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DYNAMICAL SYSTEMS OF CORRESPONDENCES ON THE

PROJECTIVE LINE I: MODULI SPACES AND MULTIPLIER

MAPS

RIN GOTOU

Abstract. We consider moduli spaces of dynamical systems of correspon-
dences over the projective line as a generalization of moduli spaces of dy-
namical systems of endomorphisms on the projective line. We define the
moduli space Dynd,e of degree (d, e) correspondences. We construct a fam-
ily ρc : Dynd,e ��� Dyn1,d+e−1 of rational maps representation-theoretically.
Here we note that Dyn1,d+e−1 is identical to the moduli space of the usual
dynamical systems of degree d+ e− 1. We show that the moduli space Dynd,e

is rational by using ρc. Moreover, the multiplier maps for the fixed points
factor through ρc. Furthermore, we show the Woods Hole formulae for cor-
respondences of different degrees are also related by ρc and obtain another
representation-theoretically simplified form of the formula.

1. Introduction

Silverman [32] studied moduli spaces of dynamical systems over the projective
line P1, which parameterizes endomorphisms up to the conjugations by the au-
tomorphisms on P1 by using geometric invariant theory (GIT for short). Self-
correspondence is a generalization of endomorphism. Some important concepts on
a dynamical system of endomorphism have natural generalization for a dynamical
system of (self-)correspondence. An example is Woods Hole formula, which was
originally stated for correspondence by Atiyah-Bott [1] and Illusie [13] and used
for dynamical system of self-maps by Ueda [36]. Other examples are the canonical
measure and the canonical height, which were originally stated for self-map and
generalized to correspondence by Dinh-Kaufmann-Wu [4] and Ingram [14] respec-
tively.

In this paper, we construct moduli spaces of dynamical systems of correspon-
dences on the projective line as an analogue of Silverman’s construction [32]. We
firstly construct the moduli space Corrd,e of correspondences of degree (d, e), which
parameterizes the closed subschemes C ⊂ P1

x × P1
y defined by an equation∑d

i=0

∑e
j=0 aijx

iyj = 0. To construct moduli spaces of dynamical systems up to

coordinate changes, we consider the diagonal action of Aut(P1) � PGL2 on P1×P1,
which is equivalent to the conjugation action on the graph variety (for example, see
[30]). We give characterization of stable points and semistable points. The stable
and semistable loci were given in [32] for the case d = 1, that is, the case of moduli
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spaces of rational maps. We obtain a simple generalization of this result to our
moduli spaces of correspondences as follows.

Theorem 1.1 (Theorem 6.12). The point of Corrd,e which represents a correspon-
dence C is a stable point (resp. a semistable point) if and only if C has no point of
multiplicity ≥ d+e

2 (resp. of multiplicity > d+e
2 ) on the diagonal of P1 × P1.

Corollary 1.2. The semistable locus Corrssd,e coincides with the stable locus Corrsd,e
if and only if d+ e is odd.

Remark 1.3. GIT ensures the existence of a uniform geometrical quotient of the sta-
ble locus and a compactification of the quotient as a universal categorical quotient
of the semistable locus.

The compactified moduli space of dynamical systems Dynd,e := Corrssd,e �PGL2,
of dimension (d+1)(e+1)−4, is constructed as the projective spectrum of a graded
invariant ring.

By computing the composition of correspondence explicitly, we construct the
iteration map Ψn : Corrd,e ��� Corrdn,en , C �→ C ◦C ◦ · · · ◦C (Definition 5.21). We
check that the iteration map on Dynd,e is well-defined by using Theorem 6.12.

Corollary 1.4 (Corollary 6.13). The iteration map Ψn : Corrd,e ��� Corrdn,en

induces the rational map

Φn : Dynd,e ��� Dyndn,en .

Representation theory is an effective tool to study graded invariant ring (see
[3],[28],[29]), which is applied for Dyn1,d in [37]. In this paper, we also construct

rational maps parametrized by points c of A1 \ {0}
(1.1) ρc : Dynd,e ��� Dyn1,d+e−1

using the Clebsch-Gordan decomposition in representation theory. The rationality
of the moduli space Dyn1,d+e−1 was shown by Levy [19]. The method used in
the same paper also gives that these rational maps ρc are generically affine space
bundle. Thus, we can deduce the rationality of Dynd,e:

Proposition 1.5 (Proposition 6.17). Dynd,e is rational for d, e ≥ 1 with (d, e) �=
(1, 1).

