence (\p,)nen*
of positive real numbers such that hm Antin = p. By continuity of ||.||, we have
hm ||/\n,un||]: = ||ul|l7. By hnearlty of II.ll7 and {.,.) in the second variable, for
every reduced edge path v € P(F A A(¢)), we have

lim <'Ya nﬂn> — lim <'Yvﬂn> < >
n= [ Anpinll 7 o pnllr  (pllr

Suppose now that for every reduced edge path v € (]-' A A(9)), Equation ()
holds. By Lemma B.29 for every Borel subset B of 0%(F,, F A A(¢)) such that
1(0B) = 0 (where 0B is the topological boundary of B), we have

n(B B
L m(B) _ p(B)

n—> |lun |7 pllF

Hence we have lim [u,] = [u]. O

n—0o0

4. STABLE AND UNSTABLE CURRENTS FOR RELATIVE ATOROIDAL OUTER
AUTOMORPHISMS

Let n = 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F) be
an atoroidal outer automorphism relative to F. In this section, under additional
hypotheses on ¢, we construct two ¢-invariant convex subsets of PCurr(Fy, F). We
will then show in the following section that, with respect to these convex subsets,
the outer automorphism ¢ acts with generalized north-south dynamics.

In order to define the extremal points of these simplices, we need some results
regarding substitution dynamics.

4.1. Substitution dynamics. Let A be a finite set with cardinality at least equal
to 2. Let ¢ be a substitution on A, that is, a map from A to the set of nonempty
finite words on A. The substitution ¢ induces a map on the set of all finite words
on A by concatenation, which we still denote by (. We can therefore iterate the
substitution ¢. For a word w on A, we will denote by |w| the length of w on the
alphabet A.

To the substitution  one can associate its transition matriz M, which is a square
matrix whose rows and columns are indexed by letters in A and, for all a,b € A,
the value M (a,b) is the number of occurrences of @ in ((b). Likewise, for n > 1, the
matrix M™ is the transition matrix for (™. We say that a substitution ( is irreducible
if its transition matrix is irreducible, and that the substitution is primitive if its
transition matrix is.
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Let ¢ € N* and let A; be the set of words on A of length ¢. As defined
in [Que, Section 5.4.1], the substitution ¢ induces a substitution ¢, on Ay as fol-
lows. Consider w = z;...2¢ € Ap. Then (o(w) = wiws ... Wi¢(s,)|, Where, for every
ie{l,...,|¢(x1)|}, the word w; is the subword of {(w) of length ¢ starting at the
it" position of ¢(x1). Therefore, (; is the concatenation of the |¢(z;)| first subwords
of {(w) of length £. Note that the number of 7 € {1,...,|{(x1)|} such that w; is not
contained in ((z1) is bounded by £—1. Let |- |, be the length of words on A,. Then
|Ce(w)|e = |¢(z1)]. Denote by M, the transition matrix of (,. Note that, for every
n,?¢ = 1, we have (¢"); = ({¢)™ as applications on the set of words on Ay and thus
(M™)e = (M)".

Consider now a partition of the alphabet A = Hf:o B;. Suppose that the transi-
tion matrix associated with the substitution ¢ is lower block triangular with respect
to this partition. Therefore, for every i € {0,...,k}, for every x € B; and for every
J <1, the word ((z) does not contain letters in B;. In the remainder of the article,
for every i € {0, ..., k} the diagonal block in M corresponding to the block B; will
be denoted by Mp,.

The partition of A induces a partition of A, as follows. For every i € {0, ..., k},
let E’Z C Ay be the set of all words on A of length £ which start with a letter in B;
and which, for every j < ¢, do not contain a letter in B;. Let B; be the set of all
words w on A of length £ which start with a letter in B; and such that there exists
Jj < i such that w contains a letter in B; (note that By is empty). Then gi U B, is
the set of all words on A of length ¢ which start with a letter in B;. The hypothesis
on the substitution ¢ implies that the transition matrix Mp is lower block triangular
with respect to the partition

BouB,UB 1I...1 B, 1By
of Ay. As before, for every i € {0,. .., k}, we will denote by M, © 5, the diagonal block
in M, corresponding to B; and by M, 0B, the diagonal block in M, corresponding
to Bi.
Lemma 4.1 ([Gupll Lemma 8.8]). Let A be a finite alphabet equipped with a

partition A = Ui?:oBz‘- Let ¢ be a substitution and let M be its transition matrix.
Let ¢ € N*,

(1) The eigenvalues of M, B, are those of Mp, with possibly additional eigen-
values of absolute value at most equal to 1.
(2) The eigenvalues of M, g, have absolute value at most equal to 1.

Fix an integer p € {0,...,k}. For every i = p, let B be the subset of B;
consisting of all words w of length ¢ which start Wlth a letter in B; and such that
there exists j < p such that w contains a letter in B;. Then, for every ¢ > p, the
block M, B, decomposes into a lower triangular block matrix where the columns and

rows corresponding to B( ?) are on the top left. Let M B be the corresponding

block matrix. By Lemma [£1}2), the eigenvalues of M (B® have absolute value at

most 1. Moreover, for every ,j > p, for every word w contained in Bj uB = B; P)

the word (y(w) considered as a word on A, does not contain any word of FEP). Let
My(p) be the matrix obtained from M, by deleting, for every ¢ > p, all rows and
columns corresponding to elements in B;, and all rows and columns corresponding



200 YASSINE GUERCH

to elements of B; which do not belong to §§”). Note that, by Lemma [£.I](1),
the eigenvalues of M;(p) are those of every block Mp, with j < p with possibly
additional eigenvalues of absolute value at most 1.

We can now prove a result concerning the number of occurrences of words in
iterates of a letter. For words w,v on A, we denote by (w,v) the number of occur-
rences of w in v, so that M = ((a,((b))apea. For a word w on A, we denote by
||w|(py the number of letters in w which are contained in some B; for j < p.

Proposition 4.2. Let A be an alphabet equipped with a partition A = LlfzoBi. Let
¢ be a substitution on A and let M be its transition matriz. Suppose that M is lower
triangular by block with respect to the partition of A. Let p e N*. Let a € Ut<p By
be such that ((a) starts with a. Suppose that there exists j < p such that Mp, is a
primitive block whose Perron-Frobenius eigenvalue is greater than 1 and such that
there exists nj = 1 such that ("i(a) contains a letter of B;. Let w be a word such
that w contains a letter in By for some k < p. Then

o (@.0(@)
w1 (@) )

exists and is finite. Furthermore there exists a word w containing a letter in some
By, with k < p such that this limit is positive.

Proof. The proof follows [Gupl], Lemma 8.9] (see also [LUT] for similar statements).
First, up to replacing A by the smallest (-invariant subalphabet of A containing
a (which still satisfies the hypotheses of Proposition 2], we may suppose that,
for every letter x € A, there exists n, > 1 such that ("= (a) contains the letter
x. Let a be a word on A with length ¢ > 1 that starts with a. Note that, since
a4 € Up<pBy, the word a defines a column and a row in M;(p). Recall that for
every n the number of occurrences of a word w in ("(a) differs from the number
of occurrences of the letter w € A, in ('(a) by at most ¢ — 1. Moreover, we have
(w, (@) = My (p) (w, ).

Let S be the set of all s < p such that Mp_ is a primitive block with associated
Perron-Frobenius eigenvalue greater than 1. By assumption, the set .S is a nonempty
finite set. Let S’ be the subset of S consisting of all such B, such that the associated
Perron-Frobenius eigenvalue is maximal. Call this eigenvalue A\. By Lemma [T
the eigenvalue A is also the maximal eigenvalue of the matrix My(p). Let dy be
the size of the maximal Jordan block of M,(p) associated with A. Then the growth

M, (p)
A

under iterates of the maximal Jordan block of is polynomial of degree dy.

Therefore, we have

(@,C"@) o @G @) L MEE)(w,a)

n—oo  A\"'ndx n—oo  A\"pda n—om Anpda

= dw,a7

where d,, , is a real number. Moreover, the limit does not depend on the choice
of a since, for any n, and for any two columns of M}'(p) corresponding to words
starting with the same letter, the sum of the values of each column differ by at
most £ — 1 (see |Gupll Lemma 8.6]). Moreover, there exists a word w such that
the limit is positive since we quotiented by the growth of the iterates of the Jordan
block with maximal eigenvalue.
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My (p)(w,0)
Anndx

Let | -] be the L;-norm on RI4¢l, By [LUT, Remark 4.1], since lim,, o
exists, so does
M'IL
i M) 00)
=0 [ M (p)(a)]
where | M} (p)(a)| is the norm of the column of Mj'(p) corresponding to .

Claim. Suppose that there exists C' > 1 such that for every n € N, we have
<™ (@)l ) < IMZ (p) ()] < ClIC™ (@) )-

L .¢' ()
n= ||¢"(a)|l(p)
exists for all words w on A and is positive for some word w.

Then

Proof. Recall that two sequences (uy)neny and (v, )nen with values in R are equiv-
alent if there exists a sequence (€, )nen tending to zero such that u, = (1 + €,)v,.
Recall that there exists C’ > 0 such that the sequence (||M;'(p)(@)||)nen is equiv-
alent to (C'A"n%),en. Recall also that for every n, the value of |[("(a)l|(,) is the
norm of M"(p)(v,), where v, is the vector whose coordinate is 1 on the coordinate
associated with a and 0 otherwise. Hence, since the matrix M™(p) is nonnegative
and not the zero matrix, there exist C,, A\, € R% and d, € N such that the sequence
(1™ (@)l (p))nen is equivalent to (CuAZn®),en. Thus, by the assumption of the
claim, since the limit

M) (w,)

n=o0 [[M7'(p)(a)l
exists, and is not equal to zero for some w, the same is true for

L.

n— [|¢"(a)|l(p)

This proves the claim. ([l

Therefore, in order to conclude the proof of the proposition, it remains to prove
that the hypothesis of the claim is true in our context. Let ("(a) = o1 ...%|cn ()
and let

C?(Oz) =wy... w|cn(a)‘.
Let X™(a) be the list z1,...,2|¢n(q) and let X2 (a) be the sublist of X" (a) con-
sisting of all letters in up_llBi. Let X" (a) be the list wy, .. -y W)en(q)) and let

X(fz’,n) (@) be the sublist of X ™) (a) which consists of all elements of X “™ () that

do not belong to U<, B; U B; — EE”). Note that |X(<Z1’,n)(a)| = |[|M}(p)(a)|| and
that [ X2 (a)| = [|¢"(a)||(p). The fact that [[¢"(a)||p) < [[M](p)(a)]|| follows from

(€n)

the fact that we have an injection from X (a) to X<} () by sending the letter
r; € X2, (a) tow; € X(fl’,") (a). Since every word of length ¢ contained in X(fl’)n)(a)
contains a letter in X” (a), we have an application from Xé;n)(a) to X2, (a) de-
fined as follows. Let w € X(f];n)(a) and let j, € {1,...,|¢"(a)|} be the minimal

integer such that z;, € X2 (a) and x;, is a letter in w. Then the application sends
w to zj,. By construction, the cardinal of the preimage of any » € XZ (a) is at
most equal to £. Therefore, we have

<" (@) < 1M (p)(@)]| < £[C" (@) )
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This concludes the proof. O

4.2. Construction of the attractive and repulsive currents for relative
almost atoroidal automorphisms. Let n > 3 and let F = {[44],...,[4:]}
be a free factor system of F,. We first define a class of outer automorphisms
of F, which we will study in the rest of the article. If ¢ € Out(Fy, F) and ¢
preserves the conjugacy class of every A; with i € {1,..., k}, we denote by ¢|r the
element ([¢1]|a,];---,[Pk|a,]), where, for every ¢ € {1,...,k}, the element ¢; is a
representative of ¢ such that ¢;(A;) = A; and [¢;]4,] is an element of Out(4;).
Note that the outer class of ¢;|4, in Out(A;) does not depend on the choice of ¢;.

Definition 4.3. Let n > 3 and let F = {[A1],...,[Ax]} be a free factor system of
F,. Let ¢ € Out(F,, F) be exponentially growing. The outer automorphism ¢ is
almost atoroidal relative to F if ¢ preserves the conjugacy class of every A; with

1€ {1,...,k} and if ¢ preserves a sequence of free factor systems F < F; < {Fy,}
with F1 = {[B1],. .., [Be¢]} such that:

(a) F1 < {Fp} is sporadic,

(b) for every i € {1,...,£}, ¢ preserves the conjugacy class of B;, the element
[#i]B;] is an expanding outer automorphism relative to F A {[B;]} and ¢ is
not expanding relative to F (F might be equal to JFy).

The main example of an almost atoroidal automorphism is the following. Sup-
pose that F; = [A] and let ¢ € Out(Fy, F) be such that ¢([A]) = [A]. Then ¢ is
almost atoroidal if ¢|[ 4] is expanding relative to F. Almost atoroidality allows us
to deal with sporadic extensions.

Let ¢ € Out(Fyp, F) be an atoroidal or an almost atoroidal outer automorphism
relative to F. In this section, we construct a nontrivial convex compact subset in
PCurr(Fp, F A A(¢)) associated with ¢. We follow the construction of [Uya2] in
the context of atoroidal automorphisms.

By Theorem 210, there exists M > 1 such that ™ is represented by a CT map
f: G — G with filtration @ = Gg & G1 S ... S G = G and such that there exists
pe{l,...,k} such that F(G,) = F.

For a splitting unit o in G, we say that o is ezpanding if lim,, o Legp ([f™(0)]) =
+00. Note that, by Lemma[3.24] this is equivalent to saying that there exists N € N*
such that [f¥(o)] contains a splitting unit which is an edge in an EG stratum.
Moreover, a splitting unit o which is an expanding splitting unit is either an edge
in G — G’p; or a maximal taken connecting path in a zero stratum such that a
reduced iterate of o contains an edge in G — G'p; as a splitting unit. In particular,
there are finitely many expanding splitting units by Proposition [2.5)(3).

Let v and v’ be two finite reduced subpaths of G. We denote by #(v,7') the
number of occurrences of v in v and by {7,+’) the sum

(5) "y = #nY) + #(v1A).

Proposition 4] shows the existence of relative currents associated with relative
atoroidal outer automorphisms. Once we have constructed these currents for rel-
ative atoroidal outer automorphisms, we will also be able to construct attractive
and repulsive simplices for every almost atoroidal outer automorphism relative to
F. Proposition [4.4] and its proof are inspired by the same result in the absolute
context due to Uyanik [Uya2] Proposition 3.3] and by the proof due to Gupta in
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the relative fully irreducible context [Gupl], Proposition 8.13]. Recall the definition
of P(F A A(¢)) before Lemma and € before Lemma 2171

Proposition 4.4. Let n > 3 and let F be a free factor system of F,. Let ¢ €
Out(Fy,, F) be an atoroidal outer automorphism relative to F. Let f: G — G be a
CT map that represents a power of ¢ with filtration @ =Gy S G1 S ... S G, =G
and such that there exists p € {1,...,k} such that F(G,) = F. Lety € P(F A A(¢))

and let o be an expanding splitting unit with fived initial direction.

(1)

(2)

Proof.

The limit
o — fim LT @D
T ()
exists and is finite.

There exists a unique current 1, € Curr(Fy, F A A(@)) such that, for every
finite reduced edge path v € P(F A A(¢)), we have:

No (C(’Y» = Oy.

(1) We may suppose that v occurs in a reduced iterate of o as otherwise
o, = 0. Note that, since the initial direction of ¢ is fixed, the splitting unit
o is not contained in a zero stratum. Thus, we see that ¢ is an expanding
splitting unit which is an edge in an irreducible stratum. Let  be the height
of o.

In order to prove the proposition in this case, we want to apply Propo-
sition to the CT map f seen as a substitution on the set of splitting
units contained in iterates of 0. However, the set of splitting units might be
infinite since exceptional paths and INPs may have arbitrarily large lengths.

Instead, we construct a finite alphabet A, depending on . The alpha-
bet is constructed as follows by associating a letter to every splitting unit
occurring in a reduced iterate of 0. However some letters will correspond
to infinitely many splitting units.

(a) We add one letter for each of the finitely many edges in irreducible
strata that are contained in a reduced iterate of o.

(b) We add one letter for each reduced maximal taken connecting path in
a zero stratum contained in a reduced iterate of o.

(¢c) We add one letter for each INP contained in a reduced iterate of o
and such that the stratum of maximal height it intersects is an EG
stratum.

(d) Let § be an INP such that the stratum of maximal height it intersects
is an NEG stratum and such that it appears in a reduced iterate of
o. By Proposition [Z3[(11), there exist an edge e, an integer s € Z
and a closed Nielsen path w such that § = ew®e™!. Note that ~ is
not contained in w® since v € P(F A A(¢$)) and w?® is a concatenation
of paths in Gpg r and Npg 7 by Lemma and the fact that ¢ is
atoroidal relative to F. Hence if v is contained in §, it is either an
initial or a terminal segment of §. Let M; be the maximal integer
|d| such that v contains an INP of the form ew?e™!. Let M, be the
minimal integer |d| such that v n (ew?e™!) is either a proper initial or
a proper terminal segment of ew?e™!. Let M3 be the maximal integer
|d| such that ew?e~! is contained in [f(o’)] with o’ a splitting unit
which is either an edge in an irreducible stratum or a maximal taken
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connecting path in a zero stratum. Let M = max{Mj, M, M3}. We
add one letter for each ew?e™! with |d| < M + 1. We add exactly one
letter representing every ew?e™! with |d| > M + 1.

(e) Let 6 be an exceptional path appearing in a reduced iterate of o.
There exist edges e;, e, a nonzero integer s and a closed Nielsen path
w such that § = e;w®e; *. Note that v is not contained in w* since
v € P(F A A(¢)) and w® is a concatenation of paths in Gpg r and
Npe.F by Lemma 3.8 and the fact that ¢ is atoroidal relative to F.
Let M4 be the maximal integer |d| such that v contains an exceptional
path of the form e;w@e; . Let Ms be the minimal integer |d| such that
¥ N elwdegl is either a proper initial or terminal segment of elwdegl.
Let Mg be the maximal integer |d| such that e;w?e; ! is contained in
[f(0")] with o’ a splitting unit which is either an edge in an irreducible
stratum or a maximal taken connecting path in a zero stratum. Let
M’ = max{My, M5, Ms}. We add one letter for each elwdegl with
|d| < M’ + 1. We add one letter representing every ejw?ey ! with
|d| > M’ + 1.

We claim that the alphabet A, is finite. Indeed, since the graph G is finite, so
is the number of letters in the first category. By Proposition 25(3), the zero strata
of G,_1 are exactly the contractible components of G,_;. Hence the number of
letters in the second category is finite. The number of letters in the third category
is finite by Proposition 2.F(9). The remaining letters of A, are finite by definition.

Let ¢ be the following substitution on A,. If a € A, represents a unique path in
G, we set ((a) = [f(a)]. If a € A, represents several paths in G, we set ((a) = a.

We claim that ¢ is a well-defined substitution. Indeed, by Proposition 25(6),
if a is a letter in A, which represents a unique path in G, then [f(a)] is com-
pletely split and every splitting unit in [f(a)] is represented by a unique letter by
the construction of letters in the fourth and fifth category. Moreover, if a € A,
represents several paths, then the definition of { does not depend on the choice of
a representative of a. Hence ( is a well-defined substitution.

We claim that if a € A, represents several paths in G, then, for every represen-
tative a of a, the path [f(«)] is represented by a. Indeed, the claim is immediate
when a represents several INPs, so we focus on the case where a represents several
exceptional paths.

Let e1,es be edges in G, let w be a closed Nielsen path in G and let d € Z be
such that ejwiey 1is represented by the letter a. There exist a splitting unit o’
of a reduced iterate of o by [f], an integer N € N* and an integer d; € Z such
that e;w?e; ' is a subpath of [fN(¢’)]. Thus, using the constants given in (e),
we have |di| < Mg < M. By the construction of the alphabet A, there exists a
letter ¢’ in A, corresponding to the path erwite; Land @' represents a unique path.
For every n € N, let d,, € Z be such that [f"(e;w®e; )] = eqwe;'. Then the
sequence (dp,)nen is monotonic. Let mg be the minimal integer such that the path
eqwmo ey 1is represented by a. Note that mo > 1 as a’ represents a unique path.
By monotonicity, dm, # di. Thus, if d,,, > di, then for every m > myg, we have
dm = dp, and if d,,, < di, then for every m > myg, we have d,,, < d,,,. Hence for
every m = mg, the path 617_Udm+162_1 is represented by a. This shows that if a € a
then [f(«)] € a. This concludes the proof of the claim. Hence ¢ only depends on
the function [f(.)].
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By reordering columns and rows, we may suppose that if M is the matrix asso-
ciated with ¢, then columns and rows of M with index greater than p are precisely
the letters in A, representing splitting units which are concatenations of paths in
Gpa,r and Npg r. By Lemma 310 iterates by ¢ of letters of A, representing con-
catenations of paths in Gpg, 7 and Npg, r are words on A, whose letters represent
concatenations of paths in Gpg r and Npg #. Thus, the matrix M is a lower block
triangular matrix, where every block of index at most p corresponds to either edges
in a common stratum or the 0 matrix when the associated letter is a maximal taken
connecting path in a zero stratum.

Since o is expanding, it has a reduced iterate which contains splitting units
which are edges in EG strata. Hence if a, is the letter in A, corresponding to o,
the iterates (" (a,) contain letters of A, in a Perron-Frobenius block with eigenvalue
greater than 1. Since the initial direction of o is fixed, by Proposition [£.2] for every
word w in the alphabet A, the limit

. (w,[¢"(9)])
1 IS AT
m=e ¢ () [ )
exists and is finite. Hence the limit
. Cw, [¢™(a)])
1 A YL/
m=e 160 )

exists and is finite.

Claim. There exists a matrix M’ obtained from M by multiplying rows and columns
by positive scalars and such that, for every m € N* | we have {x([f™(0)]) =
1M (o) [l (p)-

Proof. Remark that if elwsegl is an exceptional path, and if elwdegl is an excep-
tional path with distinct width, then their F-lengths are equal and at most equal
to 2. Indeed, since ¢ is an atoroidal outer automorphism relative to F, every closed
Nielsen path of G is contained in G. Since w is a closed Nielsen path, we see that
w is a concatenation of paths in Gpg r and Npg r by Lemma[3.7 Hence we have

E;(elwsegl) = 5_7:(61) + 5_7:(62) < 2.

Similarly, if ew®e™! and ew?e™! are INP intersecting the same maximal NEG stra-
tum, then their F-lengths are equal and at most equal to 2. Let M’ be the matrix
obtained from M by multiplying every row corresponding to either an exceptional
path not contained in G, an INP not contained in Gy, a collection of exceptional
paths not contained in G, a collection of INPs not contained in G, or a maximal
taken connecting path not contained in G, by the corresponding F-length. Note
that, by the above remarks, this does not depend on the choice of a representative
when the letter corresponds to a collection of paths. Then for every m € N* the
value || M (c)l|(py corresponds to the sum of the F-length of every splitting unit in
[f™(o)] not contained in Gp. By Lemma 320, complete splittings are PG-relative
complete splittings. By Lemma B.21)(2), we have {x([f™(c)]) = [|[M"" ()| (p)- This
proves the claim. O

By the claim, we see that for every m € N*, there exists a constant K such that
we have

%HC’"(U)II@) < Lx(™(0)]) < K™ ()]l ) -
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Using the claim in the proof of Proposition (replacing || M} (p)(a)|| by
Lx([f™(0)]) which is possible since £x([f"(c)]) is the norm of a matrix by the
claim), the limit

exists and is finite.

