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SYMMETRIC CUBIC LAMINATIONS

ALEXANDER BLOKH, LEX OVERSTEEGEN, NIKITA SELINGER, VLADLEN TIMORIN,
AND SANDEEP CHOWDARY VEJANDLA

Abstract. To investigate the degree d connectedness locus, Thurston [On
the geometry and dynamics of iterated rational maps, Complex Dynamics, A
K Peters, Wellesley, MA, 2009, pp. 3–137] studied σd-invariant laminations,
where σd is the d-tupling map on the unit circle, and built a topological model
for the space of quadratic polynomials f(z) = z2+c. In the spirit of Thurston’s
work, we consider the space of all cubic symmetric polynomials fλ(z) = z3 +
λ2z in a series of three articles. In the present paper, the first in the series, we
construct a lamination CsCL together with the induced factor space S/CsCL
of the unit circle S. As will be verified in the third paper of the series, S/CsCL

is a monotone model of the cubic symmetric connectedness locus, i.e. the space
of all cubic symmetric polynomials with connected Julia sets.

1. Introduction

A fundamental problem in complex dynamics is to understand the space of com-
plex polynomials of degree d > 1 modulo affine conjugacy. The connectedness locus
Md, i.e., the set of all such polynomials with connected Julia sets, has been exten-
sively studied for the last 40 years. Major progress has been made for d = 2 but
much less is known for d > 2 (see [BOPT17,BOPT19,Thu19]). Thurston [Thu85]
introduced geometric invariant laminations as a way to provide models for con-
nected Julia sets and a model for M2. A lamination L is a compact set of chords,
called leaves, of the unit circle S in the complex plane C with the property that no
two leaves intersect inside the open unit disk D.

Fix d ≥ 2. Roughly speaking, a lamination is invariant if it is preserved by the
map σd(z) = zd on the unit circle S (see Definition 2.10). Thurston constructed
the space QML of all invariant quadratic laminations and showed that QML can
be viewed as a lamination such that for the quotient space S/QML = MComb

2 there
exists a continuous surjective map π : ∂M2 → MComb

2 . This map is monotone,
i.e., all point preimages are connected (see Definition 2.12) and is conjecturally a
homeomorphism. Thus, MComb

2 is a model of M2. No such models are known in
case d > 2.

In this paper we aim at increasing our understanding of M3 by studying a
particular slice thereof, namely the slice M3,s consisting of all symmetric cubic
polynomials, i.e., polynomials P with P (−z) = −P (z). These polynomials can be
written in the form P (z) = z3 + λz and correspond to laminations invariant under
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Figure 1. The parameter space of symmetric cubic polynomials
M3,s on the left and the Cubic symmetric Comajor Lamination
CsCL on the right.

180◦ rotation about the origin. Following Thurston, we provide a model CsCL for
the space of such symmetric cubic invariant laminations and show that this model
is also a lamination (see Figure 1). Here CsCL stands for Cubicsymmetric Comajor
Lamination. One of the main results of this paper (Theorem 6.9) states that this
combinatorially defined collection of chords in the unit disk is indeed a lamination
and, moreover, it defines an equivalence relation on the unit circle.

Even though the results we obtain are similar to those used in the quadratic
case, there are a lot of interesting distinctions. For example, minors (see Section 5)
of different laminations may cross in D, and the first return maps on finite periodic
gaps do not have to be transitive. We show in a subsequent paper [BOTSV3] that
there exists a monotone map π : ∂M3,s → MComb

3,s from the boundary of M3,s to
the quotient space S/CsCL. We also develop in [BOTSV2] an algorithm allowing
one to explicitly construct CsCL; the algorithm is related to the famous Lavaurs
algorithm [Lav86].

The connectedness locus in the entire (complex 2D) parameter space of cubic
polynomials is known to be not locally connected [Lav89]. Roughly speaking, this
is an instance of complexity created by two independently varying critical points.
Since, in the symmetric case under consideration, the two critical orbits are bound
together, the behavior of M3,s is closer to that of the Mandelbrot set than to that
of the full cubic connectedness locus. In particular, there are the same reasons
to believe that M3,s is locally connected as those behind the conjectural local
connectivity of M2.

2. Laminations: classical definitions

2.1. Laminational equivalence relation. Let C be the complex plane and Ĉ

be the Riemann sphere. Let D ⊂ C be the open unit disk and P be a complex
polynomial of degree d ≥ 2.
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Definition 2.1 (The Julia set). The filled Julia set K(P ) of a polynomial P is the
set of all points z whose orbits do not diverge to infinity under iterations of P . The
Julia set of P is J(P ) = ∂K(P ).

Remark 2.2.

(1) We have P−1(J(P )) = P (J(P )) = J(P ).
(2) The Julia set is the closure of the set of repelling periodic points.

Suppose that the Julia set J(P ) is connected. If f : X → X and g : Y → Y are
self-mappings of topological spaces and there is a continuous surjection h : X → Y
with h◦f = g◦h then f is said to be semi-conjugate to g and the sets h−1(y), where
y ∈ Y are said to be fibers of h. If h is a homeomorphism, f is said to be conjugate
to g. Suppose that P is monic, i.e., the leading term zd comes with coefficient 1.
By the Böttcher theorem, there exists a conformal map Ψ : Ĉ \D → Ĉ \K(P ) that

conjugates θd(z) = zd on Ĉ \ D and P |
Ĉ\K(P ), i.e. P ◦Ψ = Ψ ◦ θd; we choose Ψ so

that Ψ′(∞) > 0.

Ĉ \ D Ĉ \ D

Ĉ \K(P ) Ĉ \K(P )

�θd

�
Ψ

�
Ψ

�P

From now on (through the end of Section 2.1), let us assume that the Julia
set J(P ) is connected and locally connected. Then Ψ extends continuously to the
boundary of the unit disk. Denote this extension by Ψ. Let us identify the unit
circle S with R/Z. With this identification, σd(t) = dt mod 1. Define an equivalence
relation ∼P on S by setting x ∼P y if and only if Ψ(x) = Ψ(y).

Since Ψ conjugates θd and P , the map Ψ semi-conjugates σd and P |J(P ). Equiv-
alence classes of ∼P have pairwise disjoint convex hulls. The topological Julia
set S/ ∼P= J(∼P ) is homeomorphic to J(P ), and the topological polynomial
f∼P

: J(∼P ) → J(∼P ), induced by σd, is topologically conjugate to P |J(P ).

S/ ∼P S/ ∼P

J(P ) J(P )

�f∼P

�

Ψ

�

Ψ

�P

An equivalence relation ∼ on the unit circle, with similar properties to those of
∼P above, can be introduced abstractly without any reference to the Julia set of a
complex polynomial.

Definition 2.3 (Laminational equivalence relation). An equivalence relation ∼
on the unit circle S is called a laminational equivalence relation if it satisfies the
following properties:

(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls in D of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.
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A class of equivalence of ∼ is called a ∼-class. For a set A ⊂ S let H(A) be its
convex hull. A chord ab is a segment connecting points a, b ∈ S. An edge of H(A)
is a chord contained in the boundary of H(A). An edge of a ∼-class g is an edge of
H(g). Given points a, b ∈ S, denote by (a, b) the positively oriented open arc in S

from a to b.

Definition 2.4 (Invariance). A laminational equivalence relation ∼ is (σd -)inva-
riant if:

(I1) ∼ is forward invariant : for a ∼-class g, the set σd(g) is a ∼-class;
(I2) ∼ is backward invariant : for a ∼-class g, its preimage σ−1

d (g) = {x ∈ S :
σd(x) ∈ g} is a union of ∼-classes;
(I3) for any ∼-class g with more than two points, the map σd|g : g → σd(g) is a
covering map with positive orientation, i.e., for every connected component (s, t) of
S \ g the arc (σd(s), σd(t)) of the unit circle is a connected component of S \ σd(g).

2.2. Invariant laminations. In Section 2.1, we defined laminational equivalence
relations based on the identifications of a polynomial map on its locally connected,
and therefore connected, Julia set. A geometric counterpart is the concept of a
lamination.

Definition 2.5. A lamination L is a set of chords in the closed unit disk D, called
leaves of L, which satisfies the following conditions:

(L1) leaves of L do not cross; (L2) the set L∗ = ∪�∈L� is closed.

If (L2) is not assumed then L is called a prelamination.

For brevity, in what follows various definitions are given only for laminations
with the understanding that they can be given, verbatim, for prelaminations as
well.

We say that two distinct chords cross each other if they intersect inside the open
disk D; such chords are also said to be linked. A degenerate chord is a point on
S. Given a chord � = ab ∈ L, let σd(�) be the chord with endpoints σd(a) and
σd(b). If σd(a) = σd(b), we call � a critical leaf ; the image of a critical leaf is thus
degenerate, by definition. Let L∗ = ∪�∈L� and σ∗

d : L∗ → D be the linear extension
of σd over all the leaves in L. It is not hard to check that σ∗

d is continuous. Also,
σd is locally one-to-one on S, and σ∗

d is one-to-one on any given non-critical leaf.
Note that if L is a lamination (which includes all points of S as degenerate leaves),
then L∗ is a continuum. For simplicity in what follows we often use the notation
σd for σ∗

d .

Definition 2.6 (Gap). A gap G of a lamination L is the closure of a component of
D\L∗; its boundary leaves are called edges (of the gap). Also, given a closed subset
of S we will call its convex hull a gap, too, even in the absence of a lamination.

For each set A ⊂ D, denote A∩S by V(A) and call the elements of V(A) vertices
of G. If G is a leaf or a gap of L, then G coincides with the convex hull of V(G).
A gap G is called infinite (finite) if and only if V(G) is infinite (finite). A gap G
is called a triangular gap (or, simply, a triangle) if V(G) consists of three points.
Infinite gaps G, with uncountable V (G), are also called Fatou gaps. Given points
a, b ∈ ∂G, let (a, b)G be the positively oriented open arc in ∂G from a to b.

The so-called barycentric construction (due to Thurston [Thu85]) yields a fur-
ther extension σ̄d of σd onto the entire closed disk D such that σ̄d(G) equals the
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convex hull of σd(V(G)) (the map σ̄d sends barycenters to barycenters and then
extends linearly on segments connecting barycenters to the boundaries). Again, for
simplicity in what follows we often use notation σd for σ̄d.

Definition 2.7. Let L be a lamination. The equivalence relation ∼L induced by L
is defined by declaring that x ∼L y if and only if there exists a finite concatenation
of leaves of L joining x to y.

Definition 2.8 (q-lamination). A lamination L is called a q-lamination if the
equivalence relation ∼L is laminational and L consists of the edges of the convex
hulls of ∼L-classes (called ∼L-sets or L-sets).

The notion of a clean lamination from [Thu85] is equivalent to the notion of a
q-lamination.

Remark 2.9. Since a q-lamination L consists of the edges of the convex hulls of
∼L-classes, if two leaves of L share an endpoint, they must be adjacent edges of a
common finite gap. It follows that no more than two leaves of a q-lamination can
share an endpoint.

Definition 2.10 (Invariant (pre)laminations). A (pre)lamination L is (σd-)inva-
riant if,

(D1) L is forward invariant : for each � ∈ L either σd(�) ∈ L or σd(�) is a point in
S, and
(D2) L is backward invariant :
(1) For each � ∈ L there exists a leaf �′ ∈ L such that σd(�

′) = �.
(2) For each � ∈ L such that σd(�) is a non-degenerate leaf, there exist d disjoint

leaves �1, . . . , �d in L such that � = �1 and σd(�i) = σd(�) for all i.