Moduli spaces as above can be applied to so-called inverse problems, which
concern the existence and the classification of dynamical systems with prescribed
invariants. A typical example of such invariant is multipliers of periodic orbits. For
a dynamical system f : P1 → P1 of degree d, we denote the elementary symmetric
polynomials of the fixed point multipliers by σk(f), that is,

(1.2) 1 +

d+1∑
i=1

σk(f)t
k =

∏
x:f(x)=x

(1 + f ′(x)t)

for a formal variable t. The rational map

λ1,(1,d) : Dyn1,d ��� Pd+1, λ1,(1,d)([f ]) := [1 : σ1(f) : · · · : σd+1(f)]

is called the fixed point multiplier map. This is used to show the rationality of the
moduli space Dyn1,2 (see [26], [32], [33], [34]), as well as to study inverse problems
for multipliers (see [6], [7], [9], [10], [12],[25],[35]). A fundamental relation among
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multipliers, holomorphic Lefschetz formula (see for example [11]), is obtained as an
application of the Woods Hole formula

(1.3)
∑

x:f(x)=x

1

1− f ′(x)
= 1, or equivalently,

d+1∑
i=0

(−1)i(d− i)σi(f) = 0.

This formulation is given in [33],[36] for a morphism f : P1 → P1. We construct
the fixed point multiplier map for correspondence

λ1,(d,e) : Dynd,e ��� Pd+e,

interpreting the fixed points of the correspondence defined by f(x, y) = 0 as the
points {z ∈ P1|f(z, z) = 0} and the derivative as the implicit function derivative
df := −∂xf/∂yf ∈ P1. The Woods Hole formula for a correspondence is given in [1]
and [13]. Our convention of fixed points and multipliers suits to express the Woods
Hole formula in a form generalizing (1.3),

(1.4)
∑

z:f(z,z)=0

1

1− df(z, z)
= d, or equivalently,

d+e∑
i=0

(−1)i(e− i)σi(f) = 0,

where σi(f)’s are the elementary symmetric forms of multipliers, we define on (7.4)
in Subsection 7.1. For correspondences of different degrees, these Woods Hole
formulae were not strongly related except that they can be deduced by parallel
arguments.

We show that the map ρc : Dynd,e ��� Dyn1,d+e−1 mentioned above also gives
unexpected equivalences between (1.3) and (1.4).

Proposition 1.6 (Proposition 7.5). There exists a projective linear morphism Ac ∈
Aut(Pd+e) = PGLd+e which makes the following diagram commutative:

Dynd,e Pd+e

Dyn1,d+e−1 Pd+e.

λ1,(d,e)

ρc
Ac

λ1,(1,d+e−1)

Moreover, by using an explicit coordination Pd+e � P(k[Z0, Z1]d+e) depending
on the degree (d, e) (more precise construction is on Sections 3 and 7), we can write
the images of the multiplier map explicitly.

Theorem 1.7 (Theorem 7.7). For any d, e ≥ 1, the image of λ1,(d,e) on Pd+e �
P(k[Z0, Z1]d+e) is the hyperplane ([the coefficient of Zd+e−1

0 Z1] = 0).

Combining this argument with a known elementary proof of (1.3), we obtain
another proof (Corollary 7.9) of the Woods Hole formula for correspondences (1.4).

As the construction of the moduli space of dynamical systems of correspondences,
there are two problems unsolved in this paper. See corresponding remarks for more
precise information.

Problem 1.8 (Remark 6.15). How do indeterminacy loci of iteration maps behave?

Problem 1.9 (Remark 7.2). Is the n-th multiplier map λn,(d,e) := λ1,(dn,en)◦Ψn on
Corrd,e well-defined? If (d, e) are coprime and n is odd, then λn,(d,e) is well-defined.
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Remark 1.10. The fixed point of Ψn([f(x, y)]) is a generalization of periodic points
of period n of usual dynamical system. If the n-th multipliers of f (i.e. the fixed
point multipliers of Ψn([f ])) are well-defined, then (1.4) gives the correspondence-
analogues of multiplier formulae for periodic points.

By writing down the multiplier map λ1,(d,e) on Corrd,e in a representationally
simplified coordinate, we obtain another result about a universal polynomial func-
tion called resultant. For a pair of polynomials f(x) = a0 + a1x + . . . + adx

d and
g(x) = b0 + b1x+ . . .+ bex

e, the resultant resx(f(x), g(x)) is a polynomial function
of a0, . . . , ad, b0, . . . , be which vanishes if and only if f and g have any common root.
For more details on resultant, see Subsection 5.2. We prove Theorem 1.11.

Theorem 1.11 (Corollary 7.10). For an arbitrary field k and any polynomials
f, g ∈ k[x] such that deg f ≥ 3 and deg f ≥ deg g + 2, we have

∂

∂t
resx(f(x), f

′(x) + tg(x))

∣∣∣∣
t=0

= 0.