We now construct a finite set of words W(y) in the alphabet A, such that
for every m € N*, there exists a bijection between occurrences of v in [f"(0)]
and occurrences of a word w € W () in [("(c)]. This will conclude the proof of
Assertion (1).

Let W () be the set of words in A, which have a representative consisting of
a path contained in a reduced iterate [fV(c)] of o which contains v, which is a
concatenation of splitting units of [ f~ (¢)] and which is minimal for these properties.
By construction, every occurrence of v in a reduced iterate of o is contained in a
word in W (). The set W () is finite since v is a finite path, since A, is finite and
since every path representing a letter of a word w € W(y) must contain an edge of
~ by minimality of w.

For every w € W(7), let m,, be the number of occurrences of v in w. Since 7 is
not contained in Gy, the value m,, does not depend on the choice of a representative
of w if w represents a collection of paths. Therefore, for every m € N* we have

G fme)y =Y myw, f™(0)).

weW (v)

This shows that the limit .
o — lim &, fm(o))
m— Lz (f™(a))
exists and is finite. This concludes the proof of Assertion (1).
(2) Let us prove that for every element v € P(F A A(¢)), we have:
(i) 0< o0y <0
(ii) oy = 0y-1;
(ili) 0y = D cp Ove, Where E is the subset of EG consisting of all edges
that are incident to the endpoints of v and distinct from the inverse
of the last edge of 7.

The point (i) follows from Assertion (1). The second point follows from the
definition of (v, f™(o)). In order to prove the third point, remark that (v, f™ (o))
and Y, _p {(ve, f["(0)) differ only when [f™(c)] ends with v or y~!. Therefore the
difference between (v, f™ (0)> and > p <’ye, fm(0)> is at most 2. This implies that

— 0 as n — oo.

o2 f’” Z <ve

Cr(fm™( = le(f
This proves the third point. By [Guell Lemma 3.2], since the map v — o, sat-
isfies the conditions (i)—(iii), it determines a projective relative current [n,] €
PCurr(Fy, F). This current is unique since a relative current is entirely determined
by its set of values on cylinders of finite paths v € P(F A A(¢)) by Lemma
This concludes the proof. ([l

Definition 4.5. Let n > 3 and let F be a free factor system of F,. Let ¢ €
Out(Fn, F) be an atoroidal or an almost atoroidal outer automorphism relative to
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F and let F; be a free factor system such that 7 < F; and such that the extension
F1 < {Fn} is sporadic and such that ¢|r, is atoroidal relative to F. In the case
that ¢ is atoroidal relative to F, we assume that F; = {[Fy]}. Let f: G — G be a
CT map representing a power of ¢ with filtration

@:GogGlggGk:G,

such that there exists i € {1,...,k — 1} with F(G;) = F1. We define the simplex of
attraction of ¢, denoted by A, (¢), as the set of projective classes of nonnegative
linear combinations of currents u, obtained from Proposition [£.4] applied to ¢|x,
and f and which correspond to splitting units ¢ whose exponential length grows
exponentially fast under iteration of f. The simplex of repulsion of ¢, denoted by

A_(¢), is Ay (97Y).

Remark 4.6. The definitions of attractive and repulsive currents given in Defini-
tion [L5]rely on the choice of CT maps representing powers of the (almost) atoroidal
outer automorphisms ¢ and ¢~ !. However, it will be a consequence of Proposi-
tion and Proposition that the attractive and repulsive currents depend
only on ¢.

We now prove properties of the subsets Ay(¢). As explained above Proposi-
tion [£4] there are only finitely many expanding splitting units. Hence the subsets
A4 (¢) are closed. Since PCurr(Fy,, F A A(¢)) is a Hausdorff, compact space by
Lemma [2-T4] and since Ay (¢) are closed subsets, we have the following.

Lemma 4.7. Letn > 3 and let F be a free factor system of Fy,. Let ¢ € Out(Fy, F)
be an (almost) atoroidal outer automorphism relative to F. The subsets Ay (¢p) are
compact and contain finitely many extremal points.

Note that one computes ||t || by counting the number of occurrences of every
PG-relative splitting unit of positive F-length in a reduced iterate of ¢ and taking
the limit. This is precisely the limit of the F-length of reduced iterates of o by
Lemma [3:2T1 Hence we have the following result.

Lemma 4.8. Letn > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy, F)
be an (almost) atoroidal outer automorphism relative to F. We have ||| = 1.

We now prove that the subsets Ai(¢) are ¢-invariant. We first recall some
lemmas.

Lemma 4.9 ([Cool Bounded Cancellation]). Letn > 2 and let G be a marked graph
of Fu. Let f: G — G be a graph map. There exists a constant Cy such that for any
reduced path p = p1p2 in G we have

ULf()]) = ([ (p)]) + £([f (p2)]) = 2C;-

Lemma 4.10 ([LU2| Lemma 5.7]). For any graph G without valence 1 vertices
there exists a constant K = 0 such that for any finite reduced edge path v in G
there exists an edge path ' of length at most K such that the concatenation '
exists and is a reduced circust.

Lemma 4.11. Let f: G — G be as in Proposition &4l Let K1 > 0 be any constant,
let o be an expanding splitting unit and let n, be the current associated with o given
by Propositionld4)(2). Let m € N and let ~,, be a reduced edge path of length at most
K. Let ym = [f™(0)]*4),, where [f™(c)]* is obtained from [f™(c)] by erasing an
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initial and a terminal subpath of length Ky. For every element v € P(F n A(¢)),

we have ( N
. V)’Ym
lim =LY, M.
) (e

Proof. The proof follows [LU2, Lemma 5.8]. Note that £(v/,) < K; and that
Cr([f™(0)]%) = Lr([f™(0)]) — 2K

Since o is expanding, we have lim,,_,q €7 ([f™(0)]) = +o0. Combining all these
facts, we see that

L Snom)
lim ———— =1
m=n (3, [f™(a)])
and Cr ()
lim —2 ),
m=x Lr([f™(0)])
Hence the result follows from Proposition E4(1). O

Proposition 4.12. Let n > 3 and let F be a free factor system of F,. Let ¢ €
Out(Fy, F) be an atoroidal or an almost atoroidal outer automorphism relative to
F. Let f: G — G be as in Proposition 4. Let o be an expanding splitting unit
and let 1, be the current associated with o given by Proposition [l4(2). There exists
Ao > 1 such that

¢(770) = )\0770-

Proof. The proof follows [LU2, Proposition 5.9]. Let K > 0 be the constant asso-
ciated with G given by Lemma [L10l Let m € N, and let 4/, be the path of length
at most K given by Lemma such that v,, = [f™(0)]Y,, is a reduced circuit.
Since limy—,o0 Leap([f1(0)]) = 400, for large values of m, we have leyp(vm) > 0.
Let w,, be an element of F;, whose conjugacy class is represented by 7,,. Note
that, by Lemma B.27 we have {x(Vm) = ||9w,, |- By Proposition B4l since
lewp(Ym) > 0, we see that w,, is F A A(¢)-nonperipheral, hence w,, defines a
current 7y, € Curr(Fy, F A A()).

Let a,, = [f™"1(0)][f(1%,)].- Note that since £(v),) < K, the value £([f(v.,)])
is bounded by a constant Ky which only depends on K. Let C’ be the constant
given by Lemma and let K3 = max{Ky,C’'}. Then, with the notations of
Lemma ETI] the reduced circuit 7)), = [a,] can be written as a product ~), =
£ ()] B where ((B,) < K and Lx([f™ 1 (0)]%) > Lx([f™ (0)]) — 2K
Applying Lemma 1] twice, we see that, for every element v € P(F A A(¢)), we

have ¢ )
. Vs Tm
lim ={v,Ns
2 U () T

and .

00 (}_(le) - <75770>'

By Lemma [3.30] we have
. Mwm]
lim ——— =7
m=20 ||1pu,,1[| 7
From the continuity of the Out(Fy)-action on PCurr(Fy, F A A(¢)) and from the

fact that ¢(Mw,.]) = Ns([w.]), We see that
n¢([wm])

lim ———— = o(ny).
m—0 ||y, 1|7
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Since the reduced circuit 7/ represents the conjugacy class ¢([wy,]), the second of
the above equalities implies that
m=0 [[Ng([w.)) |l 7

Recall that lim,, % = 1 and that lim,,_ % = 1. By

Lemma B.27, we have {r(vm) = [|1[w,.)ll7 and €r(vn) = [104((w,.)ll7- Recall
from the claim in the proof of Proposition 4] that ££([f(c)]) is the norm of a ma-
trix. The conclusion of Proposition then follows from the fact (see [LUIL Re-
mark 3.3]) that there exists A, > 1 such that

L))
e ([ (o)

We now prove a lemma which will be used in [Gue2].

= A5 L]

Lemma 4.13. Letn > 3 and let F be a free factor system of Fy,. Let ¢p € Out(Fy, F)
be an expanding outer automorphism relative to F. Let f: G — G be as in Propo-
sition [4l. Let o be an expanding splitting unit and let n, be the current associated
with o given by Proposition L4Y(2).
(1) There exists a projective current [n] € PCurr(Fy, F A A(¢)) whose support
is contained in the support of n, and such that Supp(n) is uniquely ergodic.
In particular, the support of every extremal current of A4 (¢) contains a
closed subset which is uniquely ergodic.
(2) There exist only finitely many projective currents [n] € PCurr(Fy, F A A(@))
whose support is contained in the support of 1, and such that Supp(n) is
uniquely ergodic.

Proof. (1) Note that, since ¢ is expanding relative to F, we have F A A(¢) = A(¢).
Let 7 € N be the minimal integer such that H, is an EG stratum and a reduced
iterate of o contains a splitting unit which is an edge of H,.. Such a stratum H,
exists since o is expanding. Let e be an edge of H, with fixed initial direction and let
e be the current in PCurr(Fy, A(¢)) associated with e given by Proposition F4)(2).

Claim. The support of 7, is uniquely ergodic.

Proof. Let G’ be the minimal subgraph of G which contains every reduced iterate
of e and let A be a subgroup of F, such that 71 (G’) is a conjugate of A when 71 (G)
is identified with F,. Then G’ is f-invariant and hence [A] is ¢-invariant. Let
G, ..., G}, be the connected component of G’ — H, and let F’ be the free factor
system of F, determined by G/,...,G). Let ® € ¢ be such that ®(A) = A. Note
that [®|4] € Out(A) is fully irreducible relative to F.

By Proposition B.14] and Proposition Z5(9), if « is a cyclically reduced circuit
of G’ of height r whose growth under iteration of f is polynomial, then v contains
(up to taking inverse) the only height » EG INP o,.. As one of the endpoints of o,
is not contained in G,_; by [HM| Fact 1.1.42], we see that either o, is not closed
and 7 does not exist or o,. is closed and « is an iterate of o, or 1. Let b e F, be
the (possibly trivial) element associated with o,..

Let PCurr(Supp(n.)) be the set of projective currents in PCurr(Fy, F A A(¢))
whose support is contained in Supp(7.). By minimality of r, there does not exist a
splitting unit contained in a reduced iterate of e which is an edge in an EG stratum
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of height less than r. Thus, every maximal subpath of G’ ~G,_; which is contained
in a reduced iterate of o is a concatenation of paths in G pg and Npg. In particular,
we see that
Supp(ne) < | 90%(A, F).
geFy
We now construct an injective application

O: PCurr(Supp(7.)) — PCurr(A, F')
such that for every projective current ] € PCurr(Supp(n.)) we have

Supp(©([1])) = Supp([u]) N > A.

Let C(F’) be the set of paths in G defined by Lemma associated with the free
factor system F’'. Let Ca(F’) be the set of paths in C(F’) contained in G’. Note
that no path of C4(F’) is contained in G’ n G,_1. Moreover, a path in C4(F’) is
contained in a concatenation of paths in Gpg and Npg if and only if it is contained
in the circuit representing a power of b. Thus, up to restricting C4(F’) to longer
paths (which does not change the fact that the cylinders associated with paths
in Co(F') cover 02(A,F')), we may suppose that, for every v € Ca(F’), either
~ contains o, and is contained in a power of ¢, or that - is not contained in a
concatenation of paths in Gpg and Npg.

Since cylinders associated with paths in C4(F’) cover the relative double bound-
ary 02(A, F'), by [Guell, Lemma 3.2], it suffices to prove that for every projective
current n € PCurr(Supp(7.)), we can associate a function 7j: C4(F’') — R such that
for every v € P4(F'), we have

(i) 0<1j(y) < o0
(i) 7(y) = o415
(iii) 7(7) = Decg Ove, Where E is the subset of EG' consisting of all edges that
are incident to the endpoints of v and distinct from the inverse of the last
edge of 7.

Let n € PCurr(Supp(7e)). If v € C4(F’) is not contained in the axis of a conjugate
of b, we may set 7j(y) = n(C(v)). Since o, is r-legal, a reduced iterate of o, cannot
contain the only height » EG INP. Thus, we may set, for every path v € P4(F")
contained in the axis of a conjugate of b: 7j(y) = 0.

The function 7 satisfies Conditions (i)—(iii) as n is a relative current whose
support is contained in |J JeF, g0?(A, F'). Hence it defines a unique current in
PCurr(A, F'), which we still denote by 7. Note that for every element ~ € C4(F"),
we have

T(C(7) N A0 8*(Fa, A(9)) = 0(C(7) N 02A 1 0% (Fa, A(9))).

Therefore, we have Supp(7j) = Supp(n) n 02A. Since Supp(ne) € U, op 902(A4, F'),
the application PCurr(Supp(ne)) — PCurr(A, F’) is injective.

Let 7. € PCurr(A, F') be the relative current of A associated with 7. This cur-
rent coincides with the attractive projective current associated with [®]4] defined
by Gupta in [Gupl], Proposition 8.12]. By [Gup2, Lemma 4.17], the support of 7,

is uniquely ergodic. Thus the support of 7. is uniquely ergodic. |

geF,

By the claim, it remains to prove that Supp(n.) € Supp(ns). Recall the definition
of P(F n A(¢)) above Lemma Note that an element 3 € 0%(F,, A(¢)) is
contained in the support of 7, if for every element v € P(F A A(¢)) such that
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B € C(v), we have 1,(C(7y)) > 0. Then the support of 7, contains all the cylinder
sets of the form C(vy) where v € P(F A A(¢)) and + is contained in a reduced
iterate of ¢. In particular, since e is contained in a reduced iterate of o, we have
Supp(ne) € Supp(n,). This proves Assertion (1).

(2) Suppose towards a contradiction that there exist infinitely many pairwise
distinct projective currents ([nm])men € PCurr(Fn, F A A(¢p)) whose support is
contained in the support of 7, and such that for every m € N, the support Supp(#,,)
is uniquely ergodic. By compactness of PCurr(Fy, F A A(¢)) (see Lemma2T4) up to
passing to a subsequence, there exists a projective current [n] € PCurr(Fy, F A A(¢))
such that lim,, o [nm] = [n]. Let K € N* be such that P(F A A(¢)) contains
reduced edge paths of length equal to K. By additivity of n, there exists v1,...,1 €
P(F A A(g)) of length equal to K such that the support Supp(n) is contained in
U§ 1 C(v;) and for every j € {1,...,m}, we have n(C’(’yj)) > 0. Then, there exists
N € N* such that, for every m > N and every j € {1,...,t}, we have n,,(C(v;)) > 0.
Hence for every m > N, we have

¢
Supp(n U (7;) < Supp(nm)-
j=
By unique ergodicity, for every m > N, we have [n] = [n,,], a contradiction. O

5. NORTH-SOUTH DYNAMICS FOR EXPANDING RELATIVE OUTER
AUTOMORPHISMS

Let X be a compact metric space and let G be a group acting on X by homeo-
morphisms. We say that an element g € G acts on X with generalized north-south
dynamics if the action of ¢ on X has two invariant disjoint closed subsets A _
and A, such that, for every open neighborhood Ui of AL and every compact set
K1 € X — Ag, there exists M > 0 such that, for every n > M, we have

ginKi cUs.

In this section we prove Theorem 5.1l Recall that a relative expanding outer auto-
morphism is in particular relative almost atoroidal (with F; = {[Fu]})-

Theorem 5.1. Let n > 3 and let F be a free factor system of F,. Let ¢ €
Out(Fp, F) be a relative expanding outer automorphism. Let Ay () and A ( ) be
the simplexes of attraction and repulsion of ¢. Then ¢ acts on PCurr(Fy, F A A(9))
with generalized north-south dynamics with respect to Ay (¢) and A_(¢).

Theorem in Section [ follows from Theorem [(.1] since every exponentially
growing element of Out(Fy) is expanding relative to its polynomial part.

5.1. Relative exponential length and goodness. Let n > 3 and let F be a free
factor system of Fy,. Let ¢ € Out(Fy, F) be an atoroidal or an almost atoroidal outer
automorphism relative to F. In this section we define and prove the properties of
the objects needed in order to prove Theorem GBIl Let f: G — G be a CT map
representing a power of ¢ with filtration @ = Gy € G; S ... € G = G and let
p € {1,...,k} be such that F(G,) = F. The proof of Theorem [5.1] relies on the
study of PG-relative completely split edge paths. More precisely, given a reduced
circuit v of G, we study the proportion of subpaths of v which have PG-relative
complete splittings. This proportion will be measured using the exponential length.
However, the lack of equality in Lemma [3.17 shows that the exponential length is
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not well-adapted to study the exponential length of a path by comparing it with
the exponential length of its subpaths. Instead, we define a notion of exponential
length of a subpath relative to . We first need some preliminary results regarding
splittings of edge paths.

Definition 5.2. Let v be a reduced edge path in G and let v = y9y{71 ... 7% be
the exponential decomposition of v (see the beginning of Section [32]). Let a be a
subpath of 4. The exzponential length of a relative to v, denoted by (2, (), is:

k
[eyxp(a) = Z Leap(a 0 ).
i=1
We define the F-length of o relative to «y similarly replacing f.,, by ¢z and the
exponential decomposition by the F-exponential decomposition.

Note that, for every reduced edge path v of G, we have £7,,(7) = Lezp(7). The
exponential length relative to a path v is well-adapted to compute the exponential
length of v using its subpaths, as shown by Lemma 5.3

Lemma 5.3. Let v be a reduced edge path and let v' = a8 S v be a subpath of .
Then

Clop(Y) = llap(@) + L0, (B)-
In particular, when v = ~y, we have

Ceap(7) = Clup(@) + £2,,(B)-

The same statement is true replacing (7, by 25

Proof. The proof is similar for both £, , and (%, so we only do the proof for O

Let v = vov171 .- -7k be the exponential decomposition of . Then, for every
i€ {l,...,k}, the paths @ n v}/ and 8 N v} do not contain a subpath of a path in

PE(v). In particular, for every i € {1,...,k}, one computes lcyp(cx N 7y;) and
Leap(B N 7y;) by removing edges from G Since £7,,,(7) is computed by removing
edges in G'p; from every ~; with i € {1,...,k}, the proof follows. O

In Lemma [5.6] we will show that if v is a reduced edge path in G and that « is a
subpath of v, then e, (a) and €2, (o) differ by a uniform additive constant. This

exp

will allow us to compute directly £c., () rather than £, (c).
Let v be a reduced edge path in G and let v = 7;...7, be a splitting of ~.
Let Jos.pc S {V1,---,%m} be the subset consisting of all subpaths which have a

PG-relative complete splitting. If £eq,(7y) > 0, let
Z'YiEJCS,PG ézﬂfp(%)

Ceap(7)

The goodness of v, denoted by g(7y), is the least upperbound of gcor pe(y) over all
splittings of v if Leyp(y) > 0, and is equal to 0 otherwise. When + is a circuit, the
value gor, pe(y) is defined using only circuital splittings.

Since there are only finitely many decompositions of a finite edge path into
subpaths, the value g(7) is realized for some splitting of . A splitting for which
g(7) is realized is called an optimal splitting of v, and an optimal circuital splitting
when + is a circuit.

A subpath of v which is the concatenation of consecutive splitting units of an op-
timal splitting of vy is called a factor of v. When £ez,(y) = 0, we use the convention

gCT,PG(’Y& Y1y a’)/m) =
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that the only factor of « is « itself. The factors of v that admit a PG-relative com-
plete splitting are called complete factors. The factors in an optimal splitting which
do not admit PG-relative complete splittings are said to be incomplete. Remark
that, by Proposition[Z3l (6), (8) and by Lemma [310 the [f]-image of a PG-relative
complete path is PG-relative complete, and the reduced iterates of an incomplete
factor are eventually PG-relative complete.

Using Lemma [5.3] we have the following result.

Lemma 5.4. Let v be a reduced edge path and let v = vjy17i .- Ym Y, be an

optimal splitting of v, where, for every i € {0,...,m}, the path | is an incomplete
factor of v and, for every i€ {1,...,m}, the path ~; is complete. Then
i1 Lup(7)

) = S ) & S Cn (7D

Definition 5.5. Let n, F, ¢, f,p be as in the beginning of this section. Let K > 1.
The CT map f is 3K -expanding if for every edge e of G — G'p(;, we have

leap([f(€)]) = 3K.

Note that, by Lemma .22 for every K > 1, the CT map f has a power which
is 3K-expanding. Note that, since ¢ is exponentially growing, we have G # G'p¢,
so that the definition of 3K-expanding is not empty.

In the rest of the section, let K > 1 be a constant such that, for every reduced
edge path o which is either in Npg or a path in a zero stratum, we have £(0) < %
Such a K exists since Npg is finite by Lemma B.5(1) and since every zero stratum
is contractible by Proposition 2.5l(3). We fix a constant C; given by Lemma E.9l
Let

(6) C = max{K, Cy}.

Recall that if o is a PG-relative splitting unit, o is either an edge in an irreducible
stratum, a path in a zero stratum or a concatenation of paths in G pg and in Npg.
Thus, the choice of K implies that for every PG-relative splitting unit o, we have
Legp(o) < %

Lemma 5.6. Let v be a reduced edge path in G and let v be a subpath of y. Let~y =
YoYiv1 - - - YRk be the exponential decomposition of v. There exist three (possibly
empty) subpaths 61, 02 and T of v such that for every i € {1,2}, the path &; is a
proper subpath of a splitting unit of some 7;, we have Legy(T) = €2, (1) = €2,,(7)
and v = 01702. In particular, we have

0o (V) S leap(v) < €0, (1) 4+ 2C < Leap(v) + 2C.