Note that, by definition, leaves are closed in the plane, and leaves being disjoint
means in particular that they have no common points on the boundary of the disk.

Definition 2.11 (Siblings). Two chords are called siblings if they have the same
image. Any d disjoint chords with the same non-degenerate image are called a
sibling collection.

Definition 2.11 deals with chords and does not assume the existence of any
lamination at all; the definition itself does not require iterations.

Definition 2.12 (Monotone map). Let X, Y be topological spaces and f : X → Y
be continuous. Then f is said to be monotone if f−1(y) is connected for each y ∈ Y .

It is known that if f is monotone and X is a continuum then f−1(Z) is connected
for every connected Z ⊂ f(X).

Definition 2.13 (Gap-invariance). A lamination L is gap invariant if for each gap
G, its image σd(G) is either a gap of L, or a leaf of L, or a single point. In the
first case, we also require that σd can be extended continuously to the boundary
of G as a composition of a monotone map and a covering map onto the boundary
of the image gap, with positive orientation. In other words, as you move through
the vertices of G in clockwise direction around ∂G, their corresponding images in
σd(G) must also move clockwise in ∂σd(G).

Definition 2.14 (Degree). Suppose that both G and σd(G) are gaps. The topo-
logical degree of the extension of σd to ∂G is called the degree of G. In other words,



SYMMETRIC CUBIC LAMINATIONS 269

if every leaf of σd(G), except, possibly, for finitely many leaves, has k preimage
leaves in G, then the degree of the gap is k. A gap G is called a critical gap if
either k > 1, or σd(G) is not a gap (a leaf or a point).

The next two results are proved in [BMOV13].

Theorem 2.15. Every σd-invariant lamination is gap invariant.

Theorem 2.16. The closure of an invariant prelamination in D is an invariant
lamination. The space of all σd-invariant laminations is compact.

It is convenient to consider some objects that normally come with a lamination
(e.g., gaps), as “stand alone” objects. Given the convex hull G of a closed set T ⊂ S

we define σd(G) to be the convex hull of σd(T ). This allows us to define the sets
σn
d (G) for all n ≥ 0.

Definition 2.17. A convex hull G of a closed set T ⊂ S is said to be a stand alone
gap (of σd) if the following holds.

(1) No chord in σi
d(G) crosses a chord in σj

d(G) for i �= j.
(2) For every i, if the set σi

d(G) has non-empty interior, then we require that
σd|∂σi−1

d
(G) can be represented as a composition of a monotone map and a covering

map onto the boundary of σi
d(G), with positive orientation. In other words, as you

move through the vertices of σi−1
d (G) in clockwise direction around ∂σi−1

d (G), their
corresponding images in σi

d(G) must also move clockwise.

2.3. Specific properties of general invariant laminations. Here are basic def-
initions concerning periodic and preperiodic leaves/gaps.

Definition 2.18 (Preperiodic points). A point x ∈ S is said to be preperiodic if

σm+k
3 (x) = σm

3 (x) for some m ≥ 0, k ≥ 1. The smallest m and k that satisfy
the above equation are called the preperiod and the period of x, respectively. A
preperiodic point x is either strictly preperiodic if m > 0, or periodic (of period k)
if m = 0.

(1) Preperiodic leaves. Let � be a leaf of a cubic lamination L. The leaf � is prepe-
riodic (of preperiod m and period k), if the endpoints a and b of � are preperiodic of
preperiod m and (minimal) period k or 2k (in the latter case, a and b are required
to lie in the same cycle). The leaf � is strictly preperiodic if m > 0, or periodic if
m = 0.
(2) Preperiodic gaps. Let G be a gap of a cubic lamination L. The gap G is said

to be preperiodic if σm+k
3 (G) = σm

3 (G) for some m ≥ 0, k ≥ 1. The smallest m
and k that satisfy the above equation are called the preperiod and the period of G,
respectively. The gap G is either preperiodic if m > 0, or periodic if m = 0. A
periodic gap of period 1 is also called fixed or invariant.
(3) Precritical gaps. Similarly, we say that G is a precritical gap, if σk

3 (G) is critical
gap for some k ≥ 0.

We need the following result of Jan Kiwi [Kiw02].

Theorem 2.19. Let L be a σd-invariant lamination. Then any infinite gap of L
is (pre)periodic. For any finite periodic gap G of L its vertices belong to at most
d − 1 distinct cycles except when G is a fixed return d-gon. In particular, a cubic
lamination cannot have a fixed return n-gon for n > 3. Moreover, if all images of
a k-gon G with k > d have at least d+ 1 vertices then G is preperiodic.
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We will also need Theorem 2.20.

Theorem 2.20 ([BOPT20, Lemma 2.31]). Let G be an infinite periodic gap of
period n and set K = ∂G. Then σn

d |K : K → K is the composition of a covering
map and a monotone map of K. If σn

d |K is of degree one, then either statement
(1) or statement (2) below holds.

(1) The gap G has countably many vertices, finitely many of which are periodic
of the same period, and the rest are preperiodic. All non-periodic edges of
G are (pre)critical and isolated. There is a critical edge with a periodic
endpoint among the edges of gaps from the orbit of G.

(2) The map σn
d |K is monotonically semi-conjugate to an irrational circle ro-

tation so that each fiber of this semiconjugacy is a finite concatenation of
(pre)critical edges of G. Thus, there are critical leaves (edges of some im-
ages of G) with non-preperiodic endpoints.

In particular, if all critical sets of a lamination are non-degenerate finite polygons
and there are no critical leaves then the lamination has no infinite gaps.

Proof. All claims of the theorem are proven in Lemma 2.31 [BOPT20], except for
the last claim of (1), and the last claim of the entire lemma. The first of these
claims is about the existence of a critical edge with a periodic endpoint among
edges of gaps from the orbit of G. We may assume that G is invariant. Consider
σd|∂G. This is a degree one map of the Jordan curve of rational rotation number,
and well-known properties of such maps imply that it has at least one periodic
point attracting from one side. Since σd is expanding on S, then there is a critical
edge of G with a periodic endpoint as claimed.

Let us prove the last claim of the lemma. Suppose that all critical sets of L
are non-degenerate finite polygons, and yet U is an infinite gap of L. By Theorem
2.19 we may assume that U is n-periodic. If σn

3 |∂U is of degree greater than 1
then for some i we must have σ3|∂σi

3(U) k-to-1 with k > 1, a contradiction with

the assumption that all critical sets of L are finite. Now, suppose that σn
3 |∂U is of

degree one. Then by (1) and (2) there exists a critical leaf, a contradiction. �
A chord � in a gap G is a diagonal of G if � �⊂ ∂G. The gaps described in

Theorem 2.20 are called caterpillar in case (1) and Siegel in case (2).

Lemma 2.21. If G is a gap such that σd|G is of degree one, � = ab is a diagonal of
G, and � does not share a vertex with a critical edge of G, then σd(�) is a diagonal
of σd(G). A diagonal of a Siegel gap eventually collapses to a point or has crossing
images. A diagonal of a caterpillar gap such that its iterated images are disjoint
from critical leaves will eventually map to a periodic diagonal.

Proof. Since σd|G is of degree one, σd(�) is not a diagonal of σd(G) only if the arc,
say, [a, b]G = I collapses onto σd(�). Thus, I is a finite concatenation of edges
�1 = ax, . . . of G, and the endpoints of the edges map to σd(a) or to σd(b). If
σd(x) �= σd(a) then σd(x) = σd(b); since σd|G is of degree one, then all remaining
edges of G contained in I are critical. So, if � does not share a vertex with a critical
edge of G, then this is impossible and σ3(�) remains a diagonal of σ3(G).

Suppose that G is a Siegel gap of period j. Assume that X is a diagonal of G
that never collapses to a point. Then the monotone map that collapses edges of G
to points and semi-conjugates σj

3|∂G to an irrational rotation ξ will project X to
a non-degenerate chord � of S (otherwise X connects points connected by a finite
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concatenation of a few precritical edges of G which implies that X does eventually
collapse to a point). This yields that there is an iterate of ξ under which � maps to
a chord that crosses �, implying that some iterated images of X cross.

Consider now a diagonal X of a caterpillar gap G such that the iterated images
of X are disjoint from critical leaves. Then by the first claim of the lemma all
images of X remain diagonals of the corresponding images of G. The claim now
follows from Theorem 2.20. �

From now on L denotes a cubic (i.e., σ3-invariant) lamination. A leaf � is in-

variant (under σk
3 ) if σk

3 (�) = �. The 4 invariant leaves of σ3 are 0 1
2 ,

1
4
3
4 ,

1
8
3
8 and

5
8
7
8 . (Here, we use the identification between S and R/Z, so that, for example, 0 1

2
is the horizontal diameter.) The first leaf has fixed endpoints, the other three flip

under the action of σ3, and only 0 1
2 and 1

4
3
4 contain the center of S.

Define the length ‖ab‖ of a chord ab as the shorter of the lengths of the arcs in
S = R/Z with the endpoints a and b (see Figure 2). The maximum length of a
chord is 1

2 . We divide leaves into three categories by their length.

0 1
2

1
2

1
6

1
3

( 14 ,
1
4 )

y = |3x− 1|y = 3x

Figure 2. Graph of the length function Γ. Length ‖�‖ of a leaf �
is on x-axis and length Γ(‖�‖) of the image leaf σ3(�) is on the
y-axis.

Definition 2.22. A short leaf is a leaf � such that 0 < ‖�‖ < 1
6 ,

a medium leaf is a leaf � such that 1
6 ≤ ‖�‖ < 1

3 and

a long leaf is a leaf � such that 1
3 < ‖�‖ ≤ 1

2 .

Critical leaves are leaves of length 1
3 . Let γ(t) be the distance from t ∈ R to the

nearest integer. Call Γ(t) = γ(3t) the length function.

Remark 2.23.

(1) For any leaf �, we have ‖σ3(�)‖ = Γ(‖�‖).
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(2) If 0 < ‖�‖ < 1
4 , then ‖σ3(�)‖ > ‖�‖; if ‖�‖ = 1

4 , then ‖σ3(�)‖ = ‖�‖; if
1
4 < ‖�‖ < 1

2 , then ‖σ3(�)‖ < ‖�‖; if ‖�‖ = 1
2 , then ‖σ3(�)‖ = ‖�‖.

(3) For leaves of length bigger than 1
4 , the closer the leaves get to a critical chord

(of length 1
3 ) of the circle, the shorter their images get.

(4) For a non-degenerate chord �, there is n ≥ 0 such that ‖σn
3 (�)‖ ≥ 1

4 .

Definition 2.24. A leaf � is closer to criticality than a leaf �′ if ‖�‖ is closer to 1
3

than ‖�′‖. This naturally defines leaves closest to criticality in a specified family of
leaves (observe that in closed families, closest leaves must exist, yet if a family of
leaves is not closed, then its closest leaf does not have to exist).

Lemma 2.25. Any point x ∈ (0, 12 ) that does not eventually map to 1
4 under Γ,

eventually maps to ( 14 ,
5
12 ). For a Γ-periodic but non-fixed point t the closest to 1

3

iterated Γ-image of t belongs to ( 14 ,
5
12 ).