Remark 1.12. In Remark 7.11, we give another, nondynamical theoretic method
to prove Theorem 1.11 by regarding the above resultant as a perturbation of the
discriminant Δ(f) = resx(f(x), f

′(x)).

This paper is organized as follows: In Section 2, we set up notation and ter-
minology. In Section 3, we see a sketch of the proofs. In Section 4, we review
representation theory of SL2, including Clebsch-Gordan decomposition that we use
later. In Section 5, we construct moduli spaces of correspondences and rewrite
the composition and conjugation of correspondences as maps and actions on the
moduli spaces respectively. In Section 6, we construct the moduli spaces of dynam-
ical systems of correspondences, characterize the stable and semistable loci of the
conjugation action and show the rationality of the moduli spaces. In Section 7, we
construct multiplier maps and reformulate the Woods Hole Formula representation-
theoretically.

2. Notation and terminology

Throughout this paper, we follow [20] for the terminology of algebraic geometry.
We fix a field k of characteristic zero. Unless otherwise stated, we suppose that

every scheme is a scheme over k.
For a ring R and a free R-module M of finite rank, we denote by R[M ] the

symmetric tensor algebra Sym•
R M :=

⊕∞
n=0 M

⊗n/〈v ⊗ w − w ⊗ v〉. We note that
if we choose an R-basis {x1, . . . , xr} of M , R[M ] is identified with the polynomial
ring R[x1, . . . , xr]. When a group G and a representation ρ : G → AutR(M) are
also given, we write R[M ]G for the invariant ring.

We denote by Symn M the permutation-invariant part of the n-th tensor power.

3. Sketch of proofs

Our main aims in this paper are to prove Theorem 6.12, Proposition 6.17, Propo-
sition 7.5 and Theorem 7.7. Moreover, there are some secondary aims to prepare
fundamental concepts for the moduli-theoretic treatment of dynamical systems of
correspondences on P1.

Theorem 6.12 is the theorem which gives a description of the stable and semi-
stable loci of the moduli space Corrd,e of the correspondences of degree (d, e).
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This is shown in Subsection 6.1 by applying the numerical criterion of GIT to
the explicit description of the PGL2-action on Corrd,e. The description of the
action is well-known for experts of moduli theory as similar action is used with no
appropriate mention (e.g. [30], [21], [22], [23], [24] and [31]). However, we confirm
the description precisely, because it is a key of this paper. In Subsection 5.1, we
construct Corrd,e as the complete linear system

Corrd,e := |OP1×P1(d, e)| = P(Γ(OP1×P1(d, e))).

The diagonal action of SL2 on Γ(OP1×P1(d, e)) is isomorphic to the representation
Vd⊗Ve, where Vn := Symn(k

⊕2). That is, we have an SL2-equivariant isomorphism
Corrd,e � P(Vd ⊗ Ve). To see there is not so much difference between the SL2-
action and the PGL2-action to use GIT, we briefly review GIT in Subsection 6.1.
In particular, we state the numerical criterion, which is used to describe the PGL2-
action.

Proposition 6.17 establishes the rationality of the moduli space Dynd,e :=
Corrssd,e �PGL2. This proposition follows from Levy’s theorem [19], which shows the
rationality of Dyn1,d. The most important step is to construct a PGL2-equivariant
rational map

ρ : Corrd,e ��� Corr1,d+e−1 .

This ρ induces the rational map ρ : Dynd,e ��� Dyn1,d+e−1, which inherits sur-
jectivity and rationality of generic fibers from ρ. Combining this fact with Levy’s
theorem, we obtain the rationality of Dynd,e.

The construction of the morphism ρ is representation-theoretic. The morphism
ρ is derived from the Clebsch-Gordan decomposition, which is the isomorphism of
SL2-representation

Vd ⊗ Ve � Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ V|d−e|

introduced in Subsection 4.2. The morphism

ρ : Corrd,e � P(Vd ⊗ Ve) ��� P(V1 ⊗ Vd+e−1) � Corr1,d+e−1

is the projectivisation of the morphism of representation

Vd ⊗ Ve � Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ V|d−e|
(idVd+e

,c idVd+e−2
,0,...,0)

−−−−−−−−−−−−−−−−−→ Vd+e ⊕ Vd+e−2 � V1 ⊗ Vd+e−1.(3.1)

Here we can take an arbitrary constant c ∈ k×.
Other two aims are about relations between Clebsch-Gordan decomposition and

multiplier maps. Let

Ωi : Vd ⊗ Ve � Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ V|d−e| → Vd+e−2i (i = 0, 1, . . . ,min(d, e))

be the projection defined from the Clebsch-Gordan decomposition. In Subsection
7.2, we show that the fixed point multiplier map λ1,(d,e) : Corrd,e ��� Pd+e for
degree (d, e) correspondences is given by