The same statement is true replacing leyp by €x and €2, by 25

Proof. The proof is similar for both £.., and £, so we only do the proof for f.).
Since 7' is a subpath of 7, there exist three (possibly trivial) paths 07, 7/ and &}
such that:
(a) for every i € {1,2}, there exists k; € {0,...,k} such that the path J} is a
subpath of some g, ;
(b) for every j € {0,...,k}, either +, is contained in 7’ or y; does not contain
edges of 7/;
(c) we have v = §17'8).
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The path ¢} has a decomposition §] = d; f1, where f; is a (possibly trivial) factor
of vx, and §; is properly contained in a splitting unit of %, for some fixed choice of
optimal splitting of v, . Similarly, the path 65 has a decomposition 65 = fod2, where
f2 is a (possibly trivial) factor of 4j, and 02 is properly contained in a splitting unit
of vy, for some fixed choice of optimal splitting of ~,. Let 7 = f17'fa. Then
y" = 61762. Tt remains to show that le.,(T) = £2,,(T) = £€2,,(7). Since for every
i € {1,2}, the path f; is a path in Npg, we have leyy(T) = Legp(7'). By (b), one
obtains e, (y") by deleting edges in G5y and every path of NE&*(7) contained in
7'. Hence we have

k
ea:p Z exp 7- N 'Yk 2 Eewl)(T N ’Y;c) = [eyxp(T)'

1=1 1=1

e

Since d; and d are contained in paths of NpE*(v), we have £2,.,(7') = £2,,(7), that
is, the second equality holds.
We now prove the final inequalities in the lemma. The first inequality follows
max

from the fact that every path in N52*(7’) is a subpath of some ~; for i € {0,..., k}.
Thus, we have 7, (7') < legp(y'). By Lemma BI7] we have

exp

leap(V) < Leap(01) + Leap(T) + Lewp(02) < €l (7") + £(01) + £(J2).
By definition of the constant K and the fact that K < C, we have:
oy (V) +£(01) + £(02) < £0,,(7) +2C < Leap(y) + 2C,
where the last inequality follows from Lemma (5.3l |

Lemma 5.7. Let f: G — G be a 3K-expanding CT map. Let v be a PG-relative
completely split edge path of positive exponential length. Then

Ceap([F(7)]) 2 3leap(7)-

Proof. Consider a PG-relative complete splitting v = v\717] - - - YmYe, Of v, where,
for every i € {0,...,m}, the path +/ is either a (possibly trivial) concatenation of
paths in Gpg and in Npg or a (possibly trivial) reduced maximal taken connecting
path in a zero stratum and, for every i € {1,...,m}, the path ~; is an edge in an
irreducible stratum of positive exponential length. By Lemma [3.24] we have

m

ea:p Z éexp 'Yz

Since f is 3K-expanding, for every i € {1,...,m}, we have

Ceap([f (70)]) 2 3K leap(i)-

Since the reduced image of a PG-relative complete splitting is a PG-relative com-
plete splitting by Lemma [3.10, by Lemma BTZII@) we see that

=1
This concludes the proof. O

Lemma 5.8. Let f: G — G be a 3K -expanding CT map. Let v = v1y2 be a (not
necessarily reduced) edge path of positive exponential length, where v1 and 7o are
reduced edge paths. Let v1 = a1by...arbe be an optimal splitting of 1 where for
every i € {1,...,k}, the path a; is an incomplete factor and for every i€ {1,... k}
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(7]

FIGURE 2. Tllustration of Lemma If a complete factor of v,
contained in [v] is not contained in ~;", then it is a complete factor

of [].

the path b; is complete. For every i € {1,2}, let ~y, be the subpath of v; contained
in [v]. Let ¥, = vy v be a decomposition of v} into two subpaths where ;" is the
mazimal terminal segment of v} such that ZLI Leoap(yy N b;) = 2C. Then every
PG-relative complete factor b of v1 contained in vy (for the given optimal splitting)
is also a PG-relative complete factor of [7].

Remark 5.9.

(1) We emphasize that, in the statement of Lemma [5.8 if the path v, is PG-
relative completely split, the path 4 is not necessarily PG-relative com-
pletely split. Indeed, there might be some identification with the path -9
that might create incomplete factors in 74.

(2) Lemma [5.§ also implies that if 77 is PG-relative completely split, the in-
tersection of an incomplete factor of [y] with +] is contained in a terminal
segment of 4} of exponential length at most equal to 2C (see Figure [2).
Indeed, the claim in the proof of Lemma [5.8 shows that the path ~; is
a complete factor of 71, hence a complete factor of [y] by Lemma (8
Moreover, we have k = 1, ay is trivial and e, (7)) = Lewp(77 N b1).

Proof. Let t € {1,...,k} be the minimal integer such that v; is contained in
0" = aiby...azby. Let by = 01...04 be a PG-relative complete splitting of b;.

Let s € {1,...,5'} be the minimal integer such that ~; is contained in § =
aiby...aid1...95. The integer s exists since, by maximality of ;" for every
ie{l,...,k}, either 7" na; =a; or v na; = @.

Claim. We have § = 7 .

Proof. By minimality of ¢ and s, the path «; contains an edge of d;. We claim
that d5 is contained in 71. Indeed, it is clear if d, is an edge. Suppose towards a
contradiction that ds is not contained in 4. Then the concatenation point of -}
and 4 is contained in J;.

If 6, is a maximal taken connecting path in a zero stratum, then, by the choice of
K, we have £(5,) < & < £ Since £(+{") = 2C, the path J, "} would be contained
in v;", contradicting the fact that v; contains the first edge of Js.

Suppose that d is a concatenation of paths in Gpg and Npg. Then §; N 7}

has a decomposition ds Ny = ﬂ%s)ags)ﬂis) . ..a,(i)_l ,(i)a,(i), where for every i €

{1,..., ks}, the path 61-(5) is contained in G pg, for every i € {1,..., ks —1}, the path

al(-s) is contained in NP&*(ds) and a,(c‘z) is a subpath of a path in Np&*(d5). By the
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choice of K, we have ley,(05) < €(o,) < & < <. Since Legp(7;7) = 2C, the path
§s N7, would be contained in v;", contradicting the fact that v; contains the first
edge of ds.

Hence, in every case, the path d, is contained in +}. Note that, since ;" is the
maximal subpath of v for the property that Zi;l Lozp(yy N b;) = 2C, the PG-
relative splitting unit J, is not a concatenation of paths in Gpg and in Npg or a
maximal taken connecting path in a zero stratum. Indeed, otherwise it is properly
contained in 7;", contradicting the fact that ; intersects J;. Hence d, is an edge

contained in v; and § = 7 . |

By the claim, we see that 7; = a1b;...a:d1...05 is an optimal splitting of ;.
Let r € {1,...,k} be the minimal integer such that +} is contained in a1b; ... a.;b,.
The last edge of 44 is either contained in a, or in b.. In the first case, for every
i€ {l,...,k}, either b; is contained in 7] or b; N} is at most a point. In the second
case, it is possible that b, nv] # b, and that b, N contains an edge. Let o’ be the
(possibly trivial) terminal segment of v;” which is properly contained in a splitting
unit o of b,.

If o is a maximal taken connecting path in a zero stratum, then, by the choice

of K, we have le,p(af) < £()) < L(o) < & < §.

Suppose that o is a concatenation of paths in Gpg and Npg. Then o has a
decomposition o/ = Bya18 ... ap_10ecy, where for every ¢ € {1,...,/¢}, the path
B; is contained in Gpg, for every ¢ € {1,...,£ — 1}, the path «; is contained in

PE*(0) and oy is a subpath of a path in N33*(0). By the choice of K, we have
leap(a)) < o) < 5 < €.

Thus, in all cases, we have £e,,(a’) < . Since ey (7;) = 2C, there exists a PG-
relative complete factor aq of b, such that ’71 = 0g11...05Ap 410441 ... aragad =
aa’ and

legp (0 ;) = C.

HM?r

We now prove that every PG-relative complete factor of v; contained in v; is a
PG-relative complete factor of . Note that the decomposition 7; « is a splitting.
Thus, it suffices to prove that, for every k € N*, the path [f*(v; )] is contained
in [f*()] as any identification in order to obtain [f*(vy)] which involves a path
in f*(y;) will be induced by an identification in order to obtain [f*(y;)] from
FEOr)-

By Lemma [5.7] applied to d541,...,0s, to the paths b; with ¢ € {1,...,k} such
that b; € « and to ag, we have

k
N leap([F ()] A Z Ceap(LS Z Leap(LF(B)]) + Leap([£ (a0)])

1=1 1=s+1 i=t+1

k
>3 Lewp (a0 b;) = 3C,
i=1
where the first inequality follows from the fact that the decomposition

@ =0541...05Qt41bp11 ... areg

is an optimal splitting of a.
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Note that, since the decomposition v; « is a splitting, for every k € N*, the
path [f¥(a)] is contained in [f¥(7; @)]. Remark that Lemma [0 implies that
the segment of [f(77 )] which is C' away from the concatenation point between
[f(v7 @)] and [f(a/+4)] remains in [f([y])]. In particular, the edges of [f(v; @)]
which are cancelled with edges of [f(a/v%)] are contained in [f(a)]. Recall that
Zle Lewp([f ()] n[f(b:)]) = 3C and that the subpath of [f(«a)] which is contained
in [f([y])] is obtained by the concatenation of at most C edges of [f(a)]. Thus, we
see that the sum over ¢ of the exponential length of the subpaths of [f ()]~ [f(b;)]
which are contained in [f([7])] is at least equal to 2C. Hence the path [f(y;)] is
a subpath of [f([7])] and Y, beap([£ ()] 0 [£(50)] N [F(12D]) > 2.

Thus, we can apply the same arguments to show that for every k > 1, the path
[f*¥(77)] is contained in [f*([])] and the exponential length of the subpath of
[f*(a)] contained in [f*([v])] is at least equal to 2C. Hence every PG-relative
complete factor of the path 7, contained in ; is a complete factor of an optimal
splitting of [7]. O

Lemma 5.10.

(1) Let v = af be a reduced path. Let N € N* be such that [f(a)] has a
PG-relative complete splitting and that [f(B)] is a concatenation of paths
in Gpg and in Npg. For every m = N, let o, Bm and o, be paths such
that [f™(a)] = amom and [f™(B)] = 0,,' B

For everym = N, we have leyp(0m) < C, Legp(@m) = Legp([fM()]) = C
and lezp,(Bm) < C.

(2) Lety = BMap® be a reduced path. Let N € N* be such that [fN ()] has a
PG-relative complete splitting and, for every i€ {1,2}, the path [N (8®)]
is a concatenation of paths in Gpg and in Npg. For every m > N, let
Qs 67(7%), ,(,%), and a,(,i), @ be paths such that [f™(a)] = aﬁ)amag),

[Fm(BM)] = B oD and [f7(8@)] = @7 B,
@)

For every m = N, either Legp (o) < 2C or we have ﬁemp(m(,}b)),pr( m) < C,
Cep(om) = Leop([f™(@)]) = 2C and Leap(Bin)), Leap(B) < C-

Proof. Assertion (2) follows from Assertion (1) by applying Assertion (1) twice:
one with v = af® and one with v = a~'8M). If for some m € N*, legp(Qm) =
2C, there is no identification between [f™(8)] and [f™(3®)] by Lemma E3]
so Assertion (2) follows from Assertion (1). Therefore, we focus on the proof of
Assertion (1).

Let m > N. When oy, is reduced to a point, we have £eyp () = Leap([f™()])
and legp(Bm) = Leap([f™(8)]) = 0 by Lemma BI8 This concludes the proof in
this case. So we may suppose that o, is nontrivial.

Let [f™(a)] = a1 ...ax be a PG-relative complete splitting of [ f™(«)]. Suppose
that, for every i € {1,...,k} such that a; is a concatenation of paths in Gpg and
Npg, the path a; is a maximal subpath of [ f™ ()] for the property of being a factor
which is a concatenation of paths in Gpg and Npg. For every j € {1,...,k}, let r;
be the height of a;.

Let ¢ € {1,...,k} be such that a; contains the first edge of o,,. Let o’ €

PEX(om). Note that there exists 0” € NPEX([f™(v)]) such that o/ < ¢”. By
Lemma B2T|(1) applied to ¢” and [f™(«)], the path ¢” is contained in a factor
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which is a concatenation of paths in Gpg and Npg. By the maximality assump-

tion, there exists j € {1,...,k} such that ¢’ < ¢” < a;. Hence we can compute
Legp(0m) by removing, for every j € {1,...,k}, paths in the intersection o, N a;.
Thus, we have
exp O'm Z ge:cp a] exp(ai N Um)-
7>

Note that, by Lemma [B.I0, the path [f™(8)] = 0,,}8m is a concatenation of
paths in Gpg and in Npg. Let j € {i,..., k}.

Claim. If j > i, then either a; is not an edge in an EG stratum and e,p(aj N oym) =
0, or legp((ai...aj) Moy) <C.If j =14, then Legp(a; Nnoy) < C.

Proof. We distinguish several cases, according to the nature of a;.

(i) Suppose that a; is maximal taken connecting path in a zero stratum. By
definition we have legp(a; N o,,) = 0.
(i) Suppose that a; is a concatenation of paths in Gpg and in Npg. If j > i, we
have ajno,, = a;. By LemmaB. I8 applied to a;, we have leqp(a;noy,) = 0.
Suppose that i = j. Suppose that the first edge of o, is not Contained
in a path in N3&(a;). Then a; has a decomposition a; = alala? where
1

a; is a path contained in G pg such that the first edge of o, is contained

in a} and such that, for every path § € NE&*(a;), either 6 < a? or 6 < a?.
Note that a terminal segment of a; whose first edge is contained in a} is a
concatenation of paths in G pg and in Npg. In particular, the path a; N o,y
is a concatenation of paths in Gpg and in Npg. By Lemma BI8 applied
to a; M Oy, we have Legp(a; N oy,) = 0.

Suppose now that the first edge of o, is contained in a path 6 € NE&*(a;).
Then a; has a decomposition a}da?, where the first edge of o, is contained
in §. Note that a? is a concatenation of paths in Gpg and in Npg which
is contained in o,,. By Lemma BT applied to a; N 0, = (6 N 0,,)a2, by
Lemma applied to a? and by definition of the constant K, we have

Legp(a; O Om) < legp(d N o) + Eexp(a?) =Llegp(d Nop) <L(6) < K <C.

(ili) Suppose that a; is an edge in an irreducible stratum with positive expo-
nential length. Since [f™(8)] is a concatenation of paths in Gpg and in
Npg, there exists a path 7 € NEE*([f™(B)]) such that a; is contained
in 4/. By Lemma [B21[1), every path in NE&*([f™(«)]) is contained in a
minimal factor of [f™(«a)] consisting in PG-relative splitting units which
are concatenation of paths in Gpe and Npg. Since a; is a PG-relative
splitting unit of [f™(«)] which is not a concatenation of paths in Gpg and
in Mpg, the path a; is not contained in a path of NEg*([f™(«)]). Hence
the path +/ is not contained in o,, as otherwise it would be contained in
a path of NE&*([f™(a)]). Therefore, we see that (a;...a;) N o, S 7.
Hence, by the choice of K, we have

legp((a;...aj) nom) <L((a;...a;) nop) <L) <C.

This proves the claim as we have considered all possible PG-relative splitting units.
|
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Let m € N*. By the claim, either £czp((ai...a;) N opm) < C or, for every j > 1,
we have femp(aj N om) = 0. In the second case, we have

éexp(o'm) = Z ge;cp(aj) + éexp(ai @ Um) = ge;cp(ai N Um) <C,
J>i
where the last inequality follows from the case j = ¢ of the claim. Hence, for
every m € N* we have leyp(0,,) < C. Note that, by Lemma BT applied to
[f™ ()] = amOm, we have

Ceap(am) = Leap([f™(a)]) = Leap(om) = Leap([f" ()]) — C.

It remains to prove that £e,,(8) < C. But 5, can be written as 3, = 6102 where
d2 is a concatenation of paths in Gpg and in Npg and §; is a (possibly trivial)
path contained in a path of NE&*([f™(5)]). By Lemma BI8 applied to d2 and by
the choice of K (since d; is a subpath of a path in Npg), we have

Leap(Bm) < Leap(01) + Leap(02) = Leap(d1) < L(61) < C.
This concludes the proof. (Il

Lemma 5.11. Let L > 1. There exists ng = no(L) € N* which satisfies the follow-
ing properties. Let v be a reduced edge path of G such that leyy,(y) < L. For every
n = ng and every optimal splitting of [f™ ()], either [f™(v)] is a concatenation of
paths in Gpg and in Npg or the following two assertions hold:
(a) the path [f™(vy)] contains a complete factor of exponential length at least
equal to 10C;

(b) the exponential length of an incomplete factor of [f™(vY)] is at most equal
to 8C.

Proof. By Lemma [B.22] there exists an integer m’ € N* depending only on f such
that for every edge e of G — G'p; and every n = m/, we have e, [ f™(e)] = 16C + 1.
Let v = voyi71 - - - V/ve be the exponential decomposition of . Let

v = BooiBi ... B

be a nontrivial decomposition of v such that, for every i € {0, ..., k}, the path §; is
a concatenation of paths in Gpg and in Npg and for every i € {1,..., k}, the path
o is a concatenation of edges in irreducible strata not contained in some y; with
j€{0,...,¢} and paths in zero strata. The main point of the proof is to show that,
up to applying an iterate of [f], there is no cancellation between the subpaths «;.

For every i € {1,...,k}, we have legp(y) = Zle lexp(;) by definition of the
exponential length. Therefore, since feyp(7y) < L, for every i € {1,...,k}, we have
Legp(a;) < L. Note that, for every i € {1, ..., k}, we have legp(a;) = l(a;)—l(a;nZ)
where Z is the subgraph of G consisting in all zero strata. By the choice of C the
length of every path contained in a zero stratum is at most equal to C. Hence for
every i € {1,...,k}, we have £(a;) < CL.

By Proposition 2.5](8) there exists m” € N* depending only on L such that, for all
i€{l,...,k} and m > m”, the path [f™(a;)] is completely split. Let m = m'+m”.
By Lemma B21(2), for every n > m and every i € {1,...,k}, since [f"™ (a;)] is
completely split, one computes its exponential length by adding the exponential
length of all its splitting units. Thus, if [f"~™ (c;)] contains a splitting unit which
is an edge e in G — G'p(;, we have

(7) Ceap(["(@0)]) = Leap(Lf™ (€)]) = 16C + 1.
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Let C), be a bounded cancellation constant for f™ given by Lemma [£9 Note
that if there exists ¢ € {1,...,k — 1} such that ¢(8;) < C,,, then there might
exist some identifications between [f™(a;—1)] and [f™(a;)] when reducing the
paths in order to obtain [f™(y)]. This is why we replace the decomposition
v = Boa1f1 ... axlk of v by a new one.

The new decomposition is defined as follows. Since every lift of f™ to the
universal cover of G is a quasi-isometry, there exists M,, > 0 depending only
on m such that, for every reduced edge path of length ¢(3) > M,,, we have
(L B)]) = 20, + 1.

Let Ty, = {B: | £(8;) < My,}. Note that |I'),| < &+ 1. Note that, by Lemma 2.9
and Proposition [Z5[(4), for every i € {1,...,k}, if 8;—1 or §; is not trivial, then
is not contained in a zero stratum. In particular, we may suppose that, for every
ie{l,...,k}, we have £opp(a;) > 0. Thus, since Legp(7) = S5 lonp(w) < L, and,
for every i € {1,...,k}, we have l¢;,(c;) > 0, we see that k < L. Hence we have
T <k+1<L+1

Claim. There exist m; > m depending only on |I';,| (and hence on L) and a
decomposition v = ﬁ(l) (1) 6{1) . a,(cll)ﬂlg) such that:

(a") for every i € {1,...,ky}, the path [f™ (agl))] is completely split;

(b") for every i € {0,...,k1}, the path [31-(1) is a concatenation of paths in Gpg
and in Npg;

(¢) for every i € {0, ...,k }, the subpath of [f"“(ﬁi(l))] contained in [ ™ ()]
is not reduced to a point;

(d') for every i € {1,...,k1}, for every n = m/, if [f"_m( )] contains a
splitting unit which is an edge in G — G'p; then leqp, ([ f" (a E )]) = 16C +1.

Proof. The proof is by induction on |I';,|. Suppose first that T',, = @. By the
definition of |T',,| and M,,, for every i € {0,...,k}, the path [f™(8;)] has length
at least equal to 2C,, + 1. By Lemma [L9] for every ¢ € {0,..., k}, the subpath of
[f™(B;)] contained in [ f™(~y)] is not reduced to a point. So the integer m; = m and
the decomposition v = Soa1 51 . . . ay Bk satisfy the assertions of the claim (Assertion
(d’) follows from Equation ().

Suppose now that I',, # @. Then

k

Dillei) + > UBi) < kCL+ My L < CL* + M,y L.

2 Bi€l'sm,
Let mf > m be such that for every path 3 of length at most equal to CL? + M,, L
and every n = mj, the path [f™(8)] is completely split. Then + has a decomposition
= Béz)a?)ﬁém ... a,g)/ﬁg) such that, for every i € {1,..., ko}, the path [fm/2 (agz))]
is completely split and for every i € {0, ..., k2}, the path 51'(2) is a concatenation of
paths in Gpg and in N pg of length greater than M,,. Let ms = mb+m’. Then for
every i € {1,..., ko}, the paths [f™2(« 2))] and [me—m'(al@))] are completely split.
Moreover, if [fm2 m’ (a E ))] contains a splitting unit which is an edge in G — G'p,
then Zemp([fm(a§2))]) > 16C + 1 as in Equation (7).

Let C,,, be a bounded cancellation constant associated with f™2 and let M,,, >

M., be such that, for every reduced edge path of length ¢(3) > M,,,, we have

U[f™(B)]) = 2Cpm, + 1. Let Ty = {82 | £(8;) < Mp,}. Note that [Tpn,| <
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IT,.|. Hence we can apply the induction hypothesis to the decomposition v =

Bémagm Bf) . a,(fz) B](Ci) to obtain the desired decomposition of . This concludes

the proof of the claim. O
Let m; and v = ﬁ(l) gl)ﬁ( (1)6 be as in the assertion of the claim.
By Assertion (c¢’) of the clalm for every ie {1,...,k1}, there is no identification

between edges of [fml( )] L™ (e ) 1)] and [fml( z+)1)] when reducing in order
to obtain [f™(v)].
For every i € {1,...,k1}, since [f™ (« 51))] is PG-relative completely split, we

can distinguish three p0531b1e cases for [f™ (« 1( ))]

(i) the path [f™ (agl))] contains a PG-relative splitting unit which is an edge
in G—-Gp; (by Lemma this case happens exactly when
Leap(S™ (o)) > 0);

(ii) Legp([f™ (agl))]) = 0 and the path [f™ (0451))] is a concatenation of paths
in Gpg and in Npg;

(i) Legp([f™ (agl))]) =0and [f™ (agl))] contains a maximal taken connecting
path in a zero stratum.

We claim that if there exists ¢ € {1,...,k1} such that [fml(agl))] satisfies (i),
then [f™1 ()] is contained in a zero stratum. Indeed, suppose that [f™* (agl))]
satisfies (iii). By Lemma applied to the PG-relative completely split edge
path [f™ (0451))], since Leqp ([f™ (agl))]) = 0 the path [f™ (agl))] does not contain
an edge in G — G'p. Therefore, the path [ ™! (agl))] is a concatenation of paths in

'»e: and in Npg. By Proposition 2.5(4) and Lemma [23] there is no path in a zero
stratum which is adjacent to a concatenation of paths in Gpg and in Npg. Hence
[fm (ozl(»l))] = 0, where o is a maximal taken connecting path in a zero stratum not
contained in Gpg. But the endpoints of o are the endpoints of [f™* (ﬁi(i)l)] and
[fm (Bi(l))]7 which are concatenation of paths in G pg and in Mpg. As above, this
implies that [f™(v)] = 0.