Proof. Clearly, Γ( 5
12 ) = Γ( 14 ) =

1
4 . If x ∈ ( 5

12 ,
1
2 ) then x will eventually map into

( 14 ,
5
12 ). Now, if x ∈ (0, 14 ) then x will be eventually mapped to ( 14 ,

1
2 ] which, by the

previous sentence, implies the desired. �

Lemma 2.26. For a lamination L, exactly one of the following holds:

(1) chords 0 1
2 ,

1
6
1
3 ,

2
3
5
6 are leaves of L;

(2) chords 1
4
3
4 ,

11
12

1
12 ,

5
12

7
12 are leaves of L;

(3) no leaves of L have length 1
2 or 1

6 .

Proof. If L has a leaf � of length 1
2 , then σ3(�) is of length 1

2 . Since � and σ3(�)

must not cross, we see that σ3(�) = �. Thus, either � = 0 1
2 (which by properties of

laminations forces leaves 1
6
1
3 and 2

3
5
6 ), or � =

1
4
3
4 (which forces leaves 11

12
1
12 ,

5
12

7
12 ).

This completes the proof. �

3. Symmetric cubic laminations

3.1. Odd cubic polynomials. Let o be the origin in C; this is the point (0, 0) in
the Cartesian coordinate system. We write o instead of 0 in order not to confuse o
with the point of the unit circle whose argument is 0.

A cubic polynomial f is odd if f(−z) = −f(z). If f is odd, then f(z) =
az3 + bz is linearly conjugate to a polynomial Pλ(z) = z3 + λz. Assume that
J(Pλ) is connected and locally connected and consider the σ3-invariant laminational
equivalence relation ∼Pλ

=∼ (see Section 2.1). On top of satisfying the axioms (I1)
- (I3) of Definition 2.4, the laminational equivalence relation ∼ is such that for
any ∼-class g the set −g is a ∼-class. Thus, the relation ∼ is invariant with
respect to the rotation τ by 180

◦
about o, and τ (A) = −A (we use both notations

interchangeably). We study all σ3-invariant laminations that satisfy this additional
property. Observe that σ3 and τ commute. Recall that we identify the unit circle
S with R/Z and parameterize it as [0, 1). In this parametrization, the coordinates
of the two endpoints of a diameter of S differ by 1

2 , and the endpoints of � and −�

differ by 1
2 , too.

Definition 3.1 (Symmetric laminations). A σ3-invariant lamination L is called a
symmetric (cubic) lamination if (D3) � ∈ L implies −� ∈ L.
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From now on by a “symmetric lamination” we mean a “symmetric cubic lam-
ination”, by a “symmetric set” we mean a τ -invariant set, and by L we mean a
symmetric cubic lamination.

3.2. Symmetric laminations: basic properties.

Definition 3.2. A central symmetric gap/leaf G is a τ -invariant gap/leaf G; evi-
dently, such a set G contains o (in its interior if G is a gap).

Lemma 3.3. The following holds.

(1) There is an invariant central symmetric gap or leaf CG(L) of L containing
o. If CG(L) is a leaf, then case (1) or (2) of Lemma 2.26 holds. If CG(L)
is a gap, then two symmetric edges of CG(L) have length ≥ 1

3 while the

other edges have length < 1
6 .

(2) There are exactly two distinct critical sets of L.
(3) Rotating L by 90

◦
about o results in another invariant symmetric lamina-

tion.

Proof. (1) Set aside cases (1) and (2) of Lemma 2.26. Choose a gap G containing
o in its interior. Clearly τ (G) is a gap of L too, thus τ (G) = G, and G contains
diagonal diameters. It follows that σ3(G) also has diagonal diameters and hence
σ3(G) = G. Consider now how the length of circle arcs that are components of
S \G changes as we apply σ3. If an arc (a, b) like that is of length less than 1

3 , then
it maps one-to-one onto the arc (σ3(a), σ3(b)) and its length triples. Hence, there
exists an arc-component of S \ G of length greater than or equal to 1

3 . The rest
easily follows.

(2) By (1), two symmetric circle arcs of length at least 1
3 are subtended by edges

of CG(L). They must contain two distinct critical sets of L.
(3) This claim follows from Definition 2.10 and property (D3) of Definition 3.1

(that is, symmetry of L). �

From now on CG(L) denotes the invariant central symmetric gap of L. Let
M = ab be an edge of CG(L) of length ‖M‖ ≥ 1

3 (see Lemma 3.3) and the circle
arc H = (a, b) contains no vertices of CG(L). A sibling M ′ of M with endpoints in
H is medium (M is long). Finally, observe that, by Definition 2.11, a non-critical
leaf � of L has 2 siblings, and two sibling leaves of the same kind have the same
length. Lemma 3.4 is straightforward and left to the reader.

Lemma 3.4. The possibilities for chords in a sibling collection are

(sss): all chords are short;
(mmm): all chords are medium;
(sml): one leaf is short, one medium, and one long.

A sibling collection is completely determined by its type and one leaf.

If a sibling collection has a long leaf, the collection is of type (sml). Sibling
collections of type (sss) of (mmm) partition the disk into 4 components (a “central”
one and three “side” ones that can all be obtained from each other by rotations by
1
3 and 2

3 ) while collections of type (sml) partition the disk into three components
with no rotational symmetry.
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Definition 3.5. Suppose that � = ab is a non-critical chord which is not a diameter

and the arc (a, b) is shorter than the arc (b, a). Denote the chord (a+ 1
3 )(b−

1
3 ) by

�′ and the chord (a+ 2
3 )(b−

2
3 ) by �′′.

As σ3(�
′) = σ3(�

′′) = σ3(�), {�, �′, �′′} is a sibling collection. For a long/medium
non-critical chord � it follows that �′ is long/medium and �′′ is small; if, moreover,
� ∈ L (recall that L is a symmetric lamination), its sibling collection is {�, �′, �′′}
(all other possibilities lead to crossings with � or −�). So, a sibling collection of
type (mmm) is impossible.

Definition 3.6. Let � and �′ be two disjoint chords of S. Consider the component
of D \ [� ∪ �′] between � and �′. The closure S(�, �′) of this component is called the
strip between the chords � and �′. The strip S(�, �′) is bounded by the leaves � and
�′ and two arcs of S; define the width of the strip S(�, �′) to be the length of the
larger of those two arcs.

Definition 3.7 (Short strips). For a sibling collection {�, �′, �′′} of type (sml),
with � and �′ long/medium, set C(�) = S(�, �′). The set C(�) has width | 13 − ‖�‖|
(and so does −C(�)). Given a long/medium chord � ∈ L, call the region SH(�) =
C(�) ∪ −C(�) the short strips (of �) and each of C(�) and −C(�) a short strip (of
�). The width of C(�) will also be referred to as the width of SH(�)). Note that
−C(�) = C(−�) (see Figure 3).

Here are properties of short strips SH(�) of a long/medium non-critical chord �.
(a) The short strip C(�) is bounded by a chord � and its sibling �′ and the short

strip −C(�) is bounded by the chord −� and its sibling −�′. All these chords are
long/medium.

(b) Any critical chord of S that does not cross any of the four chords
{�, �′,−�,−�′} lies inside a short strip of �.

(c) Any chord or gap in the complement of SH(�) maps 1-to-1 onto its image.
(d) If L is a symmetric lamination and � ∈ L is long/medium, then any leaf that

is closer than � to criticality is contained in SH(�).
(e) For two leaves of L, their short strips, if exist, are nested.
The next lemma will be applied to leaves of laminations or in similar cases.

However, it holds for any chords.

Lemma 3.8 (Short strip lemma). Let � = �0 be a chord, and set L = ‖�‖ > 1
6 ,

�i = σi
3(�), Li = ‖�i‖. Take the minimal positive integer k such that �k intersects

the interior of SH(�).

(1) We have Lk > w(C(�)). If �k does not cross the edges of SH(�), then �k is
closer to criticality than � (and so �k is long/medium).

(2) If L = 1
4 , and � is a leaf of a cubic symmetric lamination L, then either

� ∈ { 1
8
3
8 ,

5
8
7
8} ⊂ L, or � ∈ { 7

8
1
8 ,

3
8
5
8} ⊂ L.

(3) If L > 1
4 , then Lk > 3w(C(�)).

(4) If a chord � is the closest to criticality in its forward orbit, then � is
long/medium, and no forward image of � enters the interior of SH(�).

Proof. (1) The leaf � and its sibling �′ form a part of the boundary of C(�). Note
that w(C(�)) = | 13 − L| = t < 1

6 . We claim that Lk > t. Otherwise, choose the

least j with Lj ≤ t; then 0 < j (because L > 1
6 > t) and j ≤ k by the assumption.

By the properties of Γ, either Lj−1 =
Lj

3 , or Lj−1 = 1
3 ± Lj

3 . By the choice of j,
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Figure 3. Short strips C(l) ∪ −C(l). Dashed line is a critical
chord inside the strip.

the former is impossible. Now, if the latter holds, then |Lj−1 − 1
3 | =

Lj

3 < t, and
so �j−1 is closer to criticality than �, a contradiction with �j−1 being disjoint from
the interior of SH(�). Thus, Lk > t. The last claim of the lemma is immediate.

(2) If |�| = 1
4 , then the edges of SH(�) partition D into components so that the

only two leaves of L of length 1
4 are � and −�. Since ‖σ3(�)‖ = 1

4 , it follows that

either σ3(�) = �, σ3(−�) = −� (then � ∈ { 1
8
3
8 ,

5
8
7
8} ⊂ L) or σ3(�) = −�, σ3(−�) = �

(then � ∈ { 7
8
1
8 ,

3
8
5
8} ⊂ L).

(3) The argument is similar to (1), with one difference. In (1), we find a moment
before k such that the length of the chord drops to t or less. This works out because
L > 1

6 > t and hence the desired moment is not 0. To prove (3) it suffices to observe

that since now L > 1
4 then L > 3w(C(�)) = 1−3L; hence, repeating the arguments

from (1), but replacing in them t by 3t, we will come to the same conclusion.
(4) By Lemma 2.25, 5

12 ≥ |�‖ ≥ 1
4 . Now (1) implies the desired. �

For a gap, by collapsing we mean mapping to a leaf or a point. In the case
of symmetric laminations, by Lemma 3.3 there are two distinct critical sets of L,
hence collapsing to a point is impossible.

Theorem 3.9 (No wandering triangles). Let L be a symmetric lamination and G
be a gap of L. If G does not eventually collapse, then G is preperiodic.

Proof. We may assume that G is a triangle. If G is not preperiodic and never
collapses, {Gn = σn

3 (G)}∞n=0 is an infinite sequence of gaps. Let dn be the length
of the shortest edge of Gn; then dn > 0 and dn → 0. Let �n be the longest edge
of Gn. Define a sequence ni + 1 of all times when dni+1 is less than all previous
dn’s. For large i, the gap Gni+1+1 has an edge of length dni+1+1, the image of �ni+1

.
Since dni+1+1 < dni+1, the leaf �ni+1

is closer to criticality than �ni
. Hence �ni+1

is contained in a short strip of �ni
. However then Gni+1

has an edge shorter than

w(SH(�ni
)) = 1

3 · dni+1, a contradiction with the choice of ni+1 + 1. �
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4. Finite gaps

Let us study finite gaps of symmetric laminations.

Definition 4.1 (Major). Let G be a periodic gap of a symmetric lamination L.
The edges of images of G that are the closest to criticality among all such edges
are called majors (of the orbit of G) (there might be more than one major). If M
is such a major, then, by Lemma 2.25, we have ‖M‖ ≥ 1

4 .