(3.2) λ1,(d,e)([f ]) = [resz(Ω
0f(z), (Ω0f)′(z)Z0 + (Ω1f)(z)Z1)] ∈ P(k[Z0, Z1]d+e)
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for [f ] ∈ Corrd,e = P(Vd ⊗ Ve), where k[Z0, Z1]d+e is the vector space of the homo-
geneous polynomials of degree d+ e. Then we obtain a commutative diagram

Dynd,e P(k[Z0, Z1]d+e)

Dyn1,d+e−1 P(k[Z0, Z1]d+e)

λ1,(d,e)

ρc Ac

λ1,(1,d+e−1)

where c ∈ k× is the constant taken in (3.1) and Ac is the isomorphism induced
from the variable transformation Z0 �→ Z0, Z1 �→ cZ1. This commutativity is the
assertion of Proposition 7.5.

We note that the rational map λ1,(d,e) is originally defined as the function which
gives the multipliers of the fixed points. In Subsection 7.1, we define λ1,(d,e) along
this original meaning, with a little modification using resultant. At the beginning
of Subsection 7.2, we transform its expression to the above form (3.2) by using the
definition of the Clebsch-Gordan decomposition introduced in Subsection 4.2 and
a property of resultant introduced in Subsection 5.2.

Theorem 7.7 is that the coefficient of Zd+e−1
0 Z1 of λ1,(d,e)(f) vanishes in (3.2).

This theorem is a variation of known Woods Hole Formula for the map case (1.3).
As other variations, this theorem implies Corollaries 7.9 and 7.10.

Secondary aims of this paper are to define composition maps (Definition 5.13),
iteration maps (Definition 5.21, Corollary 6.13) and n-th multiplier maps (Defini-
tion 7.1, Remark 7.2). The composition of a generic pair of correspondences (C,D)
is the closure of the variety C ◦D such that

C ◦D(K) = {(x, y) ∈ (P1)2 | ∃z ∈ P1(K) s.t. (x, z) ∈ C(K), (z, y) ∈ D(K)}
for any algebraically closed field K over the base field k. In Subsection 5.3, we see
that the composition maps on the moduli space are given by

◦ : Corrd,e ×Corrd′,e′ ��� Corrdd′,ee′ ,

([f(x, y)], [g(x, y)]) �→ [resz(f(x, z), g(z, y))].

Iteration maps and n-th multiplier maps are constructed from the composition
maps, the quotient Corrd,e ��� Dynd,e and the fixed point multiplier map λ1,(d,e),
these are all rational maps. We check compatibility and well-definedness in each
step of constructions.

Compatibility is mainly reduced to associativity of the composition maps
(Proposition 5.19), this is shown by an abstract argument. To show well-definedness,
we restrict indeterminacy loci of rational maps we use to construct, by writing down
the rational maps in some resultants. Then, we show that the correspondence given
by xd−ye or xdye−1 avoids the indeterminacy loci. Unfortunately, these examples
are not enough to define n-th multiplier maps, this is Problem 1.9.

4. Representation theory for SL2 and PGL2

In this section, we review some known materials from representation theory, the
Cayley operator and the Clebsch-Gordan decomposition in Subsection 4.2. Con-
tents in this section are found for example in [2].

For the special linear group SL2(k), we denote the trivial representation on k by
V0, the natural representation on k2 by V1 and the symmetric tensor representation
Symn(V1) by Vn. From the construction, we have dimVn = n+ 1.
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Proposition 4.1. If n is an even number, then there exists an action of PGL2(k)
on the vector space Vn such that the pullback action to SL2(k) is Vn.

Proof. We consider the representation Δn(−n
2 ) of GL2(k) on (k2)⊗n which is given

by

g · (v1 ⊗ v2 ⊗ · · · ⊗ vn) := (det g)−
n
2 (gv1 ⊗ gv2 ⊗ · · · ⊗ gvn) (for g ∈ GL2(k)).

By Δn(−n
2 ), any scalar matrix

(
c 0
0 c

)
∈ GL2(k) acts trivially. Therefore, Δn(−n

2 )
is a representation of PGL2(k). Moreover, the action of PGL2(k) by Δn(−n

2 ) com-
mutes with the action of Sn by permuting components. This gives a subrepresen-
tation of PGL2(k) on Symn k

2. The restriction of the subrepresentation on SL2(k)
is the n-th symmetric tensor of V1, therefore this is a required representation. �
4.1. Weight. Weight theory is a theory which measures representations of a group
scheme G over k by looking at the action of the multiplication group Gm through
morphisms Gm → G. For any integer n, we write k(n) for the one-dimensional
representation of Gm given by t · v = tnv (t ∈ Gm(k), v ∈ k(n)).