Since zero strata are contractible, there exists ms € N* such that [ ™2 ()] is PG-
relative completely split. Hence Assertion (b) of Lemma [ET1] follows. Applying a
further power of [f] (which can be chosen uniformly as there are finitely many
reduced edge paths contained in a zero stratum), there exists m4 € N* such that
[f™4 ()] is a concatenation of paths in Gpg and in Npg or it satisfies Assertion (a)
of Lemma [5.11l This concludes the proof of Lemma [5.11] in case (iii).

Hence we may suppose that for every i € {1, ..., k1 }, the path [ f™* (agl))] satisfies
either (i) or (ii). Note that if ¢ € {1,...,k;} is such that the path [f™ (agl))]
satisfies (i), then [fml(az(l))] also satisfies the hypothesis of Assertion (d’) of the
claim. Thus

Eezp([fm”—ml(agl))]) > 16C + 1.

Let m) = my +m’ and let n’ = m}. Let

Aeap = {0 | Lo ([ (@D)]) = 16C + 1},
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For every je {1,...,k1} and every n € N*, let a§n) be the subpath of [f”(a§1))]
contained in [f™(v)]. For every j € {0,...,k1} and every n € N*  let B](.n) be the
subpath of [f"(ﬂj(l))] contained in [f™(v)].

Suppose ﬁrst that Aczp is not empty and let a(l € Aemp By Lemma [B.10/2)
applied to 1) = [f™ (51'(91)]7 o= [f"/(agl))] and 6(2 [ (ﬁ )], we have

leap(al™) = 14C + 1.

Using Remark [5.9(2) twice (once with v =[f" ({")] and 72 [f”/ BM .. mﬁ(l))],
and once with v, = [f™ ( )]_1 and o = [f"/(ﬁél) . 1 16 )] 1), we see that
the path a§ ") contains a complete factor of [f™ (v)] of exponential length at least
equal to 14C + 1 —4C = 10C + 1. This proves Assertion (a) of Lemma [5.11] when
Acep is not empty.

Moreover, Remark [5.9(2) implies that the intersection of an incomplete factor of
[f (7)] with a( ") is contained in the union of an initial and a terminal segment
of a; (M) of exponential lengths at most 2C. For every ¢ € {1,...,k} such that

( (n")

oM e Aczp, let 7} be the maximal initial segment of a;

: of exponential length

equal to 2C and let 72 be the maximal terminal segment of az(n/) of exponential
length equal to 2C.
We now prove Assertion (b) of LemmaIBjIIwhen Aczp is not empty. Suppose that

there exists i € {1,...,k1} such that a ¢ Aczp, so that in particular [f™ (« 1(1))]
does not satisfy (i). Then [f™ (« z(1))] satisfies (ii) and is a concatenation of paths
in Gpg and in Npg. By Lemma [BI0(3), the path [f"/(agl))] is a concatenation
of paths in Gpg and in Npg. By Lemma B8, the path [[f™ (Bi(i)l)][f”/(agl))]
[F™ (Bl(l))]] is a concatenation of paths in Gpg and in Npg. Thus, the path
Bl-(fll agn/)ﬁi(n,) is a subpath of a concatenation of paths in Gpg and in Npg. Hence
[f™ (v)] has a decomposition

[ (0] = aad" Vel ey,

where for every j € {1,...,ks}, the path a§n ) is the reduced image of a path in
Aczp and for every j € {0,..., ko}, the path ¢; is contained in a path ¢; which is a
concatenation of paths in Gpg and in Npg. Hence, for every j € {0,..., ko}, we
have ez (tj) = 0 by Lemma BI8 and, by Lemma [5.6] we have £cgp(€;) < 2C.

If 4/ is an incomplete factor of [f™ (v)], as explained above, there exists i €
{1,...,ko} such that 4 is contained in 72 ;¢;_17}. By Lemmam we have

Eewp(’}/) < Zexp( Ti—1€i—1T; )+ 2C.
By Lemma 3.7, the exponential length of +' is at most equal to
gemp( i— 1) + eemp(ez 1) + Zexp( ) +2C <6C + gezp(eifl) < 8C.

This proves (b) when A.y, is not empty.

Finally, suppose that A, is empty. For every je{1,..., ki}, the path [ f™ (045-1))]
is a concatenation of paths in Gpg and in Npg. By Lemma[3.6, the path [fml( )]
is a concatenation of paths in Gpg and in Npg. By LemmaB.I0l for every n’ > my,
the path [f™ ()] is a concatenation of paths in G pg and in Npg. O
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Lemma 5.12. Let f: G — G be a 3K-expanding CT map. There exists N € N*
such that for every reduced edge path v and every m > N, the total exponential
length of incomplete factors in any optimal splitting of [f™ ()] s uniformly bounded
by 8Clegp(7y).

Proof. By Proposition 25](8), there exists N € N* such that, for every reduced
edge path « of length at most equal to C' + 1, the path [V («)] is completely split.
Suppose first that le,p,(7) = 0. Then, by definition of the exponential length, the
path 7 is a concatenation of paths in G’ and in Npg. By Proposition 25(4),
every edge in a zero stratum is adjacent to either an edge in a zero stratum or an
edge in an EG stratum. Moreover, by Lemma 2.9 there does not exist a subpath
of v contained in a zero stratum which is adjacent to a Nielsen path. Hence ~ is
either a concatenation of paths in Gpg and in Npg or a path in a zero stratum.

In the first case, the path 7 is PG-relative completely split. In the second case,
by the definition of the constant K and Equation (@), we have ¢(y) < K < C.
By the choice of N, for every m > N, the path [f™(v)] is completely split. By
Lemma [320] for every m > N, the path [f™(v)] is PG-relative completely split.

So we may suppose that fegp(y) > 0. Let v = y0yi71 - - - 7)7e be the exponential
decomposition of ¥ (see the beginning of Section B:2]). By Lemma 29, there does
not exist a subpath of v contained in a zero stratum which is adjacent to a Nielsen
path. Therefore, the path + has a decomposition agfBia; ... Brar where, for every
i €{0,...,k}, the path «; is a (possibly trivial) concatenation of paths in Gpg and
in Npg and, for every i € {1,...,k}, the path §; is a concatenation of a (possibly
trivial) maximal reduced path in a zero stratum and an edge in an irreducible
stratum not contained in Gpg or in some ;. By construction of K, for every
i€ {l,...,k}, we have £(53;) < C + 1. By the choice of N, for every m > N, the
path [f™(B;)] is completely split.

Note that, for every i € {1,...,k}, we have £¢;,(8;) = 1 and that

k
gexp(’y) = Z ‘eemp(ﬂi) =k.
i=1
By Lemma B0, for every i € {0,...,k} and every m = M, the path [f™(«;)] is a
concatenation of paths in Gpg and in Npg. By Lemma B.I8 for every m > M,
we have ey ([f™(e;)]) = 0. By Lemma [5.6] the exponential length of the subpath
of [f™(c;)] contained in [f™(7)] is at most equal to 2C.

For every i € {0,...,k} (resp. i € {1,...,k}) and every m = N, let «; ,,, (resp.
Bi.m) be the subpath of [f™(c;)] (resp. [f™(5:)]) contained in [f™(v)]. By Re-
mark [£9(2), for every i € {1,...,k} and every m > N, the exponential length of
any incomplete factor in 3; ,, is at most equal to 4C. By Lemma BT for every
m = N, the sum of the exponential lengths of the incomplete factors in [f™ ()] is
at most equal to

k
N beap(@im) + 4Ck < 20(k + 1) + 4kC < 4Ck + 4Ck = 8Ck = 8C/leap (7).
=0

The conclusion of the lemma follows. O

Lemma 5.13. Let f: G — G be a 3K -expanding CT map. Let v be a reduced edge
path in G. Suppose that v has a splitting v = byabs where, for every i € {1,2},
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the (possibly trivial) path b; is PG-relative completely split. If €3,,(a) = O then
legp(a) = 0.

Proof. Let v = ~oyi71-.- 7 be the exponential decomposition of 7. By
Lemmal5.0] there exist three (possibly trivial) paths d1, d2 and 7 such that for every
i € {1,2}, the path ¢; is a proper initial or terminal subpath of a splitting unit of
some v; we have leg,(7) = £,,(7) = £2,,(a) and a = §;702. Since £,,(a) = 0, we
have £c;,(7) = 0. Hence 7 is a concatenation of paths in G5, and in Npg.

By Proposition [25)(4), every edge in a zero stratum is adjacent to either an edge
in a zero stratum or an edge in an EG stratum. Moreover, by Lemma 9] there
does not exist a subpath of v contained in a zero stratum which is adjacent to a
Nielsen path. Hence 7 is either a concatenation of paths in Gpg and in Npg or a
path in a zero stratum.

If 7 is contained in a zero stratum, by Lemma 2.9 we see that §; and 05 are
trivial, that is, a = 7. Thus, we have leyp(a) = leyp(T) = 0.

So we may suppose that 7 is a concatenation of paths in Gpg and in Npg.
Suppose towards a contradiction that there exists ¢ € {1,2} such that §; is not
trivial. For every i € {1,2} such that ¢; # &, let o; be the splitting unit of some
7; containing §; and let r; be the height of ;. By [BH, Lemma 5.11], for every
i € {1, 2} such that ¢; is not trivial, there exist two distinct r;-legal paths a; and f;
such that o; = a;8; and such that the turn {Df(a; '), Df(B;)} is the only height
r; illegal turn. Moreover, there exists a path 7/ such that [f(a;)] = a;7/ and
[f(B)] = T{_lﬁi. Let egl), 652) be two paths such that o = e§1)6§2), the path egl) is
contained in b; and the path 652) is contained in a. Similarly, let eél) , eéz) be two
paths such that oy = eg)eg), the path eé2) is contained in by and the path eg) is
contained in a.

Claim.

(1) For every path b € Np&*(by) (resp. b € Np&*(bs)), the path b does not

contain edges of egl) (resp. eéz)).

(2) The path egl) is r1-legal and the path eéz) is ro-legal.

Proof. We prove the claim for by, the proof for by being similar.

(1) Let b € NE&*(b1). There exists ¢ € Np2*(7y) such that b < ¢. Moreover,
by Lemma [B5|(3) applied to v/ = b and v = ¢, either b is a concatenation
of splitting units of ¢ or b is properly contained in a splitting unit of ¢ and
is not an initial or a terminal segment of c¢. Since by is an initial segment
of 7, the second case cannot occur. Hence b is a concatenation of splitting
units of ¢. Since o7 is not contained in by, the path b cannot contain edges

of o;. Since egl) C 01, the path b cannot contain edges of egl).

(2) Suppose towards a contradiction that egl) is not rq-legal. Then it contains
the illegal turn {Df(a; '), Df(B2)}. Recall that the path by is PG-relative
completely split. By the description of PG-relative splitting units, the
illegal turn must be contained in a PG-relative splitting unit of b; which
is a concatenation of paths in Gpg and in Mpg. Since the last edge of oy

is an edge in an EG stratum, the last edge of a; must be contained in a



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 225

path contained in Npg. Hence egl) intersects a path in Np2*(b1). This
contradicts Assertion (1). O

By Assertion (2) of the claim, for every i € {1, 2} such that o; is not trivial, the
path egz) is r;-legal. Moreover, by Assertion (1) of the claim an INP contained in b;
cannot intersect the path egz). Since the paths by and by are PG-relative completely

split, the paths b; and by split respectively at the origin of egl) and at the end of
652). So we may suppose that b; = egl) and by = 6%2). Therefore, there exists a

(possibly trivial) path 7 such that, up to taking a power of f so that the length of
[f(b1)] is greater than «y, we have [f(b1)] = a1 and [f(e?))] = 7 '81. Similarly,
there exists a path 72 such that [f(egl))] = a7y and [f(b2)] = 75 *Ba.

Since « splits at the concatenation points of by, a and by, the paths Tfl and
To contained in [f(e&Q))][f(T)][f(eél))] must be identified when passing to [f(a)].
Suppose first that [f(7)] is a point. Then since the EG INPs ¢ and o5 are uniquely
determined by their initial and terminal edges by Proposition [2Z5(9), we see that
o1 =0y L. But then there are some identifications between b; and ba, which con-
tradicts the fact that bjabs is a splitting.

Thus, we may suppose that [f(7)] is nontrivial. By Lemma B0 since 7 is a
concatenation of paths in G pg and in Npg so is [f(7)]. Note that, since an EG INP
is completely determined by its initial and terminal edges by Proposition [Z5(9), if
[f(7)] contains the initial or the terminal edge of an EG INP o, then o is contained
in [f(7)]. Note that there are identifications between edges of [f(e?))] and [f(7)]

or between edges of [f(7)] and [f(egl))]. Therefore, [f(7)] starts with o7 * or [f(7)]
ends with o5 '. Thus, one of the following holds:
(a) [f(7)] = oy '’ with 7/ a (possibly trivial) path which is a concatenation of
paths in Gpg and in Npg which does not end by 02_1;
(b) [f(7)] = 7’0y with 7/ a (possibly trivial) path which is a concatenation of
paths in Gpg and in Npg which does not start by 01_1;
(¢) [f(1)] = oy 7’05 " with 7/ a (possibly trivial) path.

We treat the three cases simultaneously by considering Case (c) and assuming
that o, ' and o5 ! might be trivial. Note that o] 7’05 ! is reduced since it is equal
to [f(7)], so that there is no identification between a; ' and 7/ and between 7/ and
Byl

Let es, be the terminal edge of o; and let e, be the initial edge of o5. By Propo-
sition 2.5(9), both e,, and e,, are edges in EG strata. Since f is 3K-expanding,
for every i € {1,2}, the path [f(e,,)] has length at least equal to 3K. Recall that,
for every i € {1,2}, by definition of K, we have £(0;) < K, so that ¢(«;),4(8;) < K.
Since [f(egz))] =77 'B; and [f(eél))] = a7y, the path [f(e,, )] contains a nonde-
generate terminal segment of 7; ! and the path [f(e,,)] contains a nondegenerate
initial segment of 7. As e, is r1-legal and as f is a relative train track by Proposi-
tion 25)(1), we see that the last edge of 7'1_1 is not the last edge of a;. Similarly, the
first edge of 73 is not the first edge of 8. Therefore, we have [r; ' 8107 '] = 7 tag !
and [U;lang] = 65172. Thus we have

Qg

(L@ O ()] = [ Bror 7oy agm] = [y oy 7y '],
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and there is no identification between 7, ! and o', a;* and 7/, 7/ and 85 and
By Land 7. Therefore, if 7/ is not trivial, then we have a contradiction as Ty L and
T2 are not identified in [f(a)].

Suppose that 7/ is trivial. Then the paths 7, * and 7 are identified in [f(a)]
only if a terminal segment of o * is identified with an initial segment of 85 !. Since
EG INP are uniquely determined by their initial and terminal edges by Proposi-
tion EZ5(9), we see that o1 = 0, '. Hence a;' = B2 and either 7, ' is an initial
segment of 7, ' or 7y is an initial segment of 7.

Up to changing the orientation of 7, we may suppose that 7; = is an initial
segment of 7, ', If 771 = 75!, then [f(a)] is a vertex. Moreover, as 0, = 0, ', the
segment b; = egl) is equal to by . Therefore, a terminal segment of b; is identified
with an initial segment of by, a contradiction. If 7, 1is a proper initial segment of
Ty 1 then 7y is identified with edges in by, a contradiction. As we have considered
every case, we see that §; and do are trivial and fezp(a) = legp(T) = 0. O

1

Lemma 5.14. Let f: G — G be a 3K -expanding CT map. There exists ng € N*
such that for every n = ng, and every closed reduced edge path v of G, we have:

o([f"(V]) = g(v).

Proof. By Lemma [B.23] there exists Ny € N* such that, for every n > Ny and
every PG-relative splitting unit o, the exponential length of the path [f"(o)] is at
least equal to the one of 0. By Lemma [5.12], there exists N7 such that for every
n = N and every closed reduced edge path v of G, the total exponential length of
incomplete segments in any optimal splitting of [f” ()] is bounded by 8C¥lcp (7).
Let Ny = [log;(10C + 16C?)] € N* be such that for every z,y > 0 such that
(x,y) # (0,0), we have

(3N2 — 20)x T
(3N2 — 202 +8C(1+2C)y ~ z+vy’

Let nog = max{NO,Nl,Ng}.

Let v be a closed reduced edge path in G. All splittings of v are circuital
splittings in what follows. Let v = agf1aq ... Bkar be an optimal splitting of ~,
where for every i € {0, ..., k}, the path «; is an incomplete factor of v and for every
i€ {l,...,k}, the path 3; is a PG-relative complete factor of . First note that, for
everyi € {1,...,k}, and for every n > 1, the path [f"(f;)] is PG-relative completely
split by Proposition 25(6) and Lemma [BI0l Therefore, if n = ng = Ny, the total
exponential length of such PG-relative complete segments is nondecreasing under
[f™]. We now distinguish two cases, according to the growth of the paths ;.

Suppose first that for every ¢ € {1,...,k}, the exponential length of §; relative
to vy is equal to zero. Since the splitting v = agf1a; . .. Bray is optimal and since
for every i € {1,...,k}, we have £7,,(8;) = 0, we have g(y) = 0. Therefore, for
every n € N* we have g([f™(7)]) = a(v).

Suppose now that there exists ¢ € {1,...,k} such that the exponential length
of B relative to v is positive. By Lemma B22] the sequence (Ceyp([f™(5i)]))nen
grows exponentially with n. We can now modify the splitting of v into the following
splitting: v = o f1¢ . .. B}, 00, where:

(a) forevery j € {0,...,m}, the path o is a concatenation of incomplete factors
and complete factors of zero exponential length relative to «y of the previous
splitting;
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(b) for every j € {1,...,m}, the path 3 is a complete factor of positive expo-
nential length relative to « of the previous splitting.

Note that, by definition of the exponential length relative to v, for every i€
{1,...,m} and every path ' € Np&*(7y), the path 3] is not contained in 4'. There-
fore, 1f there exists j € {0,...,m} and " € Npg*(v) such that o) intersects 7/
nontrivially, then ~/ is contained in 5;7104;' B;. In particular, Lemma [5.13] applies
and for every j € {0,...,m}, if £2,,(a’;) = 0, then Lesp(a);) = 0. Let A be the subset
of {0,...,m} such that for every j € A we have £2,,(a};) > 0.

By Lemma 0l and Lemma 5.7 for every j € {1,...,m} and every M € N* we
have

A ONMBD]) 2 Leap(LSM(B)]) = 2C = 3M ey (B1) —2C = (3M —20)02,,(8Y).

By Lemma [5.6] for every j € {0,...,m}, we have £7, () < lesp(a;). Note that,
for every i € {1,...,m}, and every n € N*, the path [f™(5})] is PG relative com-
pletely split. In particular, for every n € N* any incomplete factor of [f™(¥)]
is contained in a reduced iterate of some «af. Thus, by Lemma 512 for every
n = ng = Nj, the total exponential length of incomplete segments in [f™(7y)] is

bounded by 8C Zf: Leap(@) = 8C 2 cp Lewp(a;). Note that the function
x

T —
T+ SCZjeA ﬁemp(ag)

is nondecreasing. Recall that, for every n € N*, the goodness function is a supre-
mum over splittings of [f™(7y)]. Thus, by Lemma [54] for every n = ng, we have:

(3n - 20) Zz 1 gzxp(ﬁ/)
—20) 3, Cap(BY) + 8C' Y cp Leap(ay)”

ol ) =
By Lemma [5.6, we have
8C Y leap(ay) <8C Y (€1, () +2C) <8C(1+2C) > £, (cfy),

JEA JEA jeA

where the last inequality follows from the fact that, for every j € A, we have
03,,(a) = 1. Therefore, since ng > Na, for every n > ng, we have:

(3n_2C>ZJ 1 exp(ﬁ/)
(3" —2C) X711 Leap(B)) + 8C(1 + 2C) 35cp lap())

Z;‘nzl K’gmp(ﬂg)
Z;’ll ezw(ﬁ}) + ZjeA E;pr(a;‘) '

=

By Lemma [5.3] we have
ezp Z Zegcp + Z gea:p Z 6691;0 + Z Eewp
JEA
Thus, we see that
Z;'nzl [eyzp (ﬁ;)
e Lap(B)) + X jen Cap(a))
which gives the result. ([l

=9(7),
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Remark 5.15. In the next lemmas, we will adopt the following conventions.
Let ¢ € Out(Fy, F) be an atoroidal or an almost atoroidal outer automorphism
relative to F. Let f: G — G be a CT map representing a power of ¢ with filtration

d=Gy<...2 G =0G.

Let p € {1,...,k — 1} be such that F(G,) = F. By Lemma B22 up to taking
a power of f, we may suppose that f is 3K-expanding. By Lemma [5.14] up to
passing to a power of f, we may suppose that for every closed reduced edge path y

of G, we have g([f(7)]) = g(7)-

Lemma 5.16. Let f: G — G be as in Remark BI50

(1) For every 6 > 0, there exists m € N* such that for every reduced edge path
v such that g(y) = § and every n = m, the total exponential length relative
to [f™(7)] of complete factors in [f™ ()] denoted by TEL(n,~) is at least

TEL(n,7) Z g(7)leap(7)(3" = 2C).

(2) For every 6 > 0 and every € > 0, there exists m € N* such that for every
cyclically reduced circuit v such that legp(y) > 0 and g(y) = ¢ and every
n = m, we have g([f"(7)]) =1 —e.

Proof. Let y=apf101 ...l be an optimal splitting, where for every i€{0, ..., k},
the path «; is an incomplete factor of v and for every i € {1,..., k}, the path §;
is a PG-relative complete factor of v. We may assume that £, () > 0, otherwise
g(v) = 0 and the result is immediate. Note that, since g(y) = § > 0, there exists
i€ {l,...,k} such that £,,(8;) > 0. Let A, be the set consisting of all complete
factors ﬁz of v whose exponential length relatlve to 7 is positive. Let £7,,(A,) be
the sum of the exponential lengths relative to v of all factors that belong to A,.
Note that
CapAy) = X Clp(Bi) = 9N Lea (7).
BieA,

Note that, for every n € N*, the value TE L(n, ) is a supremum over all splittings

of [f™(7)]. Thus, by Lemma and Lemma [5.7] for every n € N*| we have:

TEL(n,v) = Y, (L DON["(8)]) = (3" = 20)2,,(As) = (3" = 2C)g(7)Leap(7)-
BieAy

This proves (1). We now prove (2). By Lemma [512 there exists ng € N*
such that for every n > ng, the total exponential length of incomplete segments
in [f™(+)] is bounded by 8C¥.;,(7v). By Lemma 5.6 the total exponential length
relative to 7 of incomplete segments in [f™(7)] is hence bounded by 10C¢c;p (7).
Note that, for every n € N*| the value g([f™(v)]) is a supremum over all splittings
of [f™()]. Thus, by Lemma [54] for every n > ng, we have:

alF ()] = 9N Leap(1)(3" = 2C)
10C eap(7) + 8(7)leap(7) (3" — 2C)
_ g(v)(3" —2C) - 5(3" —2C)
10C + g(v)(3" —2C) = 10C + 6(3" — 2C)°
The last term is independent of v and converges to 1 as n goes to infinity. Therefore

the conclusion of Lemma [5.16] holds for some n large enough which does not depend
on 7. This proves (2) and this concludes the proof. (Il
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5.2. North-South dynamics for a relative atoroidal outer automorphism.
Let n > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy,, F) be an
atoroidal or an almost atoroidal automorphism relative to F. In this subsection we
prove Theorem 5.1l The proof of Theorem 5.1l is inspired by the proof of the same
result due to Uyanik [Uya2] in the context of an atoroidal outer automorphism, that
is, in the special case when F = &. The proof relies on the study of splittings of
reduced edge paths in the graph associated with a CT map representing a power of
¢. Indeed, we show that, when a cyclically reduced edge path representing w € F,
has a splitting which is close to a complete splitting, then some iterate of ¢ sends
[w] into an open neighborhood of Ay (¢) (see Definition {3, and this iterate can
be chosen uniformly (see Lemma [5.20).