We use majors to study finite gaps of L. By Theorem 3.9, any finite gap G

eventually collapses or maps to a periodic gap ‹G. Periodic gaps G can be classified
into two kinds.

(1) Gaps with symmetric orbits: σk
3 (G) = −G for some k > 0.

(2) Gaps without symmetric orbits: G and −G are in distinct orbits.
Call a finite periodic gap of L a periodic polygon. Let G be a periodic polygon

of period greater than 1 and ‹G be an eventual image of G containing a major P of
the orbit of G. Consider the central symmetric gap/diameter CG(L) of L. In the
diameter case let M = CG(L); in the gap case consider majors M,−M of CG(L).
In any case, consider short strips SH(M) bounded by the leaves M , −M and their
siblings M ′, −M ′. By Lemma 3.3, we have ‖M‖ ≥ 1

3 . There are two sibling gaps
of CG(L); let A be the one with edge M ′, and let B be the one with edge −M ′.

In addition to M ′, the gap A has an edge which is a sibling of −M . Using
notation from Definition 3.5, we denote it by −M ′′. A straightforward computation
shows that ‖ − M ′′‖ ≤ 1

6 (e.g., we can insert an artificial diameter-diagonal D in
CG(L) and observe that the appropriate sibling of D is contained in A and has
the length 1

6 which is, for geometric reasons, greater than or equal to ‖ −M ′′‖ as
desired). Similarly, the gap B has an edge M ′′ which is a sibling of M , too, and

‖M ′′‖ ≤ 1
6 . Since ‖P‖ ≥ 1

4 by Lemma 2.25, then ‹G is inside a short strip from
SH(M) as P fits nowhere else in the disk without crossing edges of CG(L), A and B.

In particular, there exists exactly one other long/medium edge Q of ‹G (in addition
to P ). Observe that either CG(L) has two majors, or CG(L) is a diameter.

Definition 4.2. Let G be a periodic gap of minimal period k. Then G is said to
be a fixed return gap (of minimal period k) if any two distinct forward images of G
under the map σi

3 with 0 ≤ i < k have disjoint interiors and all vertices of G are
fixed by σk

3 .

Recall that given a long/medium leaf � ∈ L, its sibling collection is {�, �′, �′′}.
Lemma 4.3. A triangle T of L does not share an edge with any σn

3 (T ) �= T . No two
fixed return triangles of L share an edge. A fixed return triangle with long/medium
side M cannot map to a triangle with an edge M ′, −M or −M ′.

Proof. By way of contradiction, let σn
3 (T ) �= T share an edge with T . Properties

of laminations imply that T has vertices, say, a, b, c, where σn
3 (a) = b, σn

3 (b) = a
and σn

3 rotates T accordingly. Then the orbit of T falls apart into pairs of triangles
and each pair is rotated by σn

3 . We may assume that ab is a major of the orbit
of ab and T is contained in SH(ab). If m is a short side of T then m is contained
(except perhaps for the endpoints) in the interior of the short strips generated by
the major of the orbit of m, a contradiction with Lemma 3.8.

To prove the second claim of the lemma assume, by the above, that two fixed
return triangles sharing an edge do not belong to the same cycle. Then we can put
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them into one quadrilateral and observe that the existence of such a quadrilateral
contradicts Theorem 2.19.

Let us prove the last claim of the lemma. Let T be a fixed return triangle such
that σn

3 (T ) = −T ; then σn
3 (−T ) = T . If σn

3 maps edges of T not to their τ -images,
then σn

3 applied to −T will produce the same rotation of edges of −T = σn
3 (T ).

Since the second iteration of a non-trivial rotation of vertices of a triangle can never
be the identity, σ2n

3 (T ) = T and σ2n
3 on T is not the identity, a contradiction with

T being fixed return. So, σn
3 maps edges of T to their τ -images.

It follows that for any edge e of any triangle from the orbit of T we have σn
3 (e) =

−e. Among all iterated images of T choose a triangle that has an edge � closest to
criticality among all edges of triangles in the orbit of T ; assume that this triangle
is T itself. Denote by m its short edge, and then choose k such that σk

3 (m) = M is
a major of the orbit of m. It follows that M enters its short strips as a short leaf,
a contradiction. Hence no fixed return triangle T can map onto −T .

Now, let T be a fixed return triangle with a long/medium edge M . It cannot
eventually map to a triangle with an edge M ′ as otherwise images of these two
triangles are periodic triangles from the same orbit that share an edge σ3(M) =
σ3(M

′), a contradiction. If now σn
3 (M) = −M or −M ′, then σ3(T ) has edge σ3(M)

that under σn
3 maps to the triangle T ′ with edge σ3(−M) = σ3(−M ′) = −σ3(M).

There is also a triangle −σ3(T ) with the edge −σ3(M). By the above, σ3(T )
cannot eventually map to −σ3(T ). We conclude that the triangles T ′ = σn+1

3 (T )
and −σ3(T ) share an edge −σ3(M) and are, therefore, two fixed return triangles
sharing an edge. By the above, this is impossible which proves the last claim of the
lemma. �

Lemma 4.4. Let G be a periodic polygon. Then (1) the gap G is not fixed return,
and (2) each edge of G eventually maps to P or −P where P is a major of the orbit
of G.

Proof. (1) By Theorem 2.19, the only possible fixed return gap of a cubic lamination
is a triangle. Assume that a fixed return triangle T of L has an edge �, a major of
the orbit of T . Let m be the only short edge of T . Let M = σn

3 (m) be a major of
the orbit of m and an edge of a triangle H �= T from the orbit of T . By Lemma
3.8, the edge m is disjoint from the interior of SH(M). Since m is an edge of T ,
then T cannot be contained in SH(M). By Lemma 4.3, the triangle T , being an
eventual image of H, cannot have M, −M , M ′, or −M ′ as an edge. Then � is closer
to criticality than M , a contradiction.

(2) Let P be an edge of G. For an edge � of G, let �̂ be an eventual image

of � which is closest to criticality; by Lemma 2.25, the leaf �̂ is long/medium. If

�̂ /∈ {P,−P}, then G ⊂ SH(�̂) as P is contained in the interior of SH(�̂). By Lemma

3.8, the gap G is not contained in the interior of SH(�̂); hence a boundary edge �̃

of SH(�̂) is an edge of G. However then, since G is not fixed return, �̃ will have an

eventual image non-disjoint from the interior of SH(�̂), a contradiction with Lemma
3.8. �

Lemma 4.5. Let G be a periodic polygon of a symmetric lamination, and let g be
the first return map of G. One of the following is true.

(a) The first return map g acts on the sides of G transitively as a rational
rotation.
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(b) The edges of G form two disjoint periodic orbits, g permutes the sides of G
transitively in each orbit, and G eventually maps to the gap −G. If � and �′ are
two adjacent edges of G, then the leaf � eventually maps to the edge −�′ of −G.

Proof. (a) By Theorem 2.19 (or because every edge of G passes through P or −P ),
the vertices of G form one/two periodic orbits under the map g. If the orbit of G
is not symmetric, then it does not include −P . Hence there is a unique orbit of
vertices of G and (a) holds.

(b) If the vertices are in two orbits, then, by (a), the gap G has a symmetric
orbit, and the majors P and −P of the orbit of G have distinct orbits. If σk

3 (�) = −�
for some k, then σk

3 (P ) = −P (because σk
3 preserves orientation), a contradiction.

Hence � never maps to −� and the last claim of the lemma follows because the two
orbits of vertices alternate on the boundary of G. �
Definition 4.6. If case (a) from Lemma 4.5 holds, we call a gap G a 1-rotational
gap. If case (b) from Lemma 4.5 holds we call such a gap a 2-rotational gap.

Below are the two important properties of preperiodic polygons.

Corollary 4.7. If G is a preperiodic polygon of a symmetric lamination such that
G is not precritical (e.g., if G is periodic), then no diagonal of G can be a leaf of a
symmetric lamination.

Proof. Let � be a diagonal of G. If G is 1-rotational, an eventual image of � crosses
�, and � cannot be a leaf of any lamination. Let G be 2-rotational. Then the only
way � can possibly be a leaf of a lamination is if there are clockwise consecutive
vertices a, b, c, d of G and � = ac. If � ∈ L′ where the lamination L′ is symmetric,
then τ (a)τ (c) ∈ L′. Yet, by Lemma 4.5 an eventual image of � is τ (b)τ (d) which

crosses τ (a)τ (c), a contradiction. �
Corollary 4.8. Two distinct preperiodic polygons have disjoint sets of vertices,
unless both are strictly preperiodic, share a common edge that eventually maps to a
critical leaf, and eventually both map to the same periodic polygon.

Proof. If periodic polygons G and G′ share an edge � or a vertex v, then the union
of the orbits of G and G′ is a union of connected components permuted by σ3. Let
X be the component of the union containing G∪G′. Let σk

3 be the minimal iterate

of σ3 that maps X back to itself. We claim that σk
3 (�̂) �= �̂ for any leaf �̂ ⊂ X.

Indeed, assume that �̂ ⊂ X is an edge of a gap H such that σk
3 (�̂) = �̂. Then σk

3

either fixes the vertices of H or flips H to the other side of �̂ so that the first return
map σ2k

3 of H fixes the vertices of H. Since both possibilities contradict Lemma

4.4, we see that σk
3 (�̂) �= �̂ for any leaf �̂ ⊂ X.

Recall that σ̄3 denotes the barycentric extension of σ3 onto the closed unit disk
D. If a gapH ⊂ X maps to itself by σ̄k

3 , then, by Lemma 4.4, σ̄k
3 rotates the edges of

G and closures of components of X \G attached to the egdes of G (“decorations”).
For some i > 1, the map σ̄ik

3 fixes the edges of H for the first time. It follows that
σ̄ik
3 maps gaps contained in decorations to themselves for the first time and fixes

their vertices, again a contradiction with Lemma 4.4. Hence no gap H ⊂ X maps
to itself by σ̄k

3 .
Since X is locally connected, there exists x ∈ X with σ̄k

3 (x) = x. Since, by the
previous paragraph, no leaf/gap contained in X maps to itself by σ̄k

3 , then x is a
vertex of a gap H ⊂ X. Let Y be the union of leaves in X with endpoint x. By
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Corollary 3.7 [BMOV13], the orientation is preserved on Y ∩ S under σk
3 , and since

σk
3 (x) = x then σk

3 |Y ∩S is the identity, again a contradiction with Lemma 4.4.
Thus, any preperiodic polygons G and G′ sharing a vertex eventually map to the

same polygon. Preperiodic polygons sharing a vertex whose image polygon is the
same must share a critical leaf on their boundaries, see Lemma 3.11 in [BMOV13].
This completes the proof. �

Lemma 4.9 deals with gaps which eventually map onto collapsing quadrilaterals,
i.e., quadrilaterals collapsed to a leaf by σ3.

Lemma 4.9. Let {G,−G} be a pair of collapsing quadrilaterals of L and s be the
length of their shorter sides. Then any gap H with σn

3 (H) = ±G is a quadrilateral
with a pair of opposite edges of length s/3n that map to short edges of ±G.

Proof. If � is an edge of H with σn
3 (�) being an edge of G of length s, then by

Lemma 3.8 all iterated images of � are short which implies the claimed. �
Lemma 4.10. An infinite critical gap of a symmetric lamination is periodic.