Definition 4.2. Let V be a finite dimensional rational representation of Gm. If
V �

⊕
i k(ni), then we define the weight w(V ) of V by the Laurent polynomial

w(V ) =
∑

i q
ni .

For a homomorphism λ : Gm → G between group schemes, the λ-weight wλ(V )
of a finite dimensional rational representation V of G is the weight of the Gm-action
induced by λ.

Remark 4.3. From a diagonalization of the action of an element which is not a
root of unity, we can see the weight of a representation is well-defined if it exists.
Moreover, by the diagonalization, we can see that if a representation V has the
weight, then any subrepresentation of V has its weight.

We fix the group morphism

c : k× � t �→
(
t 0

0 t−1

)
∈ SL2(k).

Example 4.4.

(i) For the canonical basis {e1, e2} of V1 � k⊕2, we have c(t) · e1 = t · e1 and
c(t) · e2 = t−1 · e2. Therefore, the representation of k× on V1 induced by c
is isomorphic to k(1)⊕ k(−1). So we have wc(V1) = q + q−1.

(ii) For any representation V which has the weight wc(V ) =
∑dimV

i=1 qni , the
generating function (called Hilbert Series) of the symmetric products is
given by

∞∑
n=0

wc(Symn V ) · tn =

dimV∏
i=1

1

1− qni · t .

In particular, we have

wc(Vn) =
qn+1 − q−(n+1)

q − q−1
= qn + qn−2 + . . .+ q−(n−2) + q−n.

For any representation V with the λ-weight wλ(V ) = f(q), the weight of the
dual representation V ∗ is given by wλ(V

∗) = f(q−1). In particular, by Example
4.4(ii), the representation Vn and its dual has the same weight. In fact, they are
isomorphic in characteristic zero.
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Proposition 4.5. The dual representation of Vn is isomorphic to Vn.

Proof. Since k is of characteristic 0, it is enough to show the proposition for n = 1
(see Remark 4.6).

Let [e1, e2] be the basis of V1 and [f1, f2] the dual basis of V
∗
1 . The dual represen-

tation is defined by A ·f := f ◦A−1 (f ∈ V ∗
1 , A ∈ SL2(k)). Therefore the transpose

(A−1)T is the representation matrix of the action of A by the dual representation.
We have (A−1)T = IAI−1 for I =

(
0 −1
1 0

)
. Therefore, an isomorphism V1 → V ∗

1 is
given by e1 �→ −f2, e2 �→ f1. �

Remark 4.6. The canonical morphism Symn(V
∗) → (Symn V )∗ induced from the

inclusion morphism

Symn V = (V ⊗n)Sn → V ⊗n

is an isomorphism because our field k has characteristic 0 and the binomial coeffi-
cients are invertible. In positive characteristic p, the canonical morphism Symn(V

∗)
→ (Symn V )∗ is not isomorphism for n ≥ p. In fact, the representations
Vn = Symn(V1) and V ∗

n = Symn(V1)
∗ are not isomorphic [2].

4.2. Clebsch-Gordan decomposition. For a finite dimensional vector space V ,
the space of n-ic forms, that is, the vector space of the all degree n homogeneous
polynomials in k[V ], is naturally isomorphic to (Symn(V

∗))∗ in arbitrary charac-
teristic. Therefore, by Proposition 4.5, the representation Vn is identified with the
space of n-ic binomial forms in characteristic zero. The variables are the standard
basis of V1 = k2 indeed, and we write the basis as {x0, x1}, {y0, y1} or {z0, z1} in
this subsection.

Proposition 4.7. The representation Vn of SL2 is irreducible.

Proof. We note that c(t) · xn−i
0 xi

1 = tn−2ixn−i
0 xi

1 under the identification between
Vn and the space of n-ic binomial forms.

Let W be an arbitrary nonzero SL2-stable subspace of Vn. By Remark 4.3, we
have

W =
⊕
i∈IW

kxn−i
0 xi

1

for some nonempty IW ⊂ {0, 1, . . . , n}. We take a monomial xn−i
0 xi

1 ∈ W . Since

W is SL2-stable, we have
(
1 1
1 2

)
· xn−i

0 xi
1 = (x0 + x1)

n−i(x0 + 2x1)
i ∈ W . Therefore

we have IW ⊃ {0, . . . , n}, that is, V = W . �

If we have two binomial forms f(x0, x1) and g(y0, y1) of degree d and e respec-
tively, the Cayley operator Ωxy := ∂x0

∂y1
− ∂y0

∂x1
gives a new binomial form(

Ωm
xyf(x0, x1) · g(y0, y1)

)∣∣
(x0,x1)=(y0,y1)=(z0,z1)

of variables (z0, z1) and degree d+e−2m, for 0 ≤ m ≤ min(d, e) = 1
2 (d+e−|d−e|).