Let ¢ € Out(Fy, F) be an almost atoroidal outer automorphism. Let F < Fy <
Fa = {[Fn]} be a sequence of free factor system given in this definition. Let f: G —
G be a CT map representing a power of ¢ with filtration @ =Gy < G1 & ... € Gy =
G and such that there exist p and ¢ in {1, ..., k} with F(G,) = F and F(G;) = Fi.
We denote by Curr(Fy, F1 A A(¢)) the set of currents of Curr(Fy, F1 A A(¢p)) whose
support is contained in 02F;.

Note that, since the extension F; < {[Fn]} is sporadic, either F; = {[H1], [H2]}
or F; = {[H]} for some subgroups H, Hj, Hy of F,. Up to assuming that H,
is the trivial group, we may assume that F; = {[Hi],[H2]}. Moreover, we have
Fi A A(p) = {[A1],.-.,[As], [B1],--.,[Bt]} where, for every j € {1,...,s}, the
group A; is contained in Hy and for every j € {1,...,t}, the group B; is contained
in Hy. Since F1 A A(¢) is a malnormal subgroup system, the set {[A1],...,[4s]}
is a malnormal subgroup system of H; and the set {[Bi],...,[B¢]} is a malnormal
subgroup system of Ho.

Let

X(F) = Curr(Hy, {[A1], ..., [As]}) x Curr(Hs, {[B1],. .., [B:]}).
Let p € Curr(Fy, F1 A A(9)). We set ¢ (p) = (plozm, s ttlozm,) € X (F1). Since p
is Fp-invariant, 11 () does not depend on the choice of the representatives of the
conjugacy classes of Hy and Hs. Let (u1,p2) € X(F1). Since the subgroup system
F1 A A(¢) is malnormal, for every j € {1,2}, the current p; can be extended in a
canonical way to a current ¥ € Curr(Fp, F1 A A(¢)). The current uf is such that,
for every Borel subset B of 0?(Fy,, F1 A A(¢)), we have

13 (B) = pf(B n 0*Hy) = (B n 0*Hy).

We set ¥o((p1, p12)) = pf + p3. By the property of u¥ described above, we see that
Yo ((p1, pe)) € Curr(Fy, Fi1 A A(¢)). The maps 11 and 9y are clearly continuous.
Lemma 5.17. The space Curr(F1, F1 A A(¢)) is homeomorphic to X (F1).

Proof. We prove that ¥, and 1 are inverse from each other. Let p € Curr(Fy, Fi A

A(¢)). Then tpy o thi(p) = (pulo2m,)* + (plo2m,)*. Note that p and 92 o 91 (p)
coincide on Borel subsets contained in 02F;. Since both have supports contained
in 02F;, they are equal. Conversely, let (u1, p2) € X (F1). Then

1o Pa((p, p2)) = (U1 + p2)lo2my s (BT + p3)lo2m,)-
But p3 o2, = 0 and pf|s2g, = 0. Hence we have

(1 + 3oz, (17 + p3)lo2m,) = (Uilozm, 3 o2, ) = (11, pi2).
This concludes the proof. (Il
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Given ¢ € Out(Fy, F), we refer to the definition of P(F A A(¢)) given above
Lemma [3.29

Lemma 5.18. Letn > 3 and let F be a free factor system of Fy,. Let ¢p € Out(Fy, F)
be an almost atoroidal outer automorphism. Let F < Fy < Fo = {Fyp} be a sequence
of free factor systems given in this definition. Let f: G — G be a CT map repre-
senting a power of ¢ with filtration @ = Go € G1 S ... S G = G and such that
there exist p and i in {0,..., k — 1} such that F(G,) = F and F(G;) = F1.

(1) The graph G — G; either is a topological arc whose endpoints are in G; or
it retracts onto a circuit C' and there exists exactly one topological arc that
connects C' and G;.

(2) There does not exist an EG stratum or a zero stratum of height greater than
1. If G — G; is a topological arc, every edge in G — G; is contained in G pg.
Otherwise every edge of the circuit C in G — G; is contained in Gpg.

(3) Let v be a path of G; which is not contained in a concatenation of paths of
Gpa,F, and NPG7_F1. Then ~y is not contained in a concatenation of paths
in Gpg and in Npg.

(4) We have

PFFrAe)= | oo
YEP(F1AA())
In particular, we have

PCurr(Fy, F A A(9)) = PCurr(Fp, F1 A A(9)).

(5) For every edge path v in G, the value Cx,(v) — lewp(y) is the number of
edges of G — G; contained in . In particular, for every path v contained
in G;, we have

7 () = Leap(7)
and for every current p € Curr(Fyn, F A A(¢p)) whose support is contained
in 02F,, we have
Wo(u) = llpllz -
(6) Let v be a circuit in G. For every m € N*, we have

Cr (L™ (DD = Leap(LF™ (VD) = £r (V) = Leap(7)-
(7) Suppose that F A A(¢) = {[A1],...,[Ar]}. One of the following holds.
o There exist distinct i,5 € {1,...,r} such that
() = (F ~ A6) — (AL (A1) 0 {[4: » A}

o There exist i € {1,...,r} and an element g € F,, such that

A() = (F ~ A(9)) = {[Al}) v {[Ai = (9]}
In that case, there exists a subgroup A of Fy such that F1 = {[A]} and
F, = Ax{g).
o There exists g € Fy such that A(¢) = F ~n A(9) u{[{(9)]}. In that case,
there exists a subgroup A of F, such that F1 = {[A]} and F, = Ax{g).

Proof. (1) It is a consequence of [HM| Lemma II.2.5]. Note that, in the termi-
nology of [HM| Lemma I1.2.5], the first case is called a one-edge extension
and the second case is called a lollipop extension.
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By Proposition 2.5[(4), it suffices to show that there does not exist an EG
stratum of height greater than i. This follows from [BFHI] Corollary 3.2.2]
(where the stratum described in it is the whole graph G — G;)

We now prove the second part of Assertion (2). Let w be an element
of F, represented by . Then there exists a subgroup A of F, such that
[A] € A(¢) and w € A. Since ¢|r, is expanding relative to F but ¢ is not
expanding relative to F by Definition E3|(b), there exists a reduced circuit
v in G which is not contained in G; which has polynomial growth under
iterates of f. By Proposition B.14] the circuit « is a concatenation of paths
in Gpg and in Npg. By the first part of Assertion (2), the intersection
v N G — G; does not contain EG INPs, hence consists in edges in Gpg.

Thus, if G — G; is a lollipop, then the circuit C' in G — G; is contained
in =y, hence is contained in Gpg. If G — G; is a topological arc, the graph
G — @ is contained in ~, hence consists in edges in Gpg. This proves (2).
Let v be as in Assertion (3). By Assertion (2), every edge of G — G is
contained in an NEG stratum. In particular, there does not exist an EG
INP of height greater than i. Hence Npg = Npg 7. Since v is contained
in G; and since Gpg N G; = Gpea,F,, the path 7 is not contained in a
concatenation of paths in Gpg and Npg.

Since ¢|r, is expanding relative to F, we see that 71 A A(¢) = F A A(¢).
Thus, we have 02(F,, F A A(¢)) = 0%(Fy, F1 A A(¢)). Assertion (4) then
follows from Lemma applied to F; A A(9).

By Assertion (2), there does not exist an EG INP of height at least i + 1.
Hence {x, () differs from £c, () by the number of edges in G pg of height
at least ¢ + 1. Since every edge in G — G} is in G pg by Assertion (2), the
conclusion of the first claim of Assertion (5) follows. The claim about paths
contained in G is then a direct consequence.

Let p be a current in Curr(Fi,F1 A A(¢)). By Lemma [BI7, there

exists (w1, p2) € X(F1) such that u = p¥ + pd. Since rational cur-
rents are dense in Curr(Hy, {[A1],...,[4s]}) and Curr(Hs, {[B1], ..., [B:]})
by Proposition 2Z.I5] linear combination of rational currents is dense in
Curr(Fy, F1 A A(¢)). The last claim of Assertion (5) then follows from the
linearity and continuity of ¥y and ||.||, -
Let m e N*. By Assertion (5), it suffices to prove that the number of edges
in G — G; contained in [f™ ()] is equal to the number of edges in G — G;
contained in . In the case that G — G; is a lollipop extension and that v is
the circuit C in G — G}, then ~ is fixed by f by [HM| Definition 1.1.29 (3)]
(that is the filtration associated with f is reduced). Hence [f™ ()] = 7 and
the claim follows.

Otherwise, if G — G; is either a one-edge extension or a lollipop exten-
sion, the circuit v is not contained in G — G;. Moreover, if v or [f™(v)]
contains an edge in G — Gj;, then it contains G — G;. Hence it suffices to
count the number of occurrences of G — G; in v and [f™(v)]. Since f pre-
serves G, the result follows from Assertion (1) and [BFHIl Corollary 3.2.2]
(where the stratum in it is the graph G — G;).

Note that since ¢|#, is expanding relative to F, we have F1 A A(¢) = F A
A(¢). Recall the definition of the graph G* and the map pg+ : G* — G from
above Lemma[3I2l By PropositionBI4land LemmalBT2(2), the malnormal
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subgroup system A(¢) is precisely the subgroup system associated with the
fundamental groups of the connected components of G*. Moreover, the
malnormal subgroup system associated with 1 A A(¢) = F A A(¢) is the
subgroup system associated with the connected components of pai (Gi).

By Assertion (1), the graph G — G; is either a topological arc or a lol-
lipop. Suppose first that G — G; is a topological arc. By Assertion (2),
the graph G — G; consists in edges in Gpg. Thus, the graph G* is ob-
tained from pai (G;) by adding a topological arc 7. If the endpoints of
7 are in two distinct connected components of G*, then the first case of
Assertion (7) occurs and otherwise the second case of Assertion (7) occurs.
Moreover, if the second case occurs, the extension F; < {[Fy]} is an HNN
extension. Thus there exists a subgroup A of F, such that 71 = {[A]}.
By [BEHI] Corollary 3.2.2], one can obtain an element g of F, such that
F, = Ax{g) by taking a circuit in the image of pgx which contains G — G;
exactly once.

Suppose now that G — G; is a lollipop extension. By Assertion (2), the
circuit C' in G — G; consists in edges in Gpg. Thus, either G* is obtained
from PE;:lk (G;) by adding a lollipop extension or G* is obtained from pai (Gy)
by adding a connected component which is homotopy equivalent to a circle.
If G* is obtained from p(_;,lk (G;) by adding a lollipop extension, the second
case of Assertion (7) occurs. If G* is obtained from pa}k(GZ) by adding a
connected component which is homotopy equivalent to a circle, the third
case of Assertion (7) occurs. The proof of the fact about HNN extension
is similar to the proof for the one-edge extension case. This concludes the
proof. O

Remark 5.19. By Lemma [BI8(1), G — G; is either a topological arc or it retracts
onto a circuit C' and there exists exactly one topological arc that connects C' and
G;. In the second case, we will adopt the convention that G — G; = C, so that, by
Lemma [5-T§|(2), in both cases of Lemma [5.I8(1), every edge in G — G; is in Gpg.

Lemma 5.20. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark .15

(1) Let U be an open neighborhood of Ay (), let V be an open neighborhood of

Kpa(¢) (see Definition B226]). There exist N € N* and 6 € (0,1) such that
for every m = 1 and every w € F, with g(v) > 0 and np,) ¢ V, we have

(™)™ () € U

(2) Suppose that ¢ is an almost atoroidal outer automorphism relative to F.

Let F < F1 < F be an associated sequence of free factor systems.

For every e > 0 and L > 0, there exist § € (0,1) and M > 0 such that, for
every n = M, for every nonperipheral element w € Fy, with g(vy) > 0, there
exists [pw] € Ay (@) such that for every reduced edge path v € P(F A A(P))
of length at most L contained in G;:

L)) < [w]))
Leap([f" (7)) (1]l 7,

< €.

Proof. The proof is similar to the one of [LU2, Lemma 6.1]. By Lemma [5.3] and
Lemmal[B.T6l(1), up to passing to a power of f, we may assume that for every w € Fy
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such that g(v,) > %, and every n € N*, we have g([f"(7w)]) = 9(7w) and

(8) Leap([f" (vw)]) = TEL(n,v) = (3" — 20)8(Yw ) lewp(Yu)-

Let N € N* be such that 3V > 2C. Let A > 0 be such that, for every edge
e € EG and every n € N*, we have

(9) (L (e)]) < A™

By Lemma B30, a sequence ([Vm])men of projective relative currents tends to
a projective current [v] € PCurr(F,, F A A(¢)) if for every ¢ > 0 and R > 0
there exists M € N* such that, for every m > M and every reduced edge path
v e P(F A A(¢p)) with £(y) < R, we have

(v, v) _ Y Vm) <e

(10)
Wz llvmllz

For every F-expanding splitting unit o, we denote by u(c) the corresponding
current given by Proposition 4l By Lemma A8, we have ||u(o)|z = 1. Since
A, (¢) is compact by Lemma [ there exist €, R > 0 such that for every m > M,
if there exists v € A4 (¢) such that v,,, v, R, € satisfy Equation (I0), then v, € U.
Since there are only finitely many expanding splitting units of positive exponential
length and finitely many edge paths v € P(F A A(#)) such that £(y) < R, there
exists My € N* such that for every m > My, for every expanding splitting unit o
and for every reduced edge path v € P(F A A(¢)) with £(y) < R, we have:

Qu ™)) €

T
Recall that (v, (o)) is equal to p(o)(C(v)) by definition of the number of occur-
rences of v in p(o). Let 4’ be a reduced edge path in G. By Lemma [0.0] for every
reduced edge path o of G contained in 7/, we have {z(o) > @-/(0) = Ulr(o) —2C.
Hence there exists M; € N* such that for every m > M, for every expanding split-

ting unit o, for every edge path 7/ containing o as a splitting unit and for every
reduced edge path v e P(F A A(¢)) with £(y) < R, we have:

s L™ (@)D
)
Recall the definition of the continuous function ¥y: Curr(Fy,, F A A(P)) — R

given above Definition Recall that, by Lemma [B28(3), for every current
p e Curr(Fp, F A A(¢)), we have ||p||z > 0. Let

U: Curr(Fy, F A A(p) — R,
V] - T

€
< —=.

(1) ‘

— (v, (o))

Since ¥ is continuous and since PCurr(Fy, F A A(¢)) — V is compact, there exists
s > 0 such that for every v € PCurr(Fp, F A A(¢)) — V, we have:

U([v]) = s.

In particular, by Lemma [3.27, for every nonperipheral element w € F, such that
Nw] ¢ V, we have
gemp('%u) \Ilo(n[w])

(12) )~ Tl L0l > s
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Now let w € F, be a nonperipheral element such that g(v,) = % and 1y, ¢
V. Let vy = agfiaq...apBk be an optimal splitting of ~,,, where for every i €
{0,...,k}, the path «; is an incomplete factor of ~,, and for every i € {1,..., k}, the
path B; is a complete factor of . Using this optimal splitting, we construct another
decomposition of +,,, which is not necessarily a splitting of ,,, but is well-adapted
for our considerations.

Since concatenations of paths in Gpg and in Npg have zero exponential length
by Lemma[3.I8 we change the decomposition in such a way that every subpath of 7,
which is a concatenation of paths in G pg and in Npg is in some «; fori € {1,. .., k}.
In particular, for every i € {1, ..., k}, the exponential lengths of 8; and «; are equal
to their exponential lengths relative to v,,. Let i € {0,...,k}. The path «; has a
decomposition «; = agl)agll) . .agki)agké) where, for every j € {1,...,k;}, the path
az(»J) is a concatenation of paths in G pg and Npg and, for every j € {1,...,k;}, the

path agj/) is a path in G — Gpg such that every edge of agj/)

exponential length relative to 7,, or is in a zero stratum.

Note that, by Proposition 2.5[(4), for every j € {1,...,k;} and every maximal
subpath 7 of agj ) contained in some zero stratum, the path 7 is adjacent to a path
in v, of positive exponential length. Suppose that 7 is nontrivial. Since no zero

path is adjacent to a path which is a concatenation of paths in Gpg and Npg by
Lemma and Proposition 2.5)(4), either o; = 7 or éemp(a(] )) > 0. In the first

i
case, we have {(7) < C by definition of C. Thus, there exists n € N* such that
[f™(7)] is completely split. Therefore, if the first case occurs, we may suppose, up

to taking a power of f, that a; is completely split and is a splitting unit of some

B;

either has positive

Let i € {1,...,k}. Since 8; does not contain splitting units which are concatena-
tion of paths in Gpg and Npg, every splitting unit of j3; is an edge in G — G'p; or a
maximal taken connecting path in a zero stratum. By Lemma [3:22] every splitting
unit of §; which is an edge in G — G'5; is expanding.

Let o’ be a splitting unit of 3; which is a maximal taken connecting path in
a zero stratum and which is not expanding. Let n € N* be such that [f"(¢’)] is
completely split. By Lemma and Lemma [B.2T] the path [f™(o’)] does not
contain splitting units which are edges in G — Gpg. If [f"(0’)] contains a splitting
unit which is contained in a zero stratum, then an inductive argument shows that,
up to taking a larger n, the path [f"™(¢’)] is a concatenation of paths in Gpg and
Npg. Thus, the F-length of ¢/ grows at most polynomially fast under iterates of
I
Combining all the above remarks, we see that v,, has a decomposition

(1) gl) a (t) (t) (t)

)
Yw = aoboaicy ey .. - agby ... acy’cy” .. -Cy at+1biy10442,

where:

(a) for every i € {0,...,t+ 2}, the path a; is either possibly trivial, a concate-
nation of paths in Gpg and in Npg or a maximal taken connecting path
whose F-length grows at most polynomially fast;

(b) for every i € {0,...,t+ 1}, the path b; is a subpath of positive exponential
length relative to 7, of an incomplete path of ~,, such that every edge of b;
either has positive exponential length relative to 7, or is in a zero stratum;
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(c) for every i€ {1,...,t} and every j € {1,...,k;}, the path cy) is a (possibly
trivial) expanding splitting unit of a complete factor of ~,,.
Recall that the length of every path in a zero stratum is bounded by C. Thus,
for every i € {0,...,t+ 1}, we have

0(bs) < Clagp(bi).

We claim that the exponential length relative to v, of one of the edges at the
concatenation point of two consecutive nontrivial paths of the form a;b;, b;a;i1,
@ @) @) (2)

aicy’, ¢;’cjiy or ¢ a;1q is positive. Indeed, for every i € {1,...,t} (resp. i €

{0,...,t+ 1}) and every j € {1,...,k;}, the path cy) (resp. b;) either has positive
exponential length relative to 7, or is contained in a zero stratum. Note that by
hypothesis, for every i € {0, ...,t+1}, the path b; is not contained in a zero stratum.
Moreover, if b; is adjacent to a path a;, then the first edge of b; is not in a zero
stratum by Proposition [2.5(4), Lemma 2.9 and the fact that the paths in zero strata
that we consider in our subdivision are maximal. Hence one of the edges at the
concatenation point of every path of the form a;b;, b;a; 1 has positive exponential
length relative to 7,,.

By maximality of the splitting units contained in zero strata, one of the splitting
units in a path c(z) (21 is an edge in G — G'p(;, hence has positive exponential length
relative to . Slnce paths in zero strata and concatenations of paths in Gpg and
Npg cannot be adjacent by Proposition 2.5(4) and Lemma 2.9 paths of the form
aicgz) and c,(;_)aiﬂ have positive exponential length since in this case cgl) or c,(c? is
an edge in G — G’p,. This proves the claim.

Remark that, by construction and the definition of goodness of a reduced path,
we have

t ok
Z Z ewl’ = éexp(’Yw)Q(’Yw)-

K3
Note that the length of reduced iterates of edges in Gpg grows at most polyno-
mially fast, hence the F-length of reduced iterates of edges in G pg grows at most
polynomially fast. Let C’ > 0 and k € N* be such that, for every splitting unit
o’ which is either an edge in Gpg or a maximal taken connecting path in a zero
stratum whose F-length grows at most polynomially fast, and every m € N* we
have:
Lr([f™(0))]) < C'mP (o).

The constants C’ and k exist by the claim in Proposition [3.14

Let i € {0,...,t + 2} and let a; = ap ...y, be a decomposition of a; such that,
for every j € {0,...,¢;}, the path oy, is either an edge in Gpg, a path in NpE*(a;)
or a maximal taken connecting path in a zero stratum whose F-length grows at
most polynomially fast. By Lemma [BI7 for every m € N*, we have

£;
Lr([f™(a)] Z Cr([f™(a))]) < C'm* Z (r(aj) = C'm*lx(a;),
j=1

where the last equahty follows from the fact that a path in Npg is contained in
some subpath «; by hypothesis. In particular,

t+2 t4+2

(13) sz < C'm" ) Ur(a;) < C'lr(yw)mF,
1=0
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where the last inequality follows from the fact that, by hypothesis, every path in
ax(y) is contained in some a;. Thus, if g(v,) = 1, there exists C” > 0 such
that, for every n > N, by Equations ), (I3]) and ([2), we have:

S tr (" (a)]) - C'lx (yw)n*
Eewp([fn (Yw)]) h (3n — QC)Q(Vw)Eewp("Yw)
< Clégefﬂp ('Yw)nk
= (3" = 20)8(vw) Leap (V)
k

< C// n
(3" = 20)g(w)
Up to taking a larger N € N*| we may suppose that, for every n > N, we have

nk €

< .
(3n - 20)9(’710) 489(’710)]“2
Recall that, for every reduced edge path v of G, we have

Kewp('y) < 6]:(7)

Thus, for every n > N and every nonperipheral element w € F, such that
9(7w) = 3, by Equation (B), we have

2Rlcyp (Yw) 2Rl ey (Yow) 2R

G )]) = B = 20)8(00)bern(1m) (37— 20)9(7)”

Up to taking a larger N, we may assume that for every n = N and every w € Fy
such that g(y,) = 3, we have:

2Rleyp (Vo) - 2R - €
([ (v)]) (3" —2C)g(vw) — 120(7w)”

(14) o

(15)

Let

5 { 1 1 1 }
= max - .
€ 2RCeAN 7
1+ ¢ L+ (3N —20)6 2

Thus, in order to prove the first assertion of Lemma [5.20], it suffices to show that
for every m > N and every w € F, such that g(v,) > 0 and np, ¢ V, the
projective current [v,,] = ¢™([nw]) is close to an element [v] in A4 (¢) in the sense
of Equation (I0). Since the goodness function is monotone by Remark BEI5 it
suffices to prove it for m = N.