Proof. Let G be an infinite critical gap of a symmetric lamination L. Since G and
−G contain critical chords in their interiors (except for their endpoints), L has
no critical leaves. Assume that eventual images of G are not equal G or −G. By
Theorem 2.19, the lamination L has an eventual image H of G which is infinite with
σn
3 (H) = H and σn

3 |∂H one-to-one for some n > 0. Since the edges of periodic gaps
eventually map to critical or periodic edges (see, e.g., Lemma 2.28 of [BOPT20])
and there are no critical leaves, we can find k so that some edges of H are σkn

3 -
invariant. It follows from the fact that H is infinite, that σkn

3 |∂H has attracting
points, a contradiction with the expanding properties of σ3. Hence, G is either
periodic or eventually maps to −G, in which case it is also periodic. By Lemma
3.3, the two critical sets of L are G and −G �= G. �

5. Comajors and their properties

In this section, we work towards understanding the structure of the family of
symmetric laminations. Every symmetric lamination has three important kinds of
special leaves: majors, comajors, and minors. Those leaves carry enough informa-
tion to reconstruct the lamination. Formal definitions are given below.

5.1. Initial facts. From now on L denotes a symmetric lamination.
If c is a short chord, then there are two long/medium chords with the same image

as c. We will denote them by Mc and M ′
c. Also, denote by Qc the convex hull of

Mc ∪ M ′
c. This applies in the degenerate case, too: if c ∈ S is just a point, then

Mc = M ′
c = Qc is a critical leaf � disjoint from c such that σ3(c) = σ3(Mc).

Definition 5.1 (Major). A leaf M of L closest to criticality is called a major of
L.

If M is a major of L, then the long/medium sibling M ′ of M is also a major
of L, as well as the leaves −M and −M ′. Thus, a lamination has either exactly 4
non-critical majors or 2 critical majors.

Definition 5.2 (Comajor). The short siblings of the major leaves of L are called
comajors ; we also say that they form a comajor pair. If the major leaves of L
have a sibling of length 1/6, then this sibling is also called a comajor. A pair of



280 A. BLOKH ET AL.

symmetric chords is called a symmetric pair. If the chords are degenerate, then
their symmetric pair is called degenerate, too.

A symmetric lamination has a symmetric pair of comajors {c,−c}.

Definition 5.3 (Minor). Images of majors (or, equivalently, comajors) are called
minors of a symmetric lamination. Similarly to comajors, every symmetric lami-
nation has two symmetric minors {m,−m} .

Critical majors of a lamination have degenerate siblings, hence we have degener-
ate comajors and minors in this case. If majors M and −M are non-critical, then
there is a critical gap, say, G with edges M and M ′, and a critical gap −G with
edges −M and −M ′.

Lemma 5.4. Let {m,−m} be the minors of L, and � be a leaf of L. Then no
forward image of � is shorter than min(‖�‖, ‖m‖).

Proof. Since majors are the closest to criticality leaves of L, the image of any
long/medium leaf of L is no shorter than the minor. On the other hand, the image
of any short leaf is three times longer than the leaf itself. The lemma follows from
these observations. �

Lemma 5.5. Let c be a comajor of L.
(1) If c is non-degenerate, then one of the following holds:

(a) the endpoints of c are both strictly preperiodic with the same preperiod
and period;

(b) the endpoints of c are both not preperiodic, and c is approximated from
both sides by leaves of L that have no common endpoints with c.

(2) If Mc is non-critical, then its endpoints are both periodic, or both strictly
preperiodic with the same preperiod and period, or both not preperiodic.

In particular, a non-degenerate comajor is not periodic.

Proof. Set M = Mc. It follows from Lemma 5.4 and the equality ‖σ3(c)‖ = 3‖c‖
that c is non-periodic. Since c is non-degenerate, the lamination L has two symmet-
ric critical gaps G, −G, and pairs of majors {M,M ′} and {−M,−M ′} as edges of
G and −G, respectively. Assume first that at least one endpoint of c is preperiodic.
Then, by Lemma 2.25 of [BOPT20], both endpoints of c are preperiodic and the
period of eventual images of the endpoints of c is the same.

We claim that their preperiods are equal. Indeed, otherwise we may assume that
an eventual non-periodic image � = ab of c has an n-periodic endpoint a and the
leaf σn

3 (�) = ad is n-periodic. This means that σi
3(ab) = σi

3(ad) for some minimal
i > 0. It is easy to see that the only way this can happen is as follows: there is a
collapsing quadrilateral Q which is the convex hull of majors, say, {M,M ′}, and
forward images of the leaves ab, ad are edges of Q.

We may assume that in fact ab, ad themselves are edges of Q (and so they have
equal σ3-images), ad is periodic, and ab is not. By Lemma 3.8, the majors M
and M ′ can never be mapped to the short sides of Q. Hence we may assume that
M = ad is periodic. However, by the above assumption it is ab which is an eventual
image of c, and hence an eventual image of M , a contradiction with Lemma 3.8. We
see that if c is preperiodic, then its endpoints are of the same period and the same
preperiod. Notice that by the above c is non-periodic. Since σ3(M) = σ3(c), the
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endpoints of M are either both periodic or both preperiodic with the same period
and preperiod.

Assume now that c has non-preperiodic endpoints. We claim that c cannot
be an edge of a gap G. Indeed, otherwise, by Theorem 3.9, the gap G must at
some moment collapse to a leaf. At this moment the image σk

3 (G) of G must be a
collapsing quadrilateral, which means that, again, σk

3 (G) is the convex hull Q of,
say, M and M ′. However, σk

3 (c) = σk
3 (M) is an edge of Q. This implies that M is

periodic and c is preperiodic, a contradiction with the assumption.
Finally, suppose that c = xy is the limit of leaves with endpoint x. Together with

c they form an infinite cone of leaves. By Lemma 4.7 of [BOPT20], this implies
that c is preperiodic, again a contradiction. �
5.2. Pullback laminations. We describe the set of symmetric laminations in
terms of their comajors by giving a criterion for a symmetric pair to be a co-
major pair. Also, we construct a specific symmetric pullback lamination for any
symmetric pair satisfying that criterion.

Definition 5.6 (Legal pairs). Suppose that a symmetric pair {c,−c} is either
degenerate or satisfies the following conditions:

(a) no two iterated forward images of ±c cross, and
(b) no forward image of c crosses the interior of SH(Mc).

Then {c,−c} is said to be a legal pair.

We need a concept of a pullback which dates back to Thurston [Thu85]. Observe
that even in the absence of a lamination we can extend σ3 onto given chords inside
D, and, as long as the chords are unlinked, this is consistent (we keep the notation
σ3 for such an extension). Also, even without a lamination we call two-dimensional
convex hulls of closed subsets of S gaps.

Definition 5.7. Suppose that a family A of chords is given and � is a chord. A
pullback chord of � generated by A is a chord �′ with σ3(�

′) = � such that �′ does not
cross chords from A. An iterated pullback chord of � generated by A is a pullback
chord of an (iterated) pullback chord of �.

Depending on A, (iterated) pullback chords of certain chords may or may not
exist. In some cases though, several (iterated) pullback chords can be found. While
the construction below can be given in general, we will from now on restrict our
attention to the cubic symmetric case. Lemma 5.8 follows from Lemma 2.26 and is
left to the reader.

Lemma 5.8. The only two symmetric laminations L1, L2 with comajors of length
1
6 have two critical Fatou gaps and are as follows.

(1) The lamination L1 has the comajor pair ( 16
1
3 ,

2
3
5
6 ). The gap U ′

1 is invariant;

U ′
1 ∩ S consists of all γ ∈ S such that σn

3 (γ) ∈ [0, 1
2 ]. The gap U ′′

1 is invariant;

U ′′
1 ∩ S consists of all γ ∈ S such that σn

3 (γ) ∈ [ 12 , 0]. The gaps U ′
1, U

′′
1 share an

edge 0 1
2 ; their edges are the appropriate pullbacks of 0 1

2 that never separate in D

any two leaves from the collection { 1
6
1
3 ,

2
3
5
6 , 0

1
2}.

(2) The lamination L2 has the comajor pair ( 1112
1
12 ,

5
12

7
12 ). The gaps U ′

2, U ′′
2

form a period 2 cycle, and the set (U ′
2 ∪ U ′′

2 ) ∩ S consists of all γ ∈ S such that

σn
3 (γ) ∈ [ 1

12 ,
5
12 ] ∪ [ 7

12 ,
11
12 ]. The gaps U ′

2, U
′′
2 share an edge 1

4
3
4 ; their edges are
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iterated pullbacks of 1
4
3
4 that neither eventually cross nor eventually separate any

two leaves from the collection { 11
12

1
12 ,

5
12

7
12 ,

1
4
3
4}.

Though the laminations from Lemma 5.8 are not pullback laminations as de-
scribed below, knowing them allows us to consider only legal pairs with comajors
of length less than 1

6 and streamline the proofs.

Construction of a symmetric pullback lamination L(c) for a legal pair
{c,−c}.
Degenerate case. For c ∈ S, let ±� = ±Mc. (call �, −� and their pullbacks
“leaves” even though we apply this term to existing laminations, and we are only
constructing one). Consider two cases.

(a) If � and −� do not have periodic endpoints, then the family of all iterated
pullbacks of �,−� generated by �,−� is denoted by Cc.

(b) Suppose that � and −� have periodic endpoints p and −p of period n. Then
there are two similar cases. First, the orbits of p and −p may be distinct (and
hence disjoint). Then iterated pullbacks of � generated by �, −� are well-defined
(unique) until the n-th step, when there are two iterated pullbacks of � that have
a common endpoint x and share other endpoints with �. Two other iterated pull-
backs of � located on the other side of � have a common endpoint y �= 0 and share
other endpoints with �. These four iterated pullbacks of � form a collapsing quadri-
lateral Q with diagonal �; moreover, σ3(x) = σ3(y) and σn

3 (x) = σn
3 (y) = z is

the non-periodic endpoint of �. Evidently, σ3(Q) = σ3(p)σ3(x) is the (n − 1)-st
iterated pullback of �. Then in the pullback lamination L(c) that we are defining
we postulate the choice of only the short pullbacks among the above listed iterated
pullbacks of �. So, only two short edges of Q are included in the set of pullbacks
Cc. A similar situation holds for −� and its iterated pullbacks.

In general, the choice of pullbacks of the already constructed leaf �̂ is ambiguous

only if �̂ has an endpoint σ3(±�). In this case we always choose a short pullback of

�̂. Evidently, this defines a set Cc of chords in a unique way.
We claim that Cc is an invariant prelamination. To show that Cc is a prelami-

nation we need to show that its leaves do not cross. Suppose otherwise and choose

the minimal n such that �̂ and �̃ are pullbacks of � or −� under at most the n-th

iterate of σ3 that cross. By construction, �̂, �̃ are not critical. Hence their images

σ3(�̂), σ3(�̃) are not degenerate and do not cross. It is only possible if �̂, �̃ come out

of the endpoints of a critical leaf of L. We may assume that ‖�̂‖ ≥ 1
6 (if �̂ and �̃ are

shorter than 1
6 then they cannot cross). However by construction this is impossible.

Hence Cc is a prelamination. The claim that Cc is invariant is straightforward; its
verification is left to the reader. By Theorem 2.16, the closure of Cc is an invariant
lamination denoted L(c). Moreover, by construction Cc is symmetric (this can be
easily proven using induction on the number of steps in the process of pulling back
� and −�). Hence L(c) is a symmetric invariant lamination.