This linear map is SL2-equivariant, that is, we have a morphism of representation

Ωm : Vd ⊗ Ve → Vd+e−2m

given by

(4.1) Ωm(f(x0, x1)⊗ g(y0, y1)) :=
(
Ωm

xyf(x0, x1) · g(y0, y1)
)∣∣

(x0,x1)=(y0,y1)=(z0,z1)
.
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Proposition 4.8 (Clebsch-Gordan decomposition, [2, Theorem 3.2.4]). The mor-
phism

|d−e|⊕
i=0

Ωi : Vd ⊗ Ve → Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ V|d−e|+2 ⊕ V|d−e|

is an isomorphism.

Proof. It is enough to show that the morphism Ωm : Vd⊗Ve → Vd+e−2m is surjective
for 0 ≤ m ≤ min(d, e). By Proposition 4.7, it is sufficient to show that the morphism
Ωm : Vd ⊗ Ve → Vd+e−2m is nonzero, which follows from the explicit calculation

Ωm(xd
0 ⊗ ye−m

0 ym1 ) =
d!m!

(d−m)!
zd+e−2m
0 .

�

Remark 4.9 (Schur’s lemma). Let V and W be two finite dimensional irreducible
representations of SL2. Then there exists nonzero homomorphism from V to W if
and only if they are isomorphic. In particular, we have

dimk HomSL2(k)

⎛
⎝⊕

i

Vai
,
⊕
j

Vbj

⎞
⎠ =

∑
i,j

δai,bj .

5. Correspondence

Let X and Y be schemes. A closed subscheme of X × Y is called an algebraic
correspondence between X and Y . We can regard a morphism X → Y as an
algebraic correspondence given by the graph of the morphism. Therefore algebraic
correspondence is a generalization of morphism.

5.1. The moduli space of correspondences over P1. Over P1 ×P1, we denote
the line bundle p∗1O(d) ⊗ p∗2O(e) by O(d, e) and the set of its global sections by
Vd,e. We fix homogeneous coordinates of each component, choosing canonical bases
x0, x1 ∈ V1,0 and y0, y1 ∈ V0,1. Using these coordinates we have

Vd,e =

⎧⎨
⎩

∑
0≤i≤d, 0≤j≤e

ai,jx
d−i
0 xi

1y
e−j
0 yj1

∣∣∣∣∣∣ ai,j ∈ k

⎫⎬
⎭ .

Later we will see that we can identify Vd,e with Vd ⊗ Ve (Corollary 5.23).

Definition 5.1. A nonzero element f of Vd,e is called a bihomogeneous polynomial
of bidegree (d, e). A (d + 1) × (e + 1)-matrix A = (aij)0≤i≤d,0≤j≤e is called the
coefficient matrix of f if

(5.1) f =
∑

0≤i≤d, 0≤j≤e

aijx
d−i
0 xi

1y
e−j
0 yj1.

We often abbreviate a bihomogeneous polynomial (5.1) as

f = f(x, y) =
∑
i,j

aijx
iyj

if the degree of correspondence (d, e) is apparent.
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Remark 5.2. Despite fixing a notation of canonical bases of V1,0 and V0,1, we
sometimes regard a bihomogeneous polynomial as just a polynomial of variables
x0, x1, y0, y1. Moreover, we sometimes substitute a pair of variables x0, x1 or y0, y1
by another pair of variables z0, z1.

Definition 5.3. A closed subscheme C of P1 × P1 is said to be a divisorial corre-
spondence, or simply a correspondence, if OC = OP1×P1/I and I is a locally free
sheaf of rank one. A divisorial correspondence C given by an ideal sheaf I is of
degree (d, e) if I is isomorphic to O(−d,−e) as an OP1×P1-module.

Remark 5.4. We abbreviated the term “effective”, the condition which we required
for divisorial correspondence as a divisor on P1 × P1. Moreover, we sometimes
abbreviate the term “divisorial” and simply call correspondence.

The fine moduli space of divisorial correspondences of degree (d, e), denoted by
Corrd,e, is given by the complete linear system

Corrd,e � (A(Vd,e) \ {0})/Gm � P(Vd,e).

We sometimes abuse a symbol for a bihomogeneous polynomial to the correspon-
dence given by the polynomial and the point of Corrd,e indicating the correspon-
dence.

5.2. Resultant.

Definition 5.5. Let R be a commutative ring R and x a variable. For R[x]d :=
{f ∈ R[x] | degx f ≤ d}, the resultant resx,(d,e) : R[x]d × R[x]e → R is defined as
the determinant of the Sylvester matrix

resx,(d,e)

⎛
⎝ d∑

i=0

fix
i,

e∑
j=0

gix
i

⎞
⎠ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · fd
f0 f1 · · · fd

. . .
. . .