Let w € Fy such that g(v,) > ¢ and np,) ¢ V. By Equation (I4) and the fact

that g(yw) =6 > 1, we have

Sito tr (M) _ SiZg (U (es)])
Cr(LN (o)) Ceap(LSN (w)])
Nk " NF €
(3% —2C)g(r) ~ C (¥ 2008 = AR
Moreover, by Equation (IE) and the fact that g(v,,) = > 3, we have

2R€ewp(7w) E
a7) GO ()] S 6

(16) <
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Note that, for every w € F, such that g(v.,,) > ¢ and 5} ¢ V, we have:

ZRC/\N(l - g(’}/w))eezp(')/w) _ )‘N 1 _
BV — 20000 ey () BN —20 ( () 1)

AN 1 €

where the last inequality follows from the definition of 4.
Let v € P(F A A(¢)) be of length at most R. By the triangle inequality, we have

Ol ol (T T ”“’”<[fN<c§”>]>u<c§“>>
R S S T )

< <’77 [f (’7w>]>_2 ki <’Yv [fN(ng))]>

TEFN (WD) A A FN (w)])

b EN]) S S (Y )]
D ¥ Dy’ f”“w”([fw 5”)])‘
S S5 (n V)
DI WYL AR (VA C))
ez g A O ENDuE))
S Sy O ) '

Note that an occurrence of v or v~ in [fV(9,,)] might happen either in some

[fN(c§Z))] or in some [f (a;)] or in some [f~ (b;)] or it might cross over the con-
catenation points. Recall that one of the edges at the concatenation point of paths
of the form a;b;, bja; 1, azcgl), cgl)c(ﬂ)rl or cfc)aiﬂ has positive exponential length
relative to v,. Recall also that the length of v is at most equal to R. Thus the

number of such crossings is at most 2R, (7). Thus:

N

U A A W)
2R emp ’Vw & <77 fN ‘& <77 fN >
S YO 2 s (U ()] * Z (U (r)])

Since 7 is not contained in a concatenation of paths in Gpg,r and Npg r,
if v is contained in [f¥(a;)] for i € {1,...,¢t + 1}, then 7 contains an edge of
[/ (a;)] of positive F-length relative to [fV(a;)]. Hence we have (v, [fV (a;)]) <
207([fN(a;)]). By Equations (IT) and (I8]) with n = N, we have

2Rl ’Yw & <’77 fN az > lex ’Yw) 2Zt+1 ([ (al)]) €
f]—'( pr’Yw Z I " S1

3 L (LY (v)]) ﬁf([fN(vw)]) (r(LfN(w)]) 4
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Moreover, since for every i € {0,...,t + 1}, we have (b;) < Clegp(b;) and by
Equations ([8), (I2) and (I8]), we see that:
t+1 N t+1
Z f ( JCATRICN < Z Nb <Z NCA Cewp(bi)
([N (o)D) iz Z]—'( N (vw)]) 0 (3N =2C)g(vw)lewp(Yw)
CAN(l —8(yw))leap(Yw) <
= (3N -2C)a(yw)leap(Yw) T

For the third term of Inequality (I9]), note that, since v € P(F A A(¢)), it is not
contained in a concatenation of paths in Gpg, 7 and in Npg r. Therefore, if ¢ is a
reduced edge path of [fV(7,)], an occurrence of v always appears with an edge e

of ¢ such that 6[}{0N(7w)] (e) = 1. Since £(y) < R, such an edge e can be crossed by
at most R occurrences of 7 in ¢. Thus, for every reduced edge path ¢ in [V (7,)],

we have (v, c) < QRKE{-IN(%)](C)

Hence we have .
D IR A TRIC LD
S S AT

@

£
6

< 2R.

Since
t ki
fN 'Y'w ZZ f (w)] fN (z) +Z£[f (Vw)] fN a;b; az+1)])

using Lemma [5.3] and Lemma [5.6] for the last inequality we have:

CZ) >_ 1123 1<% fN > ‘
)

<% )]
ZZ ST VD YD SR AR (PR )

) ‘ (z;l NRCATRICIDY
(S e, AN ()
(Zt-ile”’”““’”<[f<aib-ai+1>]>)
(Sioy ey A O e + i A (N (it am)]))‘
(S S LN EDD) (i A O ([ flaibiaiin)))
(i Sy A O ) (e Sy AN v (e ”)]))‘
(i 2 N END)) (B8 (LN o)) + 2055 L2 (1N (@)
(Zio 2 JfN(””)]([f(c(»”)])) (St S O () |

S e (LN 00) + 23575 L ([N @) |
S Sk AT OV )

Recall that we have

X

N

N

< 2R

i

33 leap(el?) = Leap ()9 ()

i=1j=1
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and, for every ¢ € {1,...,t} and every j € {1,...,k;}, we have either Eexp(cy)) =1

or Legp(c; A )) = 0. Hence, we have:

S S TN () > SN LAY (E)) - 20)
= Zz 1 Z (3N - 20)
= (3N - 20) (’7w)£exp('7w>a

where the first inequality follows from Lemma[5.6] and the second inequality follows
from the fact that f is 3K-expanding and K > 1. Thus, we have
S ([N (b)) +2 Z Z(VRCH))

Zz 12 i @f (Ww) ([fN(c(z))])

S E(LFN ()] St tr([fN (aa)])
QR‘ 3N — QC)g('Yw)fexp ’+2R‘ 3N 25::)5(61?(710)

By Equation (@), we have

2R

t+1 t+1 t+1
Ze; [FN (b Zz (LN b)) < AV D (i)
=0
t+1
S ON Y leap(b) < ONV e () (1 = 8(3))-
=0

Hence we have:
Sirs LE (LN (b)) Sita e[ (ai)])
2R |t 2c>fm>emm 2R’ g 2cf>aem<ww>

CA (1 E('Yw))zez (’Yw) 2C’ Z.’F(’Yw)n
<2R BV =30) 001 eap () | T 2R\ BN 286502y ()

cAN (1—g(vw))leap(Yw) 2C"n*
< 2R | G =a0)s0r ) leay ) | T 2E (3N_—20)5‘

< 2 by Equations (I6) and (IJ).
Finally, using Equation (IIl) and the fact that for every i € {1,...,¢} and every
je{l,..., k;}, the splitting unit cy) is expanding, we have:

by Equation (T3]

S (N @) <%Z§=1 Xk, el o] <[fN<c§"’>>]>u<c§-”>>
;‘7:1 2?:1 Zg_fN(“rw)]([fN (c;L))]) - ;‘7_1 Zki [[fN(’Yw)]([fN (C;L))])
¢ yki LN ()l ©) G e )
- im1 g UF ([fN(C )])(W—<’Y (s’ )>

g, O ()

e ke N (vw i
DD Y (PR R0)
< s N (7 N - 6"

D i R (VR C D N

Combining all inequalities, we have

Gy S S AT O el )
FUNOWD S S AN )

J




240 YASSINE GUERCH

This concludes the proof of Assertion (1) of Lemmal[5.20since for every i € {1,...,t}
and every j € {1,...,k;}, we have u(cy)) € Ay (o).

The proof of Assertion (2) is the same one as the proof of Assertion (1), replacing
lr and (% by Leyp and 02, adding the following arguments. Let v and w € Fj be

as in Assertlon (2). Then « is not contained in a concatenation of paths in Gpg
and in Npg by Lemma [5.I8(3). If

Y = a0b0a1c§1)c§) .. .C](Cll)(lng atc( )cét) ... C](:t)at+1bt+1at+2

is the same decomposition of 7, as in the proof of Assertion (1), then for every
m € N and every i € {1,...,t + 2}, the path v is not contained in [f™(a;)] by
Lemma BI0l Similarly, for every m € N* and every i € {1,...,t + 2}, we have
Lewp([f™(a;)]) = 0. Hence we do not need Equation (I8). By Lemma E.I8(5), we
have

leap(7) = Lx, (7).

Moreover, by Lemma [BI8|(5), for every current [p] € AL (¢), we have Uo(pu) =
[ull7 . Replacing £z and £} by lesp and £7,, in the equations in the proof of
Assertion (1) concludes the proof O

For Lemma [5.21] we need to compute the exponential length of incomplete seg-
ments in a circuit v in G. Let £egp(Inc(y)) be the sum of the exponential lengths of
the incomplete segments of an optimal splitting of . Let Eemp(lnc(v)) be the sum
of the exponential lengths relative to v of the incomplete segments of an optimal
splitting of 7. Note that £7,,(Inc(v)) do not depend on the choice of an optimal
splitting. Note that

Cp(Ie(y)) = (1= 8(7))leap(7) < Leap(7)-

Lemma 5.21. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark BI5. Let
0 € (0,1), and let R > 1. There exists ng € N* such that for every n = ng and
every nonperipheral element w € Fy such that np, ¢ Kpa(9), we either have

a([f"(vw)]) = 0
10C

L Ine([f" (v)])) < 5 lerp(Inc(7w))

10C
(1-9)R
Proof. Let w € Iy, be a nonperipheral element such that 7y, ¢ Kpg(¢). Suppose

that n € N* is such that g([f™(yw)]) < §. Assuming for now that we have proved
that

and Leap([f" (7)]) < Ceap(Tw)-

n n 100
O (e ([ () < g lesp(Inc(rw)),

we deduce that Leg, ([ (Yw)]) < (11 (sC;Rgexp( w)- Indeed, we have

AL e[ ()D) = A = o[ N ean([F*(N)]) = (1 = ) eap ([ (D).

Thus we have

Cap([F"()]) < 1e££p“w> (Ine(Lf"(v)])) < Ghgmtess (ne(r))
< mlsrlenn(Tw)-



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 241

Therefore, it suffices to prove that there exists ng € N* such that for every
n = ng, if g([f™(Yw)]) <, then

n m 100
AL e ([ (vw)])) < g lerp(Inc(rw))-
Consider an optimal splitting v, = a(81¢} ... o, Bh,, where for every i € {0,...,m},

the path o is an incomplete factor of 7, and for every i € {0,...,m}, the path !
is a PG-relative complete factor of v,,. We can modify the splitting of v,, in a new
splitting v, = agBiaq ... Brag where:

(i) for every i € {0,...,k}, the path a; is a concatenation of incomplete factors
and complete factors of zero exponential length relative to -, of the old
splitting;

(ii) for every i € {1,...,k}, the path §; is a complete factor of positive expo-

nential length relative to -, of the old splitting.

In the remainder of the proof, we still refer to the paths «; as incomplete factors.
By the last claim of Remark [B.T5] we may suppose that g(v,) < d, that is:

(20) [ey;)p II’IC ’)/w Z Zemp 5)£€IP(’VU))'
Claim 1. For every i € {0, ..., k} and every m € N* we have
(Yo m 2 1V
(8, O Ine([f™ (i) < 240302, ().

Similarly, for every m € N* | we have

L N Ine([F™ (3)])) < 24C% ey (u0)-

Proof. Since a reduced iterate of a complete factor is complete, every incomplete
factor of [f™(7,)] is contained in a reduced iterate of some «;. Thus, we have

k
A O Ine([f™ (v)])) < D A8, O (Ine([f™ ().
i=0
Hence it suffices to prove the result for the paths a; with i € {0, ... k}. By Property
(ii) for every i € {1,...,k}, the path f; has positive exponential length relative to
Yw- Therefore, if there exists 7' € Np&*(7,) such that «; intersects 7' nontrivially,
then ~' is contained in S;c;3;41. In particular, Lemma [5.13] applies and for every
i€40,...,k}, if 02w (a;) = 0, then Loz (i) = 0.

Let i € {0,...,k}. Suppose first that £Jx (a;) = 0. By the above, we have
legp(a;) = 0. By Lemma [B.12], there exists N € N* such that for every m > N,
such that the total exponential length of incomplete factors in any optimal splitting
of [f™ ()] is equal to 0. Hence for every m > N, the path [f™(«;)] is PG-relative
completely split. Up to taking a power of f, we may assume that N = 1. So this
concludes the proof of the claim in the case when £, () = 0.

So we may assume that £Jx,(a;) > 0. By Lemmal5.T2] for every m € N*, the total
exponential length of incomplete factors in [ f™ ()] is at most equal to 8Ceyp ().
By Lemma [5.0] for every i € {1,...,k}, we have

Ceap(i) < €3 (ai) +2C < 30U (ai).
Hence by Lemma again, we have
(4, O Ine([f™ ()])) < Leap(Ine([f™(@i)])) < 24C% €0, ().

exp



242 YASSINE GUERCH

This proves the claim. O

Let A, be the set consisting of all incomplete factors o of 7, whose exponential
length relative to 7, is at least equal to (3.103)R°C12 + 1. Let A’ be the set con-
sisting of all incomplete factors a; of v,, which are not in A, . Let £ (A, ) (resp.
£, (A%, ) be the sum of the exponential lengths relative to 7, of all incomplete
factors of 4 that belongs to A, (resp. A, ). We distinguish between two cases,
according to the proportion of £J% (A, ) in the exponential length relative to ~,, of

exrp
incomplete factors in 7,,.

Case 1. Suppose that
[ehzup (A'Y’w ) < 1
tip(Inc(yw)) — (24C2R)*

This implies that
e (AL) - (24C2R)? — 1
Ty (Inc(y,) ©  (AC2R)?

Note that, by Lemma B.G, every path in A’ = has exponential length at most
equal to (3.108)C'2R® + 1 + 2C. By Lemma [E.I0] there exists ng € N* such that,
for every edge path 3 of exponential length at most equal to (3.10%)RC12 + 1+ 2C
and every n > ng either [f"(3)] is a concatenation of paths in Gpg and in Npg or
[f™(B)] contains a complete factor of exponential length at least equal to 10C. By
Lemma [5.6] in the second case, the path [ f™°(3)] has a complete factor of positive
exponential length relative to [f0(3)].

Let I, be the set consisting of all incomplete paths a; of v,, such that a; € A’%
and [f™(a;)] is a concatenation of paths in Gpg and in Npg. Let I, be the
set consisting in all incomplete paths a; of 7, such that o; € AL, and [f" ()]
has at least one complete factor of positive exponential length relative to [ (a;)].
Note that A7, =T, oT7 . Let 2z, (I'y,) (vesp. €2z, (I, )) be the sum of the

exp exp
exponential lengths relative to v, of paths in Iy (resp. I, ).

(21)

Subcase 1. Suppose that
G (Uy,) _  24C°R
Cap(AL )~ 24C?R+1°

w

Then ) )
24C*R 24C*R—1
0w (D) = —————00 (AL ) = ————07 (Inc(vy)).
ewp( ’Yw) 2402R+ 1 ezp( A/w) 24C2R emp( HC(’7 ))

Note that, for every n > ng and every path a; € I'y, we have £eyp([f™(05)]) = 0
by Lemma [3I8 By Claim [ for every path «; such that o; € A’ ~and «; ¢ T'5,,,
and for every n € N*, the total exponential length of incomplete factors in [f™(«;)]
relative to [f™(a)] is at most equal to 24C?¢Jx,(a;). Recall that, by Equation (20),
we have €2 (Inc(vy)) = ZaiGA.yw oY (3w (a;). Thus, for every n = ng, we have:

erp
AL e[ (r)]) - < 3z AL (Ine([ 7 ()
i€y, VAL
< 2 24C2 0%, (o)

;€M V(AL —Ty,,)

24C 01 (Inc(vy)) — 24C2 U1 7w (Tne(v,))

72, (Ine(w))-

IN N
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This concludes the proof of Lemma [5.2T] when Subcase [l occurs.

Subcase 2. Suppose that

lap(Ls,) _ _24C°R
leop(N, ) ~ 24C°R+ 1

Note that the assumption of Subcase [2 and Equation (2I)) imply that

21\2
1 (ACPRE -1 1y oy

Y F/ 2 Yw A/ 2
ki) 2 reap 19 M) > “giceRp JcR 1

Since every path in I, has exponential length at most equal to (3.10%)RSC12 +
1+ 2C, by Lemma 7 up to taking a larger ng, for every path «; € I”W such
that legp(a;) > 0 and every n > ng, the exponential length of a complete factor in
[f™ ()] is at least equal to 3"~ "0 leyp(a;). Moreover, for every path a; € I, such
that leyp(;) = 0 and every n = ng, the exponential length of a complete factor
in [f™(«;)] is at least equal to 3" ™. By Lemma B0 for every n = ng and every
path o; € F’W such that fc,,(c;) > 0, the exponential length relative to [ f™(c;)] of
a complete factor in [f"(a;)] is at least equal to

30 () — 2C > (3770 — 20) ugp (i),

Thus, for every n > ng and every path o; € 1“’%, the exponential length relative to
[f™(a;)] of a complete factor in [f™ ()] is at least equal to

(37770 — 20) g (cv2).

Therefore, for every n = ng, the sum of the exponential lengths of complete factors
in [f™(vw)] is at least equal to
(22)

(3" —20) 02w (TL ) = (3" "0 —20)

exp\" Yo

(24C°R)* -1 1 .
@iczR? 2aczR 51 e ne))-

By Claim [, for every n € N* we have &[J;;(%)](Inc([f”(yw)])) <

2 w . . .
24C%4Yx (Inc(7y)). Recall that the goodness function is a supremum over split-

tings of the considered path. Thus, by Equation (22) for every n > ng, since the
maps t — t_%a are nonincreasing for every a > 0, we have
a(lf" (w)])

n—n 02 2 :
(3n7me —20) (2(;40]2%1)2)2 - sicrr (s (e(vw))

= 2R)2_ "
(370 — 20) Gt xctmer i (Ine(yw) + €k, (Ine([ /7 ()])

n—n 24C%R)%—1 1 w
- (3m7nm0 —20) ( (24021)%)2 sicrrrt Lenp (Inc(Yw))
= —n 24C2R)2—1
(3n—m0 — 20) B S I sy (i (ne(ya)) + 24C2008, (Tne ()
n—n (24C%R)%—1 1
(3 0 _20) (24C%R)2 24C?R+1

>
“ an—n (24C2R)2—1 1 )
(3770 = 20) i mye macereT T+ 24C7

which goes to 1 as n goes to infinity. Hence there exists n1 € N which is independent
of 7, such that, for every path v, as in Subcase [2] and every n > ny, we have:
9([/™(yw)]) = 8. This concludes the proof of Lemma [5:2]] when Case [l occurs.
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Case 2. Suppose that, contrarily to Case [, we have
e (A,) 1

exp

7 (Tne(ve)) — (24C2R)%

Let o € A, and consider the decomposition of the reduced path « into maximal

subsegments a(Y) ... a(F) of exponential length relative to v, equal to 2000R3C®,
except possibly the last one of exponential length relative to v, less than or equal
to 2000R3CS. Let

A = {a(j) laeA, jell,. .. ka} €22 (D) = 2000R306},
A® = fal) [aep,, je {1,k (2,(aP) < 2000R°C°

Note that, since for every o € A, , we have (7% (a) = (3.10%)R°C'? + 1, we see
that

(23) A | > 120000R*CEAL).

Note that every element in Aglw) v As,i) has exponential length at most equal to
2000R3C%+1+2C by Lemmal5.6l By Lemma [5.11, there exists M € N* depending
only on f such that for every n = M and every reduced edge path « of exponential
length at most equal to (3.108)R6C'2 + 1 + 2C, either [f" ()] is a concatenation
of paths in Gpg and in Npg or the following hold

(a) there exists a complete factor of [f"(«)] whose exponential length is at
least equal to 10C

(b) the exponential length of an incomplete factor of [f”(«)] is at most equal
to 8C.

This applies in particular to every element o € A%) U A%) and to every element
a € A’%. For every a¥) e Aglw) and every n > M, let al¥™) be the (possibly
degenerate) subpath of [f"(a'?))] contained in [f"(a)]. Let AEY?;) be the subset of
A%? consisting of all o) e A%) such that £.,(aM)) < 80C?, and let Agfi? =
A(l) _ A(3)
Yw Yw *
Suppose first that

24 AD| > ——_|AD)].
29 5> Sooo0mecs A
Therefore, as |A£,1w)\ = \A§3w)| + \Aﬁfw) |, by Equation (23], we have
30001 R3CS
AP < T 2 AW = K AW
| fyw| 120000R306| fyw| 0‘ 'yw|a

where Ky is a constant depending only on C' and R. Note that A, = AEY%) U A,(Yi? v

As,t) and for every j € {2,3,4}, every path in AEZU) has exponential length at most
equal to 2000R3C®. Thus, we see that

Cp(Ay,) < 2000R*CO(IAL)] + A + [ASY]) < KGlASY|

exp
for some constant K, depending only on C' and R.

Recall that if /) € Af(f,lw), then £ep(?M)) > 80C2. Suppose towards a con-
tradiction that [fM(a(j))] is a concatenation of paths in Gpg and in NMpg. Since

aUM) s a subpath of [fM(al9))], we have &[ﬁ;;{(a(j))](a(j’M)) = 0. By Lemma [(5.6]
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we see that Zemp(a(j’M)) < KQ;X(Q(J))](QU’M)) + 2C = 2C, which leads to a contra-
diction. Hence [fM(a))] satisfies Assertions (a) and (b).

Note that a(¥M) is a subpath of [fM(a))]. Since Loy, (aUM)) > 80C2, since
every incomplete factor of [ fM (a))] has exponential length at most equal to 8C' by
(b) and since an incomplete factor of [fM (/)] is followed by a complete factor of
[FM ()], we see that a-M) contains a subpath of a complete factor of [ f (a(7))].
Since Lezp(aU-M)) > 8002 and since every incomplete subpath of [ (a())] has
exponential length at most equal to 8C, the path o¥™) must contain a subpath
alM)" guch that the total exponential length of complete factors of a(/M ) is at
least equal to 10C.

Let a(] M) be the minimal concatenation of splittings of a fixed optimal splittings
of [f™(a'))] which contains a@-) Let Tl(j’M) and TQ(j’M) be paths such that
[fM(a(j))] _ Tl(jﬁM)a(()j’M)TQ(jﬁM).