Non-degenerate case. As in the degenerate case, we will talk about leaves even
though we are still constructing a lamination. By Lemma 5.8, we may assume that
|c| < 1

6 . Set ±M = ±Mc,±Q = ±Qc. If d is an iterated forward image of c or −c,
then, by Definition 5.6(b), it cannot intersect the interior Q or −Q. Consider the
set of leaves D formed by the edges of ±Q and ∪⋃∞

m=0{σm
3 (c), σm

3 (−c)}. It follows
that leaves of D do not cross among themselves. The idea is to construct pullbacks
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of leaves of D in a step-by-step fashion and show that this results in an invariant
prelamination Cc as in the degenerate case.

More precisely, we proceed by induction. Set D = C0
c . Construct sets of leaves

Cn+1
c by collecting pullbacks of leaves of Cn

c generated by Q and −Q (the step
of induction is based upon Definition 5.6 and Definition 5.7). The claim is that
except for the property (D2)(1) from Definition 2.10 (a part of what it means
for a lamination to be backward invariant), the set Cn

c has all the properties of
invariant laminations listed in Definition 2.10. Let us verify this property for C1

c .
Let � ∈ C1

c . Then σ3(�) ∈ D, so property (D1) from Definition 2.10 is satisfied.
Property (D2)(2) is, evidently, satisfied for edges of Q and −Q. If � is not an edge
of ±Q, then, since leaves ±σ3(Q) = σ3(±c) do not cross σ(�), and since on the
closure of each component of S \ [Q ∪ −Q] the map is one-to-one, then � will have
two sibling leaves in C1

c as desired. Literally the same argument works for � ∈ Cn+1
c

and proves that each set Cn+1
c has properties (D1) and (D2)(2) from Definition

2.10. This implies that
⋃

i≥0 Ci
c = Cc has all properties from Definition 2.10 and

is, therefore, an invariant prelamination. By Theorem 2.16, its closure L(c) is an
invariant lamination.

The lamination L(c) is called the pullback lamination (of c); we often use c as
the argument, instead of the less discriminatory {c,−c}.

Lemma 5.9. A legal pair {c,−c} is the comajor pair of the symmetric lamination
L(c). A symmetric pair {c,−c} is a comajor pair if and only if it is legal.

Proof. The verification of the fact that {c,−c} is the comajor pair of L(c) is straight-
forward; we leave it to the reader. On the other hand, a comajor pair of a symmetric
lamination is legal by Lemma 5.4. �

5.3. The lamination of comajors.

Definition 5.10. For a non-diameter chord n = ab, the smaller of the two arcs
into which n divides S is denoted by H(n). Denote the closed subset of D bounded
by n and H(n) by R(n). Given two comajors m and n, write m ≺ n if m ⊂ R(n),
and say that m is under n.

Note that, if m ≺ n, then any set of pairwise non-crossing chords that separate
m from n in D is linearly ordered by ≺.

Lemma 5.11. Let {c,−c} and {d,−d} be legal pairs, where c is degenerate and
c ≺ d. Suppose that either c is not an endpoint of d, or σ3(c) is not periodic. Then
the leaves σn

3 (d) with n ≥ 1 are disjoint from the majors of L(c). In particular, if
the endpoints of σ3(d) are non-periodic then the leaves σn

3 (d) with n ≥ 1 are disjoint
from ±Mc.

Proof. Let the majors of L(c) be critical leaves M and −M ; let the majors of L(d)
be leaves N , N ′, −N , −N ′. Clearly, M and −M lie (except, perhaps, for the
endpoints) in SH(N) and separate (except, perhaps, for the endpoints) N from N ′

and −N from −N ′. The claim holds by Lemma 3.8 if c is not an endpoint of d. If c is
an endpoint of d, then by the assumption σ3(c) is non-periodic. Thus, the endpoints
of d and those of the majors N and N ′ are non-periodic by Lemma 5.5. Note that
σ3(d) = σ3(N) = σ3(N

′). If our claim fails, then σn
3 (d) = σn

3 (N) = σn
3 (N

′) shares
an endpoint with (1) the majors M and N , or (2) the majors −M and −N . In
both cases, the notation for the majors is chosen so that M and N (then also −M
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and −N) have a common endpoint. Thus, (1) means σn
3 (d) ∩M ∩N �= ∅, and (2)

means σn
3 (d) ∩ (−M) ∩ (−N) �= ∅. Consider these two cases.

(1) Let σn
3 (d) = σn

3 (N) share an endpoint y with M and N = xy. Observe that,
by Lemma 3.8, the leaf N never maps to its short strips. Applying σn

3 to N ∪σn
3 (N)

we see that σ2n
3 (N) is concatenated to σn

3 (N) and the vertices of leaves N, σn
3 (N),

and σ2n
3 (N) are ordered positively or negatively on S. If we continue, we will see

that further σn
3 -images of N are ordered in the same fashion. This implies that at

some moment this chain of leaves will connect to the endpoint x of N (recall that
σn
3 is a local expansion), and N will turn out to be periodic, a contradiction.
(2) If σn

3 (d) = σn
3 (N) shares an endpoint with −M and −N/ − N ′ (say, −N),

then, by symmetry, σn
3 (−d) = σn

3 (−N) shares an endpoint with M and N . Thus,
leaves N, σn

3 (−N), and σ2n
3 (N) are concatenated. The idea, as before, is to apply

the appropriate iterate of σ3 (in this case σ2n
3 ) that shifts N to the next occurrence

of this leaf in the concatenation and use the fact that any concatenation like that
is one-to-one and orientation preserving. There are two cases here.

(2a) Suppose that N = xy and σn
3 (−N) = yz are oriented in one way while

σn
3 (−N) = yz and σ2n

3 (N) = zu are oriented differently. For example, suppose
that x > y > u > z (so that the triple x, y, z is negatively oriented while the triple
y, z, u is positively oriented). Then, if σ2n

3 (σn
3 (−N)) = uv, then z, u, v must also

be negatively oriented and so all these points are ordered on the circle as follows:
x > y > u > v > z. Repeating this over and over we will see that leaves N,
σ2n
3 (N), . . . , σk·2n

3 (N) are consecutively located under one another. However, this
is impossible as σ3 is a local expansion.

(2b) Suppose that N = xy and σn
3 (−N) = yz are oriented in the same way as

σ2n
3 (N) = zu. Iterating σ2n

3 on these two leaves we see, similar to (a), that all the
images of x, y, z are oriented in the same way as x, y, z themselves. Hence, again,
the points σk·2n

3 (x) form a sequence of points that converges back to x which is
impossible unless on a finite step the process stops because the next link in the
concatenation dead-ends into the point x. The leaf from the concatenation with an
endpoint x is an image of N = xy or σn

3 (−N) = yz. Suppose that it is an image of
N . Then, the next image of σn

3 (−N) = yz is forced to coincide with N because it
cannot enter short strips of N . The thus constructed finite polygon maps by σ2n

3

onto itself and has all edges periodic, a contradiction with N being non-periodic.
If the leaf from the concatenation with endpoint x is some image of σn

3 (−N) = yz,
then it immediately follows that N is periodic, again a contradiction.

Thus, the leaves σn
3 (d), n ≥ 1 are disjoint from ±M as claimed. �

Lemma 5.12. Let {c,−c} and {d,−d} be legal pairs, where c is degenerate and
c ≺ d. Suppose that c is not an endpoint of d, or σ3(c) is not periodic. Then
d ∈ L(c). In addition, the following holds.

(1) Majors D,D′ of L(d) are leaves of L(c) unless L(c) has two finite gaps
G,G′ that contain D,D′ as their diagonals, share a critical leaf Mc = M of
L(c) as a common edge, and are such that σ3(G) = σ3(G

′) is a preperiodic
gap.

(2) If majors of L(d) are leaves of L(c) and � ∈ L(d) is a leaf that never maps
to a short side of a collapsing quadrilateral of L(d), then � ∈ L(c).

Proof. We claim that the iterated images of d do not intersect leaves of L(c). By
Lemma 5.11, no iterated image of d intersects the majors ±Mc = ±M of L(c). Let
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an iterated image �d of d intersect an iterated pullback �M of M or −M . If they
share an endpoint, then after a few steps we will arrive at an iterated image of d
that shares an endpoint with M or −M , a contradiction. Suppose that �d crosses
�M . The only way σ3(�d) and σ3(�M ) “lose” their crossing is when �d, �M “come
out” of the distinct endpoints of a critical leaf. Since, by Lemma 5.11, the leaf �d
is disjoint from ±M , this is impossible. Hence σ3(�d) and σ3(�M ) cross. Repeating
this argument, we see that the associated iterated images of �d and �M cross each
other. Since �M is mapped to M or −M under a finite iteration of σ3, in the end
we will have an image of d crossing M or −M , a contradiction.

So d is a leaf of L(c) or a diagonal of a gap in L(c). Let us rule out the latter.
Since L(c) has two critical leaves, there are no gaps of L(c) on which σ3 has degree
m > 1; suppose, by way of contradiction, that d is a diagonal of a gap G of L(c),
and consider cases.

(a) If no iterated image of G has a critical edge, then by Theorem 3.9, the gap
σk
3 (G) is periodic for some minimal k ≥ 0, and, by Theorem 2.20, the gap σk

3 (G) is
finite. A contradiction with Corollary 4.7.

(b) Suppose that the gap σm
3 (G) has a critical edge for a minimal m ≥ 0.

Consider two cases. First, suppose that c is strictly under d. Since G is a gap of
L(c) containing d as a diagonal, then there are two cases. First, there may exist
two sibling gaps of G separated in D by the critical leaf M of L(c), but themselves
non-critical. Each such gap contains a major Md or M ′

d as a diagonal. However,
σm
3 (G) has a critical edge which then implies that d is mapped into its own short

strips, a contradiction with d being legal. Now, the second case is when there are
two gaps of L(c), denoted by A and A′, that share M as a common edge and
contain Md and M ′

d, respectively. Evidently, σ3(G) = σ3(A) = σ3(A
′). Since the

gap σm
3 (G) has a critical edge, we may assume that σm

3 (G) = A. It follows that G
cannot be finite.

Since σm
3 is one-to-one on the vertices of G, we have that σm

3 (d) is a diagonal
of σm

3 (G) = H. Since G is infinite, H is (pre)periodic (by Theorem 2.19). Since
by Theorem 2.20 the cycle of gaps from the orbit of H must have at least one gap
with critical edge, then H itself is periodic. Since images of d do not cross each
other, H is not a Siegel gap. Hence H is a caterpillar gap. Since by Lemma 5.11,
the iterated images of d are disjoint from ±M , then by Lemma 2.21, an eventual
image of d is a periodic diagonal of H. We claim that this is impossible.

We may assume that M is an edge of H. By Theorem 2.20, an endpoint of M
is periodic. Then by the assumptions c is not an endpoint of d, and by Lemma 3.8
the orbit of d is disjoint from that of M . Hence ∂H contains two cycles, that of
σ3(M) = σ3(c), and that of an endpoint of a periodic image of d. Since the images
of d are diagonals, ∂H contains 3 periodic points from 2 cycles. This allows one to
connect a certain triple of points from these two cycles so that they form a fixed
return triangle T . Consider the forward orbit of T and then the grand orbit of T ,
where iterated pullbacks of T and of its iterated images are constructed consistently
with L(c). Since by our assumption L(c) has caterpillar gaps with edges ±M , it
is easy to see that this yields a cubic symmetric lamination with a fixed return
triangle, a contradiction with Lemma 4.4. So, d is an edge of G and a leaf of L(c),
and so is −d. Let us now prove the remaining claims.