. . .
. . .

f0 f1 · · · fd
g0 g1 · · · ge

g0 g1 · · · ge
. . .

. . .
. . .

. . .

g0 g1 · · · ge

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

d.

For homogeneous polynomials of two variables x0, x1, F (x0, x1) = xd
0f(

x1

x0
) and

G(x0, x1) = xe
0g(

x1

x0
) of degree d and e respectively, we define the homogeneous

resultant
res[x0,x1](F (x0, x1), G(x0, x1)) := resx,(d,e)(f(x), g(x)).

Example 5.6. The discriminant of a polynomial f(x) (with respect to its variable
x) is the resultant of the polynomial f(x) and its derivative f ′(x). For example,
the discriminant of a cubic polynomial f(x) = x3 + ax+ b is

resx,(3,2)(f(x), f
′(x)) =

∣∣∣∣∣∣∣∣∣∣

b a 1
b a 1

a 3
a 3

a 3

∣∣∣∣∣∣∣∣∣∣
= 4a3 + 27b2.

By Proposition 5.7(i), a polynomial g(x) has a multiple divisor if and only if its
discriminant is zero.
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We need the following fundamental properties of the resultant.

Proposition 5.7 ([33, Proposition 2.13]). Let R be an integral domain and let K̄
be an algebraic closure of the fractional field Frac(R).

(i) The homogeneous resultant of two homogeneous polynomials on R is 0 if
and only if the polynomials have a common factor as homogeneous poly-
nomials over K̄.

(ii) For f, g ∈ R[x], d = degx f and e = degx g, we have

R ∩ (fR[x] + gR[x]) = resx,(d,e)(f(x), g(x))R.

(iii) For homogeneous polynomials F (x, y) and G(x, y) such that

F (x, y) = f0

d∏
i=1

(x− αiy), G(x, y) = g0

e∏
j=1

(x− βiy) (αi, βj ,∈ K̄, f0, g0 ∈ R),

we have

res[x,y](F (x, y), G(x, y)) = fe
0 g

d
0

d∏
i=1

e∏
j=1

(αi − βj) = fe
0

d∏
i=1

G(αi, 1).

(iv) The homogeneous resultant is a unique family of maps which satisfies

res[x,y](ax+ by, cx+ dy) = bc− ad (a, b, c, d ∈ K̄),

res[x,y](F1F2, G) = res[x,y](F1, G) res[x,y](F2, G) and

res[x,y](G,F ) = (−1)degF degG res[x,y](F,G)

for any homogeneous polynomial F, F1, F2 and G.

Proof. The assertions (i), (ii) and (iii) are the assertions (a), (c) and (b) of [33,
Proposition 2.13] respectively. The assertion (iv) follows from (iii). �

Corollary 5.8. Let F,G and H be homogeneous polynomials of variables x, y.

(i) If degF + degH = degG, then we have

res[x,y](F,G+ FH) = res[x,y](F,G).

(ii) [8, Chapter 12.1] For any matrix g =
(
a b
c d

)
∈ GL2(R), we have

res[x,y](F (g · (x, y)), G(g · (x, y))) = (det g)degF ·degG res[x,y](F (x, y), G(x, y)),

where g · (x, y) := (ax+ by, cx+ dy).

Proof. (i) This is evident from Proposition 5.7(iii).
(ii) This is evident from Proposition 5.7(iv). �

Remark 5.9. In [8, Chapter 12.1], Corollary 5.8(ii) is shown by using the universality
of the resultant and covariance.

In the theory of arithmetic dynamics, homogeneous resultants are used for vari-
ous purposes:

• to give a Lipschitz constant with respect to the chordal metric [33, Theo-
rem 2.4];

• to determine well-definedness of a rational self-map over P1 [33, Theorem
2.5];
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• to compute the image of multiplier map (this is perhaps well-known to
experts, but the author could not find suitable reference);

• to compute the composition of correspondences ([15], [18]).

We use homogeneous resultants for the latter two purposes.

5.3. Composition.

Proposition 5.10. Let C = Spec k[x, y]/(f(x, y)) and D = Spec k[x, y]/(g(x, y)) be
closed subschemes of A2 and let iC and iD be their inclusion morphisms respectively.

Let p : C̃ ◦D → A2 be the morphism defined as the composition of the morphisms
in upper row of the following diagram

(5.2)
C̃ ◦D A3 A2

C ×D A4

p.b. id×Δ×id

p13

iC×iD

where Δ : A1 → A2 is the diagonal morphism. Then the scheme-theoretic image of
p, denoted by C ◦D ⊂ A2, is written as

C ◦D � Spec k[x, y]/(resz,(d,e)(f(x, z), g(z, y))) → A2.