By Lemma [5.8 applied twice (once with v = 04(()] M) 2(j’M) [fM (o) a,(cka’“))]
and 71 = TR TRl
oM ))

0 9

and once with v~ and vy e

we see that a¥M) contains a complete factor of [f(,)] of exponential
length at least equal to 10C' — 4C' = 6C. By Lemma [5.6 the path o) contains
a complete factor of [fM(v,)] of exponential length relative to [fM (v,,)] at least
equal to C. By Lemma [ (with v a complete factor contained in a7"M)), for
every n = M and every al?) e Agi), the path a(¥™ contains a complete subpath
of [f™(7w)] of exponential length at least equal to 3"~ (C. By Lemma [5.6 for
every n = M and every a9 € A( ) , the path a(¥™ contains a complete subpath of
[f™(7w)] of exponential length relatlve to [f"(Vw)] at least equal to 3"~MC — 2C.
Hence for every n = M, the sum of the exponential length relative to [ f"(”yw)] of
complete factors contained in [f"(,)] is at least equal to (3"~MC — 20)\1\% |.
By Claim [l for every n > M, we have

O (e ([ (1)) < 24C% 02, (4 w) < 24075 5@;’1,(1110(%)),

exp

where the last inequality holds by Equation ([20). Using the above equations and
the assumptions of Case 2] we see that

AL e[ (7)) < 2402 502, (Inc(,))
2402 5(24C2R)%072 (A%)

exrp

2402 L 3 L (24C2R)2 KA = Ky ALY,

A\

NN

where K is a constant depending only on C, R and §. Thus, since the goodness
unction is a supremum over all splittings of the considered pa or every n =
funct p 1l splittings of th dered path, f yn=M,
we have:
(3" Mco—20)|AY|
(3n—MC- 2c>|A<4>\+e[f"”w”(Inc([fﬂ(a)]))
(3"~Mc—20) A
(3n—MC— 2C)|A(4>\+K1\Ag‘2|
3"~ Mgo_2c
3n-MC_2C+K; "’

g([f"(w)])) =

=

which converges to 1 as n goes to infinity. Hence there exists M’ € N* depending
only on f such that for every n = M, we have g([f"(1w)]) = 0. This proves
Lemma [52T] in this case.
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Suppose now that contrarily to Equation (24]), we have
1

25 AP < —————_|AD)].
(25) 1851 < 3000058 1 Ao |
Then
1 3
|A'Yw| = ‘A’Yw‘ + |A'Yw = (1 + 3000OR306> ‘AEYW)|'

Claim 2. Let n = M, let o) e Agfw) V) AE,A,LW). The total exponential length of
incomplete factors of [ f™(7,,)] contained in a/"™) is at most equal to 120y, (a()).

Proof. Let o be an incomplete factor of [ f™(7,,)] which is contained in ™), Then
one of the following holds:

(i) the path o is an incomplete factor of [f™(a())];

(ii) the path o contains a subpath which is complete in [f"(a))].

Note that the total exponential length of incomplete factors of [f™(7,,)] which
satisfy (i) is bounded by the total exponential length of incomplete factors of
[f"(a9))]. Thus, by Lemmal[5.13] the total exponential length of incomplete factors
of [f™(74)] which satisfy (i) is bounded by 8C¥ey, ().

Suppose that ¢ satisfies (ii). Let a¥™ = ajcay be a decomposition of a(/™)
where for every i € {1,2}, the total exponential length of complete factors of
[£™(a9))] contained in a; is equal to 2C. By Lemma [5.8 applied to

n n (Kay,) n

= [ @@V o )] and 1 = [ (o))
and to

— n 1 n — n 1

L= e @) and vyt = [ (@),

the path o is contained in either a; or ag. For every t € {1,2}, let a; =
bgt)b(lt) ...bgt)bg? be a decomposition of a; where, for every i € {1,...,s;}, the
path bgt) is an incomplete factor of [f™(a))] and for every i € {1,...,s;}, the path
b

;" is a complete factor of [f™(a!?))] contained in a;.

Suppose that there exists ¢ € {1,...,s1} such that bgl)l is a complete factor of

[f™(yw)]. We claim that for every j = i + 1, the path b§»1), is a complete factor
of [f™(Yw)]- Indeed, let n” = n and let j = i + 1. Then there is no identification

between an initial segment of [ f"/(b(l)/)] and an initial segment of [f™(7,)] not

intersecting o) as otherwise there would exist identifications with [f™ (b} (1)’ ],
contradicting the fact that bl(. s complete. Similarly, there is no identification
between a terminal segment of [f™ (b (1)/)] and a terminal segment of [ f"(ww)] not
intersecting o) as otherwise there would exist identifications with [f™ (c)]. The
claim follows. Similarly, if there exists ¢ € {1,..., s} such that b( s a complete

)’

factor of [f™(yw)], then for every j < i, the path b; is a complete factor of

L (yw)]-

Hence we may assume that for every ¢ € {1,2} and every s € {1,..., s;}, the path

b is incomplete in [f™(7)]. Therefore, for every ¢ € {1,2}, the whole path a; is
incomplete in [f™(7,,)]. Thus, in order to prove the claim, it suffices to bound the
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exponential lengths of a; and aq. Let t € {1,2}. By Lemma 317 we have
exp at Z éexp b(t ea:p(bl(‘t) )

For every i € {1...,s;}, the path bgt) satisfies (i) and we already have a bound on
the total exponential length of such paths. Moreover, since the total exponential
length of complete factors of %™ contained in a; is at most equal to 2C, we have

M ey (0) < 20.

i=1

Thus, the total exponential length of incomplete factors of [ f™(7,,)] contained in
al®M) i at most equal to

2 st , ) )
8C eap(a) + 373 leap (b)) < 8Clegp(a?)) +4C < 120ep(a?),
t=11=1

where the last inequality follows from the fact that every element of Agfw) v A%) has
positive exponential length. (Il

By Claim 2 and Lemma [5.6, for every n > M and every al/) e AE,%U) v A(;i),
the total exponential length relative to [f™ (7, )] of incomplete factors in the sub-
path of [f™(y.)] contained in [f"(al))] is at most equal to 12C¢Jx, (a)) +2C <
14C€z;p(a(j)). Hence by definition, for every n > M and every path al) e

AEY%) U AE;}B, we have
0 e ([ (w)]) 1 al™) < 14Ck ey (al?).

We claim that, for every n > M, every element in Afsn(, y] is contained in an
iterate of an element in A, . Indeed, note that, by the choice of M (in the above
application of Lemma [5.1T)), for every element v € A’ , the exponential length of
an incomplete factor in [f" (/)] is at most equal to 8C. Hence an incomplete factor
of [f"(a)] whose exponential length is at least equal to (3.10%)R°C'2 + 1 cannot
be contained in an iterate of an element of A7 . The claim follows.

Therefore, using Equation (28) for the third inequality, the value of

EL&Z(%’H (A[fr(y,))) is at most equal to

S leap(@UMD) £ S O e ([ (4,)]) A @M

a@enl?) a@enlt)
M .
+ % 2 O e[ (1)) A aliAD)
a@enl?)
<80C2AY)| +14C S lerp(B) +14C Y Legy(a)
pealt) NG
< 80C2|AY| + 14C(2000R3CO)|ALY | + 14C Y Legp(ar)
aeA(Q)
<80C2 AP |+ CIAY |+ 14C S lep(a)

aEAi,z,)
<BIC2 AP |+ 14C Y legp(a).
aEAEiB
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Since by Equation (23)

1
1+ —— ) IA®)] > [AD] > 120000R>CC|A>P)
( +3OOOOR3C’6>| HESLM A

we have |A,(y3)| 60000R3CG\A \ Hence we have

KLJ;p (V) ](A[fM(A,w)]) 8102|A7w| + 14C Zae/\fﬁ)} eezp(a)

81C2AY| + (14C)(2000R3C%)| ALY
81C2|AY) |+ 20|AP)| = 83C2|ALY).

NN N

Suppose first that

™
[ CTT) B

My N Ine([fM (va)]))  (2AC2R)*

Then we can apply Case [l to conclude the proof of Lemma [5.21l Indeed, Case [II
gives a larger M’ > M such that for every n = M’ either

5 e ([ (v)])) < —é (e ([ (7))

(this is the conclusion of Subcase [I]) or else g([f”(vw)]) > 0 (this is the conclusion
of Subcase [2)). Recall that, by Lemma and Lemma [£.6] we have

A 0N e ([ ()])) < 1002, (Tne(y))-

Hence, if the first conclusion occurs, we have

(0 (e ([ () < —fﬁ’;p N(Ine([FM (7)) < %Q&(IHC(%)%

which gives the desired result.
Otherwise, we have

(2402R)2£[fM(’Yw)] (A[fM( ]) > g[fM (V)] (Inc([fM ('_Yw)]))
Let n > M. By Lemma [5.12] and Lemma (5.6, we have

" N Ine([£7(1)])) < Lewp(Ie([f" (7)) < 8O ey (Ine([FY (7))
< 100, T e[ (7.,)])).

Recall that the exponential length of every path a € A%} is equal to 2000R3CS.
Hence we have

A0 (ne([7 (r)])) 0 )(IHC([f”(%u)])) (5 ) (Ine ([ (7))
)

ip (Inc( ) O (Ine([FM (4,)])) Cip (Inc ()
1002402 R)*eE,, N (Appar s, )
h (z;:ﬂp (A’Yw )

_ 10C/(24C2R)2(83C2AD)))
N 2000R3C6[AY)|
10C
< —.
R
This concludes the proof of Lemma [(5.211 O
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In Proposition 5.22 we need to work with CT maps that represent both an

(almost) atoroidal outer automorphism and its inverse. We therefore introduce the
following conventions.
Let f': G' — G’ be a CT map representing ¢~ , which exists by Theorem 210
We denote by K’ the constant similar to the constant K given above Lemma
and by Cy the bounded cancellation constant given by Lemma B9 We set C' =
max{K’',Cy'} as in Equation ([@). We denote by G, the invariant subgraph of
G’ such that F(Gy) = F, by Lr the corresponding F-length and by leyy the
corresponding exponential length. Let g’ be the corresponding goodness function.
If w e Fy, we denote by ~,, the corresponding circuit in G'.

We also need a result which shows that the exponential length is invariant by
Fy-equivariant quasi-isometry. In order to prove this, we need some additional
definitions. Let G be a connected (pointed) graph whose fundamental group is
isomorphic to F, and let G be the universal cover of G. Let ¢ € Out(Fy,) be an
exponentially growing outer automorphism.

Let G be the graph obtained from G as follows. We add one vertex vg 4 for every
left class gA, with g € F, and A is a subgroup of F;, such that [A] € A(¢) and
we add one edge between vg4 and a vertex v of G if and only if the vertex v is
contained in the tree T 4,-1. The graph G is known as the electrification Ofé (see
for instance [Bow]).

For a path v in G, we denote by ¥ a lift of v in G. Let ~ be the path in G
constructed as follows. Let ¥ = a1b; ...arbg be the decomposition of 5 such that,
for every ¢ € {1,...,k}, the path b; is contained in some tree TgiAigi—l with g; € Fy,
A; a subgroup of F, such that [4;] € A(¢) and b; is maximal for the property of
being contained in such a tree TgiAigi—l. Then 7 is a path 4 = aj¢; .. . ager where,
for every i € {1,...,k}, the path ¢; is the two-edge path whose endpoints are the
endpoints of b; and the middle vertex of ¢; is vg, 4,.

Note that the path 7 is not uniquely determined. Indeed, it is possible that there
exists ¢ € {1,...,k} such that b; is contained in two distinct trees T4 and T with
[A],[B] € A(¢). However, if 4 and 4’ are two such paths associated with ¥, then
(®) = ().

Note that if v = ab for some reduced edge paths a, b, then

0(R) < 20(a) + 2¢(b).

Indeed, a maximal subpath of v contained in some T4 with [A] € A(¢) is either
contained in a, in b or is a concatenation of paths of a and b contained in T4.
Moreover, if e is an edge of G contained in some T4 with [A] € A(¢), then £(€) = 2.
Thus, the inequality holds.

Proposition 5.22. Let n > 3, let ¢ € Out(Fy) and let f: G — G be a CT map
representing a power of ¢.

(1) There exists a constant By = 1 such that, for every element w € F, with
lewp(Yw) > 0, we have:

1

B_gexp(’yw) < f(%) < BO[SEP('VUJ)-
0
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(2) Let f': G' — G’ be a CT map representing a power of . There exists a
constant B > 0 such that, for every element w € F,, we have:

1 ! !
Eéexp’ ('Yw) < éexp(%u) < Blegy (’Yu;)~

Proof. (1) Recall the definition of the graph G* from just above Lemma We
can turn the graph G* into a metric graph by assigning, to every edge e € EG*,
the length equal to the length of the path pg«(e) in G. Since the graph G* is finite,
there exists a constant B’ such that the diameter of every maximal subtree of G*
is at most B’. Let By = 2B’ + 2.

Let w € Fy. Let v, = aiby...arbx be the decomposition of 7, with a; and
b possibly empty such that, for every i € {1,...,k}, the path b; is a maximal
concatenation of paths in Gp and in Npg and, for every i € {1,...,k} and every
edge e of a;, we have £Jx,(e) = 1. Note that by the definition of the exponential
length we have

ezp ’Yw Z Z az

Let A be a subgroup of F, such that [A] € A(¢). Let i € {1,...,k} and let @ be a
subpath of a; whose lift is contained in T4. By Proposition [3.14] the subpath « is
contained in a concatenation of paths in G pg and in Mpg. Since a; does not contain
any concatenation of paths in Gpg and Npg, the path « is a proper subpath of an
EG INP. By the definition of C' (see Equation (@), we see that £(«) < C. Thus,
we have: £(a;) < C¥(a;) and

k
emp ’Yw < Z

Claim. Let A be a subgroup of F, such that [A] € A(¢). Let 8 be a subpath of
~Yw such that a lift of 3 is contained in T4. There does not exist i € {1,...,k} such
that both 8 nb; and 8 N b; 1 are not reduced to a point.

Proof. Suppose towards a contradiction that such an element ¢ € {1,...,k} exists.
Then a;1 is contained in 5. By the above, the path a;,1 is contained in an EG INP
o. Since both b; and b; 41 are concatenations of paths in G’p, and Npg, the path
a;+1 must contain the initial or the terminal segment of o. Since g is contained in
a concatenation of paths in Gpg and in Npg by Proposition [3.14] the EG INP o
must be contained in 8 and 8 N a;4+1 S 0. This contradicts the maximality of the
paths b; and b, 1. O

Hence f is either contained in b;a;11 or in a;11b;11. Let i € {1,... k} and let
B be a maximal subpath of v, containing edges of a; and such that a lift of g is
contained in some T4 with A a subgroup of F, such that [A] € A(¢). By the claim,
the path a; has a decomposition a; = ¢ d;c; such that ¢ and ¢; are possibly
trivial, lifts of ¢;” and ¢; are contained in trees T4, and T4  with Ay and A_
subgroups of F, such that [A],[A_] € A(¢) and one of the following holds:

(a) B<dj
(b) Bna; # B and Bna;€{c,c;}
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Note that for every i € {1,...,k}, we have ¢(a;) < 6(3) + 4. Then

k k k
Moreover, if 3 is a path Wthh satlsﬁes the hypothesm of the claim, then there exists
at most one i € {1,...,k} such that 8 n b; is not reduced to a point. Therefore, we
see that £(7,) = k. Thus, we have

Cowp(Tu) CZ 0(@;) < C(£(Auw) + 4k) < 5CL(AL).

This proves the first 1nequa11ty of Assertion (1).

We now prove the second inequality. For every ¢ € {1,...,k}, there exists a
unique path b¥ € G* such that p*(b}) = b;. Let i € {1,...,k}. Since G* is a finite
graph, there exist (possibly trivial) reduced paths 37, (5;" and (5* such that:

(i) the path SF is a circuit;
(i) the paths 0* and 6* are contained in maximal trees of G*;

(ili) we have b* = §*3*5* .

By Lemma [B.12(1), the paths p*(d}), p (ﬂ*) and p* (%) are reduced edge paths
of G. By definition of B’, we have 6(5;"), (6;" ) < B’. Since p*(8}) is a circuit which
is a concatenation of paths in Gpg and in Npg, by Proposition B.I14], there exists
a subgroup H; of F}, such that [H;] € A(¢) and the conjugacy classes of elements
of F, represented by p*(8¥) are contained in [H;]. Hence the length of p*/(E) is
bounded by 2 and the length of the path /l;z is bounded by 2+ 2B’ = By. Therefore,
since Leyp(Yw) > 0, we have

M»

(3 Zze a;) + 20(b
=1 =1

k
(40(a;) + 2By) < (2By + 4) Z ai)

= (2Bo + 4)€emp(%u)

This proves Assertion (1).

(2) Let f’ be as in Assertion (2) and let w € F,. Suppose first that Legp(vw) = 0.
Then 7, is a concatenation of paths in G’»; and in Npg. By Proposition [Z5(4)
and Lemma [Z0] there does not exist an edge in a zero stratum which is adjacent
to a concatenation of paths in G pg and in Npg. Since zero strata are contractible
by Proposition [Z5](3), it follows that 7,, is a concatenation of paths in Gpg and in
Npg. By Proposition B.I4] there exists a subgroup A of F, such that [A] € A(¢)
and w € A. Since A(¢) = A(¢~1) by Equation (), by Proposition B.14, we have
Legp (i) = 0. So we may suppose that ez, (V) > 0 and that fegy (fyw) > 0. By
Assertion (1), in order to prove Assertion (2), it suffices to prove that G and G’ are
Fy-equivariantly quasi-isometric. Since A(¢) is a malnormal subgroup system, this
follows from [Bow, Theorem 7.11] and [Hru, proof of Theorem 5.1]. O

Proposition 5.23. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark .10
Let f': G' — G’ be as in the above convention. Let 6 € (0,1) and let W be a
neighborhood of Kpg(¢) in PCurr(Fy, F A A(¢)). There exists ng € N* such that

for every n = ng and every nonperipheral element w € Fy, such that np,) ¢ W, one
of the following holds:

o([f"(yw)]) =6
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g ([f" (7)) = 0.

Proof. Let w € F, be a nonperipheral element such that np,; ¢ W. Let R =
(11932 8C'B2. We use the alternative given by Lemma [.21] with the constants §
and R. If the first alternative of Lemma [5.2]] occurs, then we are done. Suppose
that g([f™(yw)]) < d. There exists ng € N* depending only on f such that for every

n = ng, we have

AL D[ (ru)]) < T 422, ().

By Lemma 514 since g([f"(7w)]) < 0, we have g(v,) < 0. Thus, we see that
iy (Inc(yw)) = (1 = 6)leap(uw)-

Let 4" be the reduced circuit in G such that [f™ (4")] = v,,. Since g(y,) < ¢ and
()] ¢ Kpc(e), by Lemma 5.21] we see that

£ (Inc(ru)) < "~ Lhap (Inel).
We have
Ceap (LF™ (V)])

(
-5
%)%ez;pancm) > 5 U2 e ()
/

B2 10C beap (Vi) = 8011%5&@/(%/1;)'

Fleap(7") = %Q;p(lncw(”))
1
B

AR\

But by Lemma [BT2] we have:
0 o Ine(£70 (7)) < ey (Ine(f™ (7)) < 8C Ly (7,).

exp’
Therefore, we see that
O e[ 70 (+0,)])

g (L™ (w)]) =1- T o) >1-(1-0)=0>0.

By Lemma [5.16] we see that there exists n; > ng depending only on f’ such that
for every n = nq,

g([f"(v)]) = 0.
This concludes the proof. O

Proposition 5.24. Let ¢ € Out(Fy, F) and let f: G — G be as in Remark 15
Let Uy be a neighborhood of Ay (¢), let U be a neighborhood of A_(¢), let V be a
neighborhood of Kpg(¢p). There exists N € N* such that for every n = 1 and every
F ~ A(p)-nonperipheral w € Fy such that np,) ¢ V', one of the following holds

¢Nn(77[w]) eUy or ¢ N" (Nw)) € U-.

Proof. Let § € (0,1) and let w € F, be a nonperipheral element with Nw) V.
By Proposition (£.23] there exists ng € N* such that for every n > ngy, we have
9([f"(vw)]) = d or g’ ([f™(7,,)]) = J. By Lemma[520(1), there exists ny = ng such
that for every n > n1, we have

" (npy) €Us or 67N () € U-
This concludes the proof. O
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Proposition (.24 gives a result of North-South dynamics outside of a neighbor-
hood of Kpg(¢). As Kpg(¢) is empty for a relative expanding outer automorphism
by Lemma B28(1), we can now prove Theorem (.11

Proof of Theorem Bl Let ¢ € Out(Fy, F) be an expanding outer automorphism
relative to F. By Lemma[3.28 we have Kpg(¢) = @. Let U, be a neighborhood of
A4 (¢) and let U_ be a neighborhood of A_(¢). By Proposition [5.24], there exists
N e N* such that for every n > 1 and every nonperipheral element w € Fy, we have

PN () €U or ¢ N () € U

Recall that, by Proposition 215] the rational currents are dense in PCurr(Fy, F A
A(¢)). Hence we can apply [LU2, Proposition 3.3] to see that $?" has generalized
North-South dynamics. Then, using [LU2, Proposition 3.4], we conclude that ¢ has
generalized North-South dynamics. (]

6. NORTH-SOUTH DYNAMICS FOR ALMOST ATOROIDAL RELATIVE OUTER
AUTOMORPHISM

Let n > 3 and let F be a free factor system of F,. Let ¢ € Out(Fy,, F) be an
almost atoroidal outer automorphism (see Definition f3]). Let F < F; < Fp =
{[Fa]} be a sequence of free factor system given in this definition. We use the
convention of Remark (.19 We will show a result of North-South type dynamics
for ¢ (see Theorem [G.4). Note that if A(¢) # {[Fn]} the simplices Ay (¢) are
still defined. Note that, by Lemma B.28(3) and Lemma [5.I8(4), for every current
w e Curr(Fp, F A A()), we have ||p]| 7 > 0. Let Kpg(¢) be the set of polynomially
growing currents of ¢. Note that, combining Lemma [ and Lemma BETI8(5), we
have Kpg(¢) n A4 (¢) = . Let

As(@)={[tn+ (1 =t |t e [0,1], [u] € As(9), [V] € Kpa (), |l m =Vll7 =1}

be the convezes of attraction and repulsion of ¢.

In order to promote a global North-South type dynamics, we need to construct
contracting neighborhoods of ﬁi(gé). To this end, following Clay and Uyanik [CU],
we introduce a notion of goodness for currents of PCurr(Fy, F A A(¢)).

Let f: G — G be as in Remark [5.15] By Lemma [3.22] there exists N € N* such
that, for every edge e of G — G'p¢;, we have leg, ([fV (€)]) = 4C + 1. Let Oy = Cyw
be a constant associated with fV given by Lemma@9 Let L > 0 be such that for
every path 7 of G of length at least L, we have £([f" (v)]) = Cn + 1. The constant
L exists since fV lifts to a quasi-isometry on the universal cover of G. Let P, be
the finite set of paths of the form v = 1 e7vs, where, for every i € {1,2}, the path ~;
has length equal to L, the path e is an edge in G — G'5; and vy1ev2 is a splitting of
v. In Lemma [6)(2), we prove in particular that P, is not empty. We will denote
by 7 the edge e.

Let [u] € PCurr(Fy, F A A(¢)). Recall the definition of ¥y just above Def-
inition By Lemma B28|(1), (2), we have ¢(Kpa(¢)) = Kpa(¢). Hence,
for every current [11] ¢ Kpa(d), we have Uy(é(n)) > 0. Thus, for every current
[1] € PCurr(Fy, F A A(¢p)) — Kpa(¢), we can define the completely split goodness
9(u) of by

glp) = 2 CANS

WEPCS
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Observe that the function g is continuous and that it defines a well-defined contin-
uous function PCurr(Fy, F A A(¢)) — Kpa(¢) — R.

