North-South type dynamics of relative atoroidal automorphisms of free groups on a relative space of currents
HTML articles powered by AMS MathViewer
- by Yassine Guerch;
- Conform. Geom. Dyn. 27 (2023), 161-263
- DOI: https://doi.org/10.1090/ecgd/386
- Published electronically: July 5, 2023
- PDF | Request permission
Abstract:
This paper, which is the second of a series of three papers, studies dynamical properties of elements of $\operatorname {Out}(F_{\mathtt n})$, the outer automorphism group of a nonabelian free group $F_{\mathtt n}$. We prove that, for every exponentially growing outer automorphism of $F_{\mathtt n}$, there exists a preferred compact topological space, the space of currents relative to a malnormal subgroup system, on which $\phi$ acts by homeomorphism with a North-South dynamics behavior.References
- Mladen Bestvina, Mark Feighn, and Michael Handel, The Tits alternative for $\textrm {Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517–623. MR 1765705, DOI 10.2307/121043
- Mladen Bestvina, Mark Feighn, and Michael Handel, Solvable subgroups of $\textrm {Out}(F_n)$ are virtually Abelian, Geom. Dedicata 104 (2004), 71–96. MR 2043955, DOI 10.1023/B:GEOM.0000022864.30278.34
- Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR 1147956, DOI 10.2307/2946562
- B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, DOI 10.1142/S0218196712500166
- Matt Clay and Caglar Uyanik, Atoroidal dynamics of subgroups of $\textrm {Out}(F_N)$, J. Lond. Math. Soc. (2) 102 (2020), no. 2, 818–845. MR 4171436, DOI 10.1112/jlms.12339
- Daryl Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), no. 2, 453–456. MR 916179, DOI 10.1016/0021-8693(87)90229-8
- Rémi Coulon, Examples of groups whose automorphisms have exotic growth, Algebr. Geom. Topol. 22 (2022), no. 4, 1497–1510. MR 4495664, DOI 10.2140/agt.2022.22.1497
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. MR 830040, DOI 10.1007/BF01388734
- François Dahmani and Suraj Krishna M S, Relative hyperbolicity of hyperbolic-by-cyclic groups, Groups Geom. Dyn. 17 (2023), no. 2, 403–426. MR 4584670, DOI 10.4171/ggd/703
- Mark Feighn and Michael Handel, The recognition theorem for $\textrm {Out}(F_n)$, Groups Geom. Dyn. 5 (2011), no. 1, 39–106. MR 2763779, DOI 10.4171/GGD/116
- Vincent Guirardel and Camille Horbez, Algebraic laminations for free products and arational trees, Algebr. Geom. Topol. 19 (2019), no. 5, 2283–2400. MR 4023318, DOI 10.2140/agt.2019.19.2283
- Damien Gaboriau and Gilbert Levitt, The rank of actions on $\textbf {R}$-trees, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 5, 549–570. MR 1341661, DOI 10.24033/asens.1725
- Y. Guerch, Currents relative to a malnormal subgroup system, Ann. Fac. Sci. Toulouse Math. (6), To appear, Preprint, arXiv:2112.01112.
- Y. Guerch, Polynomial growth and subgroups of $\mathrm {Out}(F_n)$, Preprint, arXiv:2204.02700.
- Radhika Gupta, Relative currents, Conform. Geom. Dyn. 21 (2017), 319–352. MR 3713836, DOI 10.1090/ecgd/314
- Radhika Gupta, Loxodromic elements for the relative free factor complex, Geom. Dedicata 196 (2018), 91–121. MR 3853630, DOI 10.1007/s10711-017-0310-5
- Michael Handel and Lee Mosher, Subgroup decomposition in $\textrm {Out}(F_n)$, Mem. Amer. Math. Soc. 264 (2020), no. 1280, vii+276. MR 4089372, DOI 10.1090/memo/1280
- Harald A. Helfgott, Growth in groups: ideas and perspectives, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 3, 357–413. MR 3348442, DOI 10.1090/S0273-0979-2015-01475-8
- G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856. MR 2684983, DOI 10.2140/agt.2010.10.1807
- Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author. MR 1195787, DOI 10.1090/mmono/115
- Ilya Kapovich, Currents on free groups, Topological and asymptotic aspects of group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 149–176. MR 2216713, DOI 10.1090/conm/394/07441
- Gilbert Levitt, Counting growth types of automorphisms of free groups, Geom. Funct. Anal. 19 (2009), no. 4, 1119–1146. MR 2570318, DOI 10.1007/s00039-009-0016-4
- Gilbert Levitt and Martin Lustig, Irreducible automorphisms of $F_n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59–72. MR 1955207, DOI 10.1017/S1474748003000033
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- Martin Lustig and Caglar Uyanik, Perron-Frobenius theory and frequency convergence for reducible substitutions, Discrete Contin. Dyn. Syst. 37 (2017), no. 1, 355–385. MR 3583482, DOI 10.3934/dcds.2017015
- Martin Lustig and Caglar Uyanik, North-south dynamics of hyperbolic free group automorphisms on the space of currents, J. Topol. Anal. 11 (2019), no. 2, 427–466. MR 3958928, DOI 10.1142/S1793525319500201
- Avinoam Mann, How groups grow, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
- Reiner Martin, Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–University of California, Los Angeles. MR 2693216
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- John McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583–612. MR 800253, DOI 10.1090/S0002-9947-1985-0800253-8
- Martine Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156, DOI 10.1007/BFb0081890
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 476875
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- Caglar Uyanik, Generalized north-south dynamics on the space of geodesic currents, Geom. Dedicata 177 (2015), 129–148. MR 3370027, DOI 10.1007/s10711-014-9982-2
- Caglar Uyanik, Hyperbolic extensions of free groups from atoroidal ping-pong, Algebr. Geom. Topol. 19 (2019), no. 3, 1385–1411. MR 3954286, DOI 10.2140/agt.2019.19.1385
Bibliographic Information
- Yassine Guerch
- Affiliation: Laboratoire de mathématique d’Orsay, UMR 8628 CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
- MR Author ID: 1506087
- Email: yassine.guerch@ens-lyon.fr
- Received by editor(s): April 8, 2022
- Received by editor(s) in revised form: March 10, 2023
- Published electronically: July 5, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Conform. Geom. Dyn. 27 (2023), 161-263
- MSC (2020): Primary 20E05, 20E08, 20E36, 20F65
- DOI: https://doi.org/10.1090/ecgd/386
- MathSciNet review: 4611188