(1) Consider the critical quadrilateral Q of L(d) with σ3(Q) = σ3(d). Two
long/medium edges of Q are majors D, D′ of L(d). If c and d are disjoint, then
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the remaining two short edges of Q cross M and cannot be leaves of L(c). Hence
in that case D, D′ are leaves of L(c) as desired. Consider the case when c is an
endpoint of d. Then M is a (critical) diagonal of Q, and both endpoints of M are
non-periodic (this is because by our assumptions σ3(c) = σ3(M) is non-periodic).
Suppose that D, D′ are not leaves of L(c). By properties of laminations two edges
of Q (say, q and q′) are leaves of L(c). By our assumptions there are gaps G,G′ that
contain D, D′ as their diagonals and share a critical leaf M of L(c) as a common
edge.

We claim that G,G′ are finite. Indeed, if they are infinite, then they are
(pre)periodic. Since L(c) is cubic and has two critical leaves, the cycle of infi-
nite gaps to which G and G′ eventually map has a gap with a critical edge. It
follows that one of the gaps G,G′ (say, G) is periodic, and the first return map to
G is of degree one. By Theorem 2.20, consider caterpillar and Siegel cases. Suppose
that G is caterpillar. Then, by Theorem 2.20, the leaf σ3(M) = σ3(c) is periodic,
a contradiction with the assumptions. Suppose that G is Siegel. Then by Theorem
2.20, both q and q′ must eventually map to M which implies that an endpoint of
M is periodic, again a contradiction. Thus, G and G′ are finite. Since D, D′ are
diagonals of G, G′, respectively, σ3(G) is a gap (not a leaf). By Theorem 3.9 and
by the assumptions σ3(G) is preperiodic.

(2) Observe that by the assumptions d, D, D′ and their iterated images all belong
to L(c). Denote this family of leaves byX. We claim that iterated pullbacks of these
leaves are leaves of L(c). First consider a leaf � ∈ L(d) such that σn

3 (�) = x ∈ X.
We claim that � ∈ L(c). Let us use induction over n. The base of induction is
already established as X ⊂ L(c). Suppose that the claim is proven for n = k and

prove it for n = k + 1. Consider � ∈ L(d) such that σk+1
3 (�) = x ∈ X. Then,

by induction, σ3(�) ∈ L(c). Now, by properties of laminations, this implies that
� ∈ L(c), too, unless, say, the following holds: � shares an endpoint with M , there
is another chord t that forms a triangle with � and M , and in fact t is a leaf of L(c)
while � is not (other cases are similar). We claim that this is impossible. Indeed,
if � shares an endpoint with M and is disjoint from the interior of Q, then t must
cross D, a contradiction as D is a leaf of L(c) by the assumptions, and cannot be
crossed by another leaf of L(c). Hence, � ∈ L(c), as desired.

Consider the iterated pullbacks of leaves of X that are leaves of L(d). By the
previous paragraph they are leaves of L(c). Hence the closure of this set of leaves is
also a subset of L(c). Therefore, the only possible leaves of L(d) that are not leaves
of L(c) are iterated pullbacks of the short edges of ±Q and their limits. However, in
the statement of the lemma we explicitly exclude leaves � that are iterated pullbacks
of short edges of ±Q. Hence it suffices to show that the lengths of these pullbacks
converges to zero (this will imply that limits of pullbacks of the short edges of ±Q
are points of S). This follows from Lemma 4.9. �

Let us prove an important property of pullback laminations.

Lemma 5.13. Let d be a comajor. Then the iterated pullbacks of the majors ±Md

and ±M ′
d of L(d) are dense in the pullback lamination L(d) with, possibly, one

exception: the leaves of L(d) that are short sides of critical quadrilaterals of L(d)
and their iterated pullbacks might not be approximated by iterated pullbacks of the
majors of L(d). Thus, iterated pullbacks of the minors of L(d) are dense in L(d).
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Proof. If d is degenerate, the claim follows from the definitions. Let d be non-
degenerate. Then there are two cases. First, assume that M = Md has a periodic
endpoint. Then by Lemma 5.5, the leaf M is periodic, and so is −M . It follows
that the iterated pullbacks of the majors of L(d) form the same set as the iterated
pullbacks of the majors, comajors and all their iterated forward images used in the
construction of the pullback lamination L(d). Hence, in this case, the claim follows
from the definitions.

From now on assume that the endpoints of the majors ±M , ±M ′ are non-
periodic. By Lemma 5.5, the leaf d is not periodic either, and, moreover, no
endpoint of d is periodic. It follows that the minors ±σ3(M) have no periodic
endpoints. Choose an endpoint c of d and consider L(c); the critical sets of L(c)
are leaves ±Mc = ±�. Evidently, Lemma 5.12 applies to L(d) and L(c).

Let y ∈ L(d)∩L(c). Since y is not eventually mapped to � (as y ∈ L(d)), then y is
approximated by iterated pullbacks of ±�. Set ±Q = ±Qd. By definition, pullbacks
of±� that converge to y are diagonals of the pullbacks of±Q corresponding to them.
Denote by N a short side of ±Q. The leaves ±σ3(d) have 5 preimage-leaves (the
edges of ±Q and ±d) while all other leaves have 3 preimage-leaves. In particular,
every leaf that is shorter than σ3(d) has three even shorter preimages. This applies

to N , and the length of the n-th pullback of N is ||N ||
3n . Hence, y is a limit of iterated

pullbacks of the majors of L(d). Since, by Lemma 5.12, all chords y = ±σn
3 (d),

where n ≥ 0, are leaves of L(c), they all are limits of iterated pullbacks of the
majors of L(d).

Now, let y ∈ L(d) \L(c). We may assume that y is not eventually mapped to an
edge of ±Q. Then y is the limit of iterated pullbacks of ±Q, or, if not, the limit
of iterated pullbacks of leaves ±σn

3 (d). In the former case, the argument from the
previous paragraph applies. In the latter case, by the previous paragraph, the fact
that leaves ±σn

3 (d) are limits of iterated pullbacks of the majors of L(d) implies
that iterated pullbacks of leaves ±σn

3 (d) avoiding ±Q are also limits of iterated
pullbacks of the majors of L(d). Thus, iterated pullbacks of the majors of L(d)
are dense among all leaves of L(d), except, possibly, for the leaves of L(d) that are
pullbacks of the short sides of critical quadrilaterals ±Q of L(d). �
Theorem 5.14. Distinct comajors of symmetric laminations do not cross.

Proof. Let {c1,−c1}, {c2,−c2} be pairs of comajors of symmetric laminations L1

and L2, respectively. If c1 crosses c2, then H(c1) ∩ H(c2) �= ∅. Choose a non-
preperiodic point p ∈ H(c1)∩H(c2). The symmetric lamination L(p) has comajors
{p,−p}; since p ≺ c1 and p ≺ c2, then by Lemma 5.12 both c1 and c2 are leaves of
L(p), a contradiction. �

The next result follows from Theorem 5.14 and Theorem 2.15.

Theorem 5.15. The space of all symmetric laminations is compact. The set of all
their non-degenerate comajors is a lamination.

Definition 5.16 is an analogue of Thurston’s definition of QML.

Definition 5.16. The set of all chords in D which are comajors of some symmet-
ric lamination is a lamination called the Cubic Symmetric Comajor Lamination,
denoted by CsCL.

Note that CsCL satisfies symmetric property (D3) as all comajors come in sym-
metric pairs.



288 A. BLOKH ET AL.

6. Cubic symmetric comajor lamination is a q-lamination

By Corollary 5.5, all non-degenerate comajors are non-periodic. We classify
them as preperiodic of preperiod 1, preperiodic of preperiod bigger than 1, and not
eventually periodic, and consider each case separately. By Lemma 5.5 a comajor of
preperiod 1 and period k corresponds to a periodic major and maps to the major
by σk

3 .

Lemma 6.1. A comajor leaf of preperiod 1 is disjoint from all other comajors in
CsCL.

Proof. By Theorem 5.14, intersecting comajors share an endpoint. Then, by Lemma
5.5, they have the same preperiod and period. Thus, a comajor of preperiod 1 can
only share an endpoint with a comajor of the same kind. Assume that there exist
distinct compajor pairs {c,−c}, {d,−d} of preperiod 1 and period k such that c
and d share an endpoint a. Since σ3(c) is a periodic leaf, there is a periodic leaf
that maps to σ3(c). By Lemma 5.5, this periodic leaf is a major of L(c).

We claim that c is under d or d is under c. Indeed, otherwise c = xa and d = ay
are located next to each other. Let x < a < y and, hence, σ3(x) < σ3(a) < σ3(y).
Consider the periodic majors M of L(c) and N of L(d). Evidently, they share an
endpoint A (with σ3(A) = σ3(a)) and have other endpointsX (with σ3(X) = σ3(x))
and Y (with σ3(Y ) = σ3(y)) so that M = AX and N = AY . Since majors are
long/medium leaves, it is easy to see that X > A > Y (the orientation changes).
We claim that this is impossible. Indeed, the short strip C(M) and the short strip
C(N) have a common diagonal AZ where Z is the remaining sibling point of a and
A. Since the iterated images of c do not enter the interior of SH(M) and images of d

do not enter SH(N), for any j, the convex hull of points σj
3(x), σ

j
3(a), σ

j
3(y) is disjoint

from critical chords AZ,−AZ. Hence, the orientation of this triple of points must
not change, which contradicts the fact that σk

3 (x) = X > σk
3 (a) = A > σk

3 (y) = Y
while x < a < y. This contradiction shows that we may assume that c is located
under d.

Let x be a non-preperiodic point under c. By Lemma 5.12, the chords M and
N are leaves of L(x). Hence L(x) has a gap G such that M and N are edges of
G. Since M and N are periodic, G is periodic too. By Proposition 4.4, the first
return map on G is not a fixed return map. This implies that N enters the interior
of SH(N), a contradiction. �

A leaf of a lamination is a two sided limit leaf if it is not on the boundary of a
gap, i.e., if it is a limit of other leaves from both sides (e.g., by Lemma 5.5, all non-
preperiodic comajors are two sided limit leaves). A lamination can have periodic
or preperiodic two sided limit leaves. We prove that a two sided limit comajor c of
L(c) is a two sided limit leaf in the Cubic Symmetric Comajor Lamination CsCL,
too.

Lemma 6.2. Let c ∈ CsCL be a non-degenerate comajor. If � ∈ L(c), � ≺ c and

‖�‖ > ‖c‖
3 , then � ∈ CsCL. In particular, if ci ∈ L(c), ci ≺ c and ci → c, then

cn ∈ CsCL for sufficiently large n.

Proof. Choose � ∈ L(c) with ‖�‖ > ‖c‖
3 . We claim that the leaves {�,−�} form a

legal pair (see Definition 5.6).
(a) Clearly, no forward images of � and −� cross.
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(b) Let m be a minor of L(c). Since ‖�‖ < ‖c‖, then ‖σ3(�)‖ = 3‖�‖ < ‖σ3(c)‖ =
‖m‖. By Lemma 5.4, no forward image of σ3(�) is shorter than 3‖�‖.