Lemma 6.1. Let f: G — G be as in Remark BI0

(1) Let w e Fy be such that Legp(vw) > 0. We have g([fN (vw)]) = 8(njw))-
(2) For every [u] € Ay (d), we have g([u]) > 0.

Proof. (1) The proof of this assertion is similar to the one of [CUL Lemma 4.9 (2)].
Let v € P.s be such that <~y, n[w]> > 0. Then v € ~,,. For every occurrence of ~ in
Yuw, by the choice of L, Cy and by Lemma A3 the path [V (v,)] contains [V ()],
which has exponential length at least equal to 4Cyx + 1. Therefore, Lemma (.8
implies that the path [V (v,,)] contains a subpath of [~ ()] of exponential length
at least 1 which is a complete factor of [f (v,,)] relative to Gpg. Hence we have:

Ceap ([N (Do r)) =Y () -

YEPes
By Lemma .27, we have

Uo(™ (M) = Leap([F Y ()]) = Wo (e (wy) = Leap (Vo (fw)))-
Therefore, we have
g([/N (v))) = 8(ngu))-

(2) Let [p] € At (o). Since [u] is a convex combination of extremal points of A (¢)
and since for every element v € P, the application (v, . is linear, it suffices to
prove the result for every extremal point of A (¢). So we may suppose that [u] is
an extremal point of A ().

Let G; be the minimal subgraph of G such that F(G;) = F;. Since [p] is
extremal and since ¢|r, is expanding relative to F, by Proposition 4] there exists

an expanding splitting unit ¢ in G; whose initial direction is fixed by f and such
that, for every path v e P(F; A A(¢)), we have

) _ oy @D
(o = p(C() = lim (o))

By Lemma BI8(5), since the path [f™(o0)] is contained in G; and, for every path
v € P(F A A(9)), the above limit is finite, we have

i LD L Gl
now br ([f*(0)]) n—w gerp([fn(a)])'

Hence it suffices to prove that there exists v € P.s such that

. LD
ol (P

Let e be an edge of G — G’5,. Note that, since o is a splitting unit, for every m € N*,
the path [f™(o)] is completely split. Hence an occurrence of e in lim,, o [f™(0)]
is contained in a splitting unit of lim,, ,.[f™(c)] which is either an INP or is
equal to e. By Lemma 3.8 if an INP +/ contains e, there exists v} € Npg such that
e € v, €. For every m € N*, we denote by N(m, e) the number of occurrences of
eor e !in [f™(0)] which are splitting units of [f™(c)] and by EGIN P(e) the set
of all EG INPs containing e. Note that, since the set Npg is finite by Lemma B.5]

so is the limit CATE G
lim SR
o VGEG;VP(e) Leap([f(0)])
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Since for every m € N*, we have
e, [f™@))=Nime)+ > @)D,
YEEGINP(e)

we see that the limit

lim N(m,e)
1 —_—_—mmm

m—=20 Leap([f7(0)])
exists. We claim that there exists an edge e of G — G'p; such that

N(m,e)

lim —————
m=00 Leap([f7(0)])

Indeed, note that, by Lemma B:24] for every m € N*, since [f™(0)] is PG-relative
completely split, we have

lap(F"@)]) = 3] N(me).

e E(G-Ghg)

> 0.

Hence

. N(m,e)
Z lim T = 1,
ceB(Garg) Leap([f™(0)])

which implies the claim.

Let eg be an edge of G — G'p; which satisfies the claim. Since, for every m e N*,
the path [f™(c)] is completely split, if an occurrence of ey or ey ' in [f™(0)] is a
splitting unit and if y is a path in [f™ ()] of the form v = y1e0y2 or v = yieg 72,
then such a decomposition of v is a splitting of v. Thus, if £(v1) = ¢(2) = L, then
the path 7 is in P, and it contains the occurrence of ey. Hence since p = p(o), we
have

: N(ma 60)
lim ——————— = (v, ) > 0.
m=0 Logp([f™(9)]) WGPCSZ,EOQ
Therefore, there exists v € P, such that (y, u) > 0 and g([x]) > 0. O

Lemma 6.2. Let f: G — G be as in Remark BI85 Let Uy be open neighborhoods
of Ay (¢). There exist open neighborhoods Uy < Uy of Ay () such that g1 (UL) <
UL.

Proof. The proof is similar to the one of [CU, Lemma 4.13]. We prove the result
for A, (¢), the proof for A_(¢) being symmetric.

By Lemma [6.1)(2), for every [u] € Ay (¢), we have g([p]) > 0. By compactness
of A4 (¢) and continuity of g, there exists dp > 0 such that, for every p € A, (¢),
we have g(u) = dp. Let § € (0,dp). Let U; be a neighborhood of A (¢). Since
the function § is continuous, there exists an open neighborhood UY < U, of A, (¢)
such that, for every [u] € U, we have g([u]) > 6. Up to taking a smaller U?, we
may suppose that Kpg(¢) n U = & (this is possible since Kpg(¢) is compact
and A (¢) N Kpa(¢) = &). In particular, by Lemma 327 for every nonperipheral
element w € Fy, such that np,) € Uy, we have £eyp(7) > 0.

Let w € Fy, be a nonperipheral element such that np, € Uy . By Lemma [61)(1),
we have

a(Lf™ (n)]) = 8npuy) > 6.
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By Lemma [(B20](1), there exists M > N such that, for every w € F, such that
Nw] € UY, we have ¢M ([np,)]) € UY. Let

M-1 .
UL =[] ¢'@3).
i=0

Since ¢(A1(¢)) = AL (¢) by Proposition 12 the set U/ is an open neighborhood
of A (¢) which is stable by ¢ by density of rational currents (see Proposition 210])
and continuity of ¢. This concludes the proof. |

Lemma 6.3. Let f: G — G be as in Remark BI5l Suppose that the outer auto-
morphism ¢ is almost atoroidal relative to F. Let F < Fy < Fo = {F,} be as in
the beginning of this section. Let i€ {1,...,k — 1} be such that F(G;) = F1. Let
YA/i be open neighborhoods of ﬁi(qﬁ). There exist open neighborhoods f/é of Ai(qﬁ)
contained in Vi such that QSJ—r(‘A/Q c ‘7l£

Proof. The proof follows [CUL Lemma 4.14]. We prove the result for AJF((;S), the
proof for ﬁ,(qﬁ) being symmetric.

Given [p] € PCurr(Fp, F A A(¢)) — Kpa(), a finite set of reduced edge paths
P in G and some € > 0 determine an open neighborhood N([u],P,¢€) of [u] in
PCurr(Fp, F A A(¢)) — Kpa(¢) as follows:

N([p],P,e€)

= {[V] € PCurr(Fy, F A A(9)) — Kpa(¢) ‘V’y eP,

nvyy <%u>‘ - 6}
Uo(v)  Wo(n) -

Since K pg(¢) is compact, if € is small enough, this defines an open neighborhood
of [p] in PCurr(Fp, F A A(¢)). For a subset X < PCurr(Fy, F A A(¢)) — Kpa(9),
let

N(X,P,e) = U N([u],P,e).
[n]ex

For L > 0, let P, (L) be the set of reduced edge paths in G; of length at most
equal to L which are not contained in any concatenation of paths in Gpg,r and
Npg,7,- By Lemma[5.I8(3), the set Py (L) is also the set of reduced edge paths in

G; of length at most equal to L which are not contained in any concatenation of
paths in Gpg and Npg. Let [u] € A, (¢) and let ¢ € [0,1]. Let

Kpa([p],t) ={[(L —=t)v +tu] | [v] € Kpc(d), |vlF = |lulz =1}
Remark that

Ai(9) = U Kpa([u] 1)
[/‘]EAJr((b):te[O’l]

Let € > 0. Let Vpory(e) = [¥5'((—¢,€))]. Tt is clear, by the continuity of ¥y and
Definition of Kpg(9), that (oo Vpeiy(€) = Kpa(¢). Let t € (0,1] and let
[1] € At () be such that ||p]|F = 1. By Lemma[5I8(5), we have ¥g(u) = 1. Let

+€)>TUy(v) >t(l—e)

Note that, since Wo(p) = 1, we have [v] € Vyoy ([1], ¢, €) if for [v] such that ||v|| 7 =
1, we have

Violy([12], £, €) = {[1/] € PCurr(Fp, F A A(qﬁ))‘ o1 Wiz = lullz =1, }

t\I/()(/L)(l + 6) > \Ifo(l/> > t\I’()(/J,)(l — 6).
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Let
VOO([:“]’t) = ﬂ N(Kpg([ﬂ],t),’P.,_(L),E) N VPOZy([/L]vt’G)'

L—00,e—0

Claim 1. For every [u] € Ay(¢) and every t € (0,1], we have Vi, ([u],t) =
Kpa(lpl,t).

Proof. The inclusion Kpa([p],t) € Vo([p],t]) being immediate since Uy is linear
and vanishes on Kpg(¢), we prove the converse inclusion. Let v € Vi, ([u],t). By
Definition of Ay (¢), for every [1'] € A (¢) and for every reduced edge path v
not contained in G;, we have (v, ') = 0. Hence, by Lemma [BEI8(4), the current
[¢] is entirely determined by the cylinder sets determined by reduced edge paths
contained in G; which are not contained in concatenation of paths in Gpg r, and
Npg,7,. By Lemma[5.I8(3), the current [u] is entirely determined by the cylinder
sets determined by reduced edge paths contained in G; which are not contained in
concatenation of paths in Gpg and Npg.

Let v be a reduced edge path which is contained in G; and which is not con-
tained in a concatenation of paths in Gpg and Npg. By Lemma B.28 for every
projective current [v'] € Kpg(¢), the support of v/ is contained in 0%2A(¢). By
Proposition BI4] if g € F; is such that there exists a subgroup A of F}, such that
[A] € A(¢) and g € A, then 7, is a concatenation of paths in Gpg and Npg. In
particular, if 4 is a path of G such that {g**®,g=*} € C(v'), then 7/ is contained
in a concatenation of paths in Gpg and in Npg. In particular, since v is not con-
tained in a concatenation of paths in G pg and in Npg, for every projective current
[V'] € Kpa(o), we have (v,v") = 0.

Suppose that ||v|| 7 = ||ullz, = 1. By Lemma EI8(5), we also have ¥q(u) = 1.
There exists A > 0 such that for every path v which is contained in G; and which
is not contained in a concatenation of paths in Gpg and Npg, we have (y,v) =
(v, Atpy. We claim that v — Aty € Curr(Fy, F A A(¢)) and that [v—Atu] € Kpg(¢).
Indeed, for the first part, it suffices to show that for every path v € P(Fy A A(¢)), we
have (v—MAtp)(C(7)) = 0. This follows from the fact that, for every path v € P(F; A
A(¢)) such that v € G, the path v is not contained in a concatenation of paths in
Gpg and in Npg. Hence we have (v,v) = (v, Atu). Moreover, if v € P(F1 A A(9)),
then we have p(C(7)) = 0. This shows that v — Atu € Curr(Fy, F A A(9)).

We now prove that [v — Atu] € Kpg(¢). Otherwise, by Lemma[3.28] the support
of v — Mtu is not contained in 0%.A(¢). By Proposition B.14] there exists a path
which is not contained in a concatenation of paths in Gpg and in Npg such that

(v, v — Atpy > 0.

Consider a decomposition of v = a1b; ...arb, where, for every j € {1,...,k}, the
path a; is contained in G — G; and, for every j € {1,...,k}, the path b; is contained
in G; with a; and by possibly empty. By Lemma [5I8(1), (2) and Remark (.19 up
to taking a larger path v, we may suppose that by is nontrivial. By Lemma [B.18|(2)
and Remark [5.19] for every j € {1,...,k}, the path a; is contained in Gp¢. Since
~ is not contained in a concatenation of paths in Gpg and Npg, there exists
j € {1,...,k} such that b; is not contained in a concatenation of paths in Gpg
and Npg. But then (b;,v) = (b;, \tp), that is (bj,v — Atp) = 0. By additivity of
v — Atu, we have

(yyv = Aty < (bj, v — Xtpy = 0.
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This contradicts the choice of . Hence [v — Mu] € Kpg(¢p). Therefore, we have
Uo(v — Atp) = 0. Since [v] € Vo ([1],t) and since ||v||F = ||u||F = 1, we see that

Vo (v) = tW¥o(p).
By linearity of ¥y and the fact that ¥o(u) = 1, we have
t=1Wo(u) = Yo(v) = AtWo(p) = At.

Since t > 0 and Uo(p) = 1, we have A = 1. Suppose first that ¢ # 1. Let
V' = 5 (v—tp), so that ['] € Kpa(¢) and [|v/|| 7 = 1. Then [v] = [(1—t)v/+tu] €
Kpg([p],t). Thus, we have Vi, ([u],t) = Kpc([u],t).

Suppose now that ¢t = 1. Then Uy(v) = 1 = |v|]|z. We claim that if v €
P(F1 AA(9)) is such that v(C(7)) > 0, then v € G;. Indeed, otherwise there would
exist an edge e contained in G — G; such that v(C(e)) > 0. By the description
of G — G, given in Lemma BI8(1), (2) and additivity of the current v, we can
choose the edge e € G — G, in such a way that e € Gpg. This would imply that
lv|l= > Po(r) = 1, a contradiction. The claim follows. But, since for every path
v € P(F1 A A(@)) such that v € G4, we have v(C(v)) = u(C(y)), we see that v =
and that v € Kpg([p],1). This concludes the proof of the claim. O

Since A+(¢)) is compact, there exist L. > 0 and € > 0 such that, for every
[1] € Ay (¢) and every t € (0,1], we have

V([M]7t7L76) = N(KPG([M]7t>7P+(L)7€> N V;?Oly([ﬂ']vtve) = f/\;r'

When ¢t = 0, there exists € > 0 such that Ve (€) < Vi Let se (0,1), and let V
be an open neighborhood of Kpg(¢) such that, for every [v] € V with ||v|| 7 = 1,
we have:

(26) \I/()(V) < S.

For every [u] € (N(ﬁ+(qb),73+(L), €) — V) A ﬁ+(¢), there exist [fpory] € Kpa(9),
[fhexp) € A+ (4) and t € (0, 1] such that

(1] = [ttteap + (1 = ) tpoty]-
By Lemma [6.1](2), for every [u] € AL (¢), we have g([u]) > 0. By compactness of
A, (¢) and continuity of g, there exists é; > 0 such that, for every u € A, (¢), we
have §(y1) = 6;. Since N(A,(¢), P(L),e) —V A A (¢) is compact, and since the
function g is continuous, there exists & > 0 such that the set U = g~ *((6}, +0)) is
an open neighborhood of (N(A(¢), P+ (L),€e) — V) n A, (¢) intersecting V. Note
that U n Kpg(¢) = @. We set

V—:— = U V([ul,t, L, €) U Vpory(e) [0 (U w V).
[nleA (¢),te(0,1]
Let 6o and My be the constants given by Lemma [5.20(2) for the above choices of
e > 0 and L > 0. Up to replacing §; with a smaller constant and My with a larger
one, we may suppose that dp and My also satisfy the conclusion of Lemma [5.20(1)
for U as well (where the open neighborhood W of Kpg(¢) needed in Lemma[520(1)
is such that W < V - U).

Claim 2. There exists N € N* such that ¢N(1A/fr) c Afr.
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Proof. Let w € F, be a nonperipheral element such that 7, € V Suppose first

that 7y, € U n Vi Since 1) ¢ Kpa(9), by Lemmam we have leyp (V) > 0.
By Lemma [61)(1), we have:

g([fN(’Yw)]) = ﬁ(n[w]) > 5(,3

By LemmaB.20(1), there exists M > Mo + N such that, for every w € F; such that
Nw] €U N V’ and every n > 1, we have qu"([n[w]]) eUn V’ - V’

Suppose now that np,,; € V .n Vi. By Lemma B28|(3) and Lemma [5I8|(4) for
every projective current [u] € PCurr(Fy, F A A(¢)), we have |u|lx > 0. For a
projective current [u] € PCurr(Fy, F A A(¢)), let

Wo ()
|l 7,

Then, by definition of V' and by Lemma [3.27] we have

\11-7:1 ([/’L]) =

W, (ngug]) = 2(7(33 <.

If [7w]] € Kpa(¢), then since ¢(Kpa(¢)) = Kpa(¢), we are done. Therefore, we
may suppose that [np.1] ¢ Kpa(¢) and, by Lemma B.27 for every n € N*, we have

Leap([f"(7w)]) = 1. Let R > 1 be such that m < e. By Lemma [5.2T]
one of the following assertions holds: e

(1) g([f™(yw)]) = o,
(2) eewp([fM('Yw)]) < %Zewp('yw)'

First assume that Assertion (1) holds. Let [pgnm ([])] € A4 (¢) be the projective
current associated with ¢™ ([w]) given by Lemma [5.20(2). Let

t =W ([nor () ))-
We claim that [1gm [1)] € V([1em ([u])] t, L, €). Indeed, we clearly have
[77¢M([w])] € VZDOIy([,LL(i)M([w])]v t, 6)'

By Lemma [5.20)(2), for every reduced edge path v € Py (L), we have

g un) o D) | _
Wo (1M ([w])) ‘I’o(/iw([w]))

Therefore we have [ngum ([w))] € N (Kpa([tom [u])]s 1), 73+( ),€). The claim follows
by definition of V'([pgnm (fw))]; t, L, €). By deﬁmtlon of VJ’r7 we see that M ([np,)]) =
[ ()] € VL.

Suppose now that Assertion (2) holds. We claim that [1gm ([u])] € Vpory(€). By

Lemma [BI8|(1), (2) and Remark [5.19] the graph G — G; counsists in edges in Gpg.
By Lemma [5.18(6), we have

Cr (Y ()]) = Leap([FY (0)]) = Lr, (V) = Leap(Yuw)-
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Hence we have

eezp w
U, ([ (4,)]) = %

)
M ()

_ Ceap([f
Leap([FM (v)]) + €7, (LM (Yw)]) — Leap([FM (0)])

_ Coap([f M (w)])
geﬂip([fM (’Yw)]) +lF (Yw) — Zeavp('yw)

_ 1 - 1

- LF ('Yw) gewp('}’w) = R(1-0 )Z}' ('Yw)*[eacp('}’w)
LN o (o ) 11 Tc Ry o o

= — < €.
1+ R(ll(;c(?o) Lr, (’Yéu;)l (’l;z)m)p(’)’w) 1+ R(l 50) (1 S)

Note that \I/}ll(((), €)) € Vpoiy(€). Thus, we have

M ([11u1]) = [1gm ()] € Vipoty(€) € V1.

Therefore, by density of the rational currents (see Proposition [2Z15]) and continuity
of ¢, we have ¢™(V]) € V. This proves Claim O

Let
Vi=[] ¢V

Since ¢(A4(¢)) = Ay (¢), the set ‘71,: is an open neighborhood of £+(¢) which is
stable by ¢ by construction. This concludes the proof. O

Theorem 6.4. Letn > 3. Let F < F1 < {F,} be a sequence of free factor systems
such that the extension Fy < {Fy} is sporadic. Let ¢ € Out(Fp, F) be such that ¢
preserves F < Fy < {F,} and ¢|x, is an expanding automorphism relative to F.

Let Ai(qb) be the convexzes of attraction and repulsion of ¢ and Ay(¢) be the
simplices of attraction and repulsion of ¢. Let Uy be open neighborhoods of AL ()
in PCurr(F,, F A A(¢)) and Vi be open neighborhoods of A (¢) in PCurr(Fy, F A
A(9)). There exists M € N* such that for every n = M, we have

" (PCurr(F,, F A A(¢)) — Vi) < Us.

Proof. The proof is similar to [CU, Theorem 4.15]. We replace ¢ by a power so that
¢ satisfies Remark 510l By Lemmas[6.2l and [6:3] we may suppose that ¢(U,) < Uy
and that qb(f/Jr) c V,. Let M be the exponent given by Proposition by
using Uy = Uy and U_ = V = V_. For every current ] € PCurr(Fy, F A
A(9)) — oM (V5), we have ¢M ([1]) € U since ¢~ ([u]) ¢ V_. Therefore, for every
(1] € PCurr(Fy, F A A(¢)) — V_, we have ¢*M ([11]) € U, and for every n > M, we
have ¢2"([u]) € U, since ¢(U,) < U,. Therefore for every n > M, we see that

¢*"(PCurr(F,, F A A(¢)) — V_) S U,

A symmetric argument for ¢~! shows that ¢ acts with generalized North-South
dynamics. By [LU2, Proposition 3.4], we see that ¢ acts with generalized North-
South dynamics. This concludes the proof. O



NORTH-SOUTH DYNAMICS OF RELATIVE AUTOMORPHISMS 261

Corollary 6.5. For every open neighborhood V_ < PCurr(Fp, F A A(9)) of A_,
there exist M € N* and a constant Lo such that, for every current [u] €
PCurr(Fy, F A A(¢)) — V_, and every m = M, we have

o™ (1)l 7 = 3™ M Lo||ull 7.

Proof. Let f: G — G be as in Remark By Lemma [6.1](2), there exist a
constant 6 > 0 and an open neighborhood U of A (¢) such that, for every projective
current [p] € U, we have g([u]) = 6. We first prove Corollary for currents
[] € U. By Proposition 215 it suffices to prove the result for rational currents.
By Lemma [61)(1), since U n Kpg(¢) = @, for every element w € F, such that
[nw)] € U, we have g([f" (7w)]) = 6. By Lemma B5.I6(1) and Lemma B3, there
exists a constant K7 > 0 depending on § such that for every m > N and for every
element w € F,, such that [n,] € U, we have

leap([f™ (yw)]) = TEL(m — N, [f¥ (7)]) = 3"V Kileap (LF™ (70)])-

Since PCurr(F,, F A A(¢))—V_ is compact and since K pa(¢) < V_, by LemmaB2T

and Lemma [3:28(3), there exists a constant K5 > 0 such that for every m > N and
N

for every element w € Fy such that [np,] € U, we have % > Ks. Thus,

we have

Cr(Lf™ (v)]) = Leap([F™ ()])
= 3m7NK1€ewp([fN(’7w)]) = 3n7MK1K2€F([fN('Yw)])-

We set K3 = K1 K5. By compactness of PCurr(Fy, F A A(¢)) and Lemma B2§((3),
there exists L > 0 such that for every current [u] € PCurr(Fy, F A A(¢)), we have

N
% > L. Hence for every m > N and for every element w € Fy such that

[7w]] € U, we have
CE([f™ (vw)]) = 3m7NK3L€]:(’Yw)'
Hence the proof follows when [u] € U.

We now prove the general case. By Theorem [6.4] there exists M; € N* such
that, for all m > M; and [p] € PCurr(Fn, F A A(¢)) — V_, we have ¢"([u]) € U.
Let M = M; + N. By the above, Lemma [3.27, the density of rational currents
(see Proposition 215]) and continuity of ¢, for every current [u] ¢ V_, for every
n = M, we have

o™ ()|l 7 = 3" M K5 L{|¢™ ()| 7
By compactness of PCurr(Fy, F A A(¢)) and Lemma [328(3), there exists L' > 0
My
such that for every current [u] € PCurr(Fp, F A A(¢)), we have W > L.

Tells
Hence for every n > M, we have

o™ ()| = 3" MK LL' ||| 7.
This concludes the proof. O
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