(c) The long and medium sibling chords M� and M ′
� of � are located inside the

short strips C(M), C(−M) of a major M = Mc of L(c). An iterated image �̃ of

� cannot cross majors of L(c). Hence �̃ is either outside of SH(M) or inside it.

We claim that �̃ is outside. Indeed, if �̃ is inside, say, C(M), it cannot be closer

to criticality than M . On the other hand, ‖�̃‖ ≥ 3‖�‖ > ‖c‖. This implies that �̃
cannot be inside SH(M) = C(M) ∪ C(−M). Hence leaves from the forward orbit
of � do not cross chords ±M� and ±M ′

�.
Thus, {�,−�} is a legal pair and so � ∈ CsCL as desired. �

Consider now comajors approximated from the other side.

Lemma 6.3. Let L be a symmetric lamination with comajors {c,−c}. Suppose
there is a short leaf �s ∈ L satisfying the conditions below:

(i) c ≺ �s,
(ii) the leaf �m = σ3(�s) never maps under itself or under −�m.

Then there is a symmetric lamination L(�s) with comajors {�s,−�s}.

Proof. (a) Since �s,−�s ∈ L, all forward images of �s,−�s do not cross.
(b) The siblings of �s in L are either both short or one long and one medium

leaf. Since �s � c, a short sibling of �s (or its image under the rotation by 180
degrees) would intersect the major leaves of L. Thus, the siblings of �s (and their
rotations by 180 degrees) in L are long and medium. Hence forward images of �s
do not cross the long and medium siblings of �s (or their rotations by 180 degrees).

(c) Assume that, for some k > 0, we have ‖σk
3 (�s)‖ < 3‖�s‖ for the first time.

This implies that σk−1
3 (�s) is closer to criticality than the long and medium sibling

leaves of �s. Hence the leaf σk
3 (�s) = σk−1

3 (�m) is under �m or −�m contradicting
the assumptions.

By definition, {�s,−�s} is a legal pair, and by Lemma 5.9 there exists a symmetric
lamination L(�s) with {�s,−�s} as a comajor pair. �

Definition 6.4. Let � be a leaf of a symmetric lamination L and k > 0 be such
that σk

3 (�) �= � (in particular, the leaf � is not a diameter). If the leaf σk
3 (�) is under

�, then we say that the leaf � moves in by σk
3 ; if σk

3 (�) is not under �, then we

say that the leaf � moves out by σk
3 . If two leaves � and �̂ with � ≺ �̂ of the same

lamination both move in or both move out by the map σk
3 , then we say that the

leaves move in the same direction. If one of the leaves {�, �̂} moves in and the other
moves out, then we say that the leaves move in opposite directions. There are two

ways of moving in opposite directions: if � moves out and �̂ moves in, we say they

move towards each other ; if � moves in and �̂ moves out, we say that they move
away from each other.

Since L is a symmetric lamination, then the maps σ3 and −σ3 both map L onto
itself.

Lemma 6.5. Let �̂ �= � be non-periodic leaves of a symmetric lamination L with

�̂ � �. Given an integer k > 0, let h : S → S be either the map σk
3 or the map

−σk
3 . Suppose that the leaves � and �̂ move towards each other by the map h and

neither the leaves � and �̂, nor any leaf separating them, can eventually map into
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a leaf (including degenerate) with both endpoints in the same boundary arc of the

strip S(�, �̂). Then there exists a σ3-periodic leaf y ∈ L that separates � and �̂.

Proof. Note that, if h = −σk
3 , then h2 = σ2k

3 . Hence an h-periodic leaf is σ3-
periodic, too. We will now show that there exists an h-periodic leaf �′′ separating �

and �̂. Consider the family T of leaves of L that consists of � and leaves u separating

� from �̂ and either h(u) = u or u separates � from h(u) \ u. By continuity, T is
closed. Also, T is non-empty as � ∈ T by definition. Hence T contains a leaf t
farthest from �. If h(t) = t we are done; assume that t �= h(t). By continuity and
by the choice of t there must exist a gap H whose interior is separated from � in

D by t, and t is an edge of H. Let s be the edge of H defined as follows: if �̂

is an edge of H, then s = �̂, otherwise s is the edge of H that separates �̂ from
h(s) \ s. If h(s) = s, we are done. Assume that h(s) �= s; then, since s �∈ T and
by the assumptions, h(s) = t, h(t) = s, and H is h-invariant. Hence s and t are
h-periodic, and we are done in that case, too. �
Lemma 6.6. Let c ∈ CsCL be a non-degenerate comajor such that σ3(c) is not
periodic. If there exists a sequence of leaves ci ∈ L(c) with c ≺ ci and ci → c, then
c is the limit of preperiodic comajors ĉj ∈ L(c) of preperiod 1 with c ≺ ĉj for all j.

Proof. Let {m,−m} and {M,−M} be the minors and majors of L(c) respectively
(we choose one pair of majors out of two possible pairs). By the assumptions, the
minor leavesm = σ3(c) and −m = −σ3(c) are not periodic. Setmi = σ3(ci) ∈ L(c);
then mi → m and mi � m.

By Lemma 5.13, iterated pullbacks of minors are dense in L(c). Hence there
exists a sequence ni of further and further preimages of m or −m with ni � m and
ni → m (as each mi is approximated by similar sequences of pullbacks of minors).

For each i there is ki such that for hi = σki
3 or hi = −σki

3 we have hi(ni) = m.
Because no forward image of m can be shorter than m, the leaf hi(m) cannot be

underm. Also, hi(m) �= m (recall that h2
i (m) = σ2ki

3 (m), andm is not σ3-periodic).
Thus, hi maps ni and m towards each other.

Choose ni so that the width of the strip S(m,ni) is less than ‖m‖. By Lemma
5.4, any leaf of length at least ‖m‖ never maps into the boundary arcs of the strip
S(m,ni). Since ni is not a periodic leaf, by Lemma 6.5, there is a σ3-periodic leaf
yi separating m and ni.

Choose the shortest leaf ŷi in the orbit of yi. We claim that if ŷi �= yi then it
separates either yi and m, or −yi and −m. Indeed, ŷi = σ3(ỹi) with ỹi being a
leaf from the orbit of yi; the leaf ỹi is closer to a major than the corresponding
pullbacks of yi as otherwise its length will not drop below the length of yi. This
implies the above made claim about the possible locations of ŷi.

Choose long and medium pullbacks of ŷi close to major pullbacks M and M ′ of
m, and the short pullback ĉi of ŷi. Since ŷi is the shortest leaf in its orbit, it cannot
map under itself or under −ŷi. By Lemma 6.3, the leaf ĉi is a comajor, and we
obtain a sequence {ĉi}∞i=1 of preperiod 1 comajors converging to c such that ĉi � c
for all i. �
Corollary 6.7. Every not eventually periodic comajor c is a two sided limit leaf
in the Cubic Symmetric Comajor Lamination CsCL.

Proof. By Lemma 5.5, the leaf c is a two sided limit leaf in L(c) approximated by
leaves of L(c) not sharing an endpoint with it. Thus, in fact no leaf of L(c) shares
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an endpoint with c. By Lemmas 6.2 and 6.6, we see that c can be approximated on
both sides by a sequence of comajors in CsCL that do not share an endpoint with
c as desired. �

Finally we consider preperiodic comajors of preperiod bigger than 1.

Lemma 6.8. A non-degenerate preperiodic comajor c of preperiod at least 2 is a
two sided limit leaf of CsCL or an edge of a finite gap H of CsCL whose edges are
limits of comajors of CsCL disjoint from H.

Proof. Critical sets of the symmetric lamination L(c) are collapsing quadrilaterals
Q and −Q. We claim that all gaps of L(c) are finite. Indeed, let U be an infinite
gap of L(c). By Theorem 2.19, we may assume that U is periodic. If the degree of
U is greater than 1, then σn

3 (U) contains Q or −Q for some n > 0, a contradiction.
If the degree of U is 1, then, by Theorem 2.20, the gap σn

3 (U) has a critical edge,
again a contradiction. Thus, all gaps of L(c) are finite.

Since the minors ±m of L(c) are not periodic (the preperiod of c is greater than
1), if ±m are two-sided limit leaves of L(c), then, by Lemmas 6.2 and 6.6, the
leaves ±c are two-sided limit leaves of CsCL. Assume now that m is an edge of a
finite gap G of L(c); let G(c) be its pullback containing c and G(M) be its pullback
containing the majors. Then σ3 maps G(c) onto G one-to-one, and sets G, G(M),
G(c) are non-periodic; G(M) � Q (hence, G(M) is not a gap of L(c)) and contains
no diagonals that are leaves of L(c).

We claim that each edge of G(c) and −G(c) is a comajor of a symmetric lami-
nation. Remove from L(c) the edges of Q that are not edges of G(M) and all its
pullbacks, do the same with −Q, and thus construct a lamination L′(c) with critical
sets G(M) and −G(M).

Let � be an edge of G(c). The sibling leaves of � are edges of G(M); form a
quadrilateral Q′ ⊂ G(M) by connecting their endpoint (i.e., subdivide G(M) by
adding Q′ ⊂ G(M)). Do the same with −G(M). By adding all preimages of the
new leaves inside preimages of G(M), we obtain a new symmetric lamination with
� and −� as comajors.

The edges of G(c) (or −G(c)) form a gap of CsCL since by Corollary 4.7, no
diagonal of the polygon G(c) can be a leaf (let alone comajor!) of a symmetric
lamination. We claim that all edges of G(c) (and −G(c)) are non-isolated in L(c).
Indeed, otherwise there exists a finite gap H that shares an edge (leaf) � with G(c).
Consider cases.

(1) The gap H is not an iterated pullback of ±Q. By Theorem 3.9, the gap H
is preperiodic. Combining H and G(c) we obtain in the end a periodic polygon
subdivided into several smaller polygons. Removing leaves located inside it, and
all their iterated pullbacks, we will obtain a symmetric lamination with some peri-
odic gap so that a diagonal can be added to the lamination, a contradiction with
Corollary 4.7.

(2) The gap H is an eventual pullback of Q (or −Q). Then � maps to an edge
σk
3 (�) of Q and the set σk

3 (G(c)) is attached to this edge. Since no image of c
is contained in SH(M), either M or M ′ must be an edge of σk

3 (H). If σk
3 (H) is

contained in G(M), then it is periodic, and hence M is periodic, a contradiction.
If σk

3 (H) is not contained in G(M), then the image of σk
3 (H) ∪ Q ∪ G(M) is a

preperiodic polygon which contains σ3(M) as a diagonal, As in (1), this yields a
contradiction.
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By (1) and (2), all edges of G(c) (and −G(c)) are non-isolated in L(c). By
Lemmas 6.2 and 6.6, all the edges of G(c) (and −G(c)) are approximated by a
sequence of leaves in CsCL, too.

Finally, we claim that none of these approximating comajors share an endpoint
with edges of G(c) (and −G(c)). If they did, they would all have the same preperiod
and same period by Lemma 5.5. Any two such leaves create a fixed return triangle
contradicting Proposition 4.4. �

Theorem 6.9 (Main theorem of this section). The Symmetric Cubic Comajor
Lamination CsCL is a q-lamination.

Proof. By Lemma 6.1, Corollary 6.7 and Lemma 6.8, no more than two comajors
meet at a single point. Hence, CsCL is a q-lamination. �
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