Remark 5.11. For any algebraically closed field K over k, the pullback diagram
(5.2) yields

C̃ ◦D(K) = {(x, z, y) ∈ A3 | (x, z) ∈ C(K), (z, y) ∈ D(K)}.
Therefore, the support of C ◦D is the Zariski closure of the points

{(x, y) ∈ A2 | there exists z ∈ A1(K) such that

(x, z) ∈ C(K) and (z, y) ∈ D(K)}.

Proof. The following diagrams

C A2 D A2

C × A1 A3 A1 ×D A3

iC

id×(p2◦iC) id×Δ

iD

(p1◦iD)×id Δ×id

iC×id id×iD

are pullback diagrams. On the other hand, we have a pullback diagram

(5.3)

C ×D C × A2

A2 ×D A2 × A2.

id×iD

iC×id

id×iC

id×iD

By base-changing (5.3) by A3 id×Δ×id−−−−−−→ A4, we obtain the pullback diagram

C̃ ◦D C × A1

A1 ×D A3.

p.b. iC×id

id×iD

This means C̃ ◦D is equal to Spec k[x, y, z]/(f(x, z), g(z, y)). The assertion follows
from Proposition 5.7 (ii). �
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Proposition 5.12. Let C,D ⊂ P1 × P1 be divisorial correspondences, F = (fij),
G = (gkl) be the coefficient matrices of C and D respectively. Let us consider the
following diagram

(5.4)
C̃ ◦D P1 × P1 × P1 P1 × P1

C ×D P1 × P1 × P1 × P1

p.b. id×Δ×id

p13

⊂×⊂

Then the composition of the morphisms in upper row C̃ ◦D → P1 × P1 factors
through the divisorial correspondence given by the coefficient matrix H = (hmn)
such that

∑
m,n

hmnx
dd′−m
0 xm

1 yee
′−n

0 yn1 =res[z0,z1]

⎛
⎝∑

i,j

fijx
d−i
0 xi

1z
e−j
0 zj1,

∑
k,l

gklz
d′−k
0 zk1y

e′−l
0 yl1

⎞
⎠

if H �= 0.

Proof. For a standard open covering of P1, {U0 = P1 \ {0}, U1 = P1 \ {∞}}, we
denote Uα1α2...αn

for the open subscheme Uα1
× · · · × Uαn

of (P1)n. The closed
subscheme Im(id×Δ × id) of (P1)4 is covered by the open subschemes Uαββγ of
(P1)4. Proposition 5.10 gives the construction of the upper row of (5.4) over each
Uαββγ � A4, where the codomain is restricted to Uαγ � A2 ⊂ P1×P1. By combining
these constructions, we obtain the assertion. �

Definition 5.13. The composition map ◦ : Corrd,e ×Corrd′,e′ ��� Corrdd′,ee′ is the
rational map which is induced from the map

Vd,e × Vd′,e′ � (f(x, y), g(x, y)) �→ (f ◦ g)(x, y) := resz(f(x, z), g(z, y)) ∈ Vdd′,ee′ .

We write C ◦D for ◦(C,D).

Lemma 5.14. Let + : Corrd,e ×Corrd′,e′ → Corrd+d′,e+e′ , (C,D) �→ C +D be the
map of the addition of divisors. Then we have

(C +D) ◦ E = (C ◦ E) + (D ◦E) and C ◦ (D + E) = (C ◦D) + (C ◦ E).

Proof. The addition of divisors is given by the multiplication of homogeneous poly-
nomials. Therefore, the assertion follows from Proposition 5.7(iv). �

Remark 5.15. Compositions of smooth integral correspondences are not always
reduced and irreducible. For example:

(i) Nonreduced case is given in [18, (2.5)],

res(f(x, yk), yk − z) = f(x, y)k.

(ii) Reducible case is given by symmetric correspondences, the bihomogeneous
polynomials such that f(x, y) = f(y, x). In this case, we have the diag-
onal correspondence x − y(= x0y1 − y0x1) as a nonreduced irreducible
component, that is,

(x− y)d | res(f(x, z), f(z, y)).
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By Proposition 5.12 and Proposition 5.7(i), the composition map is defined ex-
cept on the locus where f(x, z) and g(z, y) have a common divisor h(z). Indeed,
this locus is the image of the morphism

Φ:Corrd,e−1 ×Corrd′−1,e′ × P1 → Corrd,e × Corrd′,e′ ,
( [f(x, y)], [g(x, y)], [α : β] ) �→ ( [f(x, y)(βy0 − αy1)], [g(x, y)(βx0 − αx1)]),
( C, D, P ) �→ ( C ∪ (P × P1), D ∪ (P1 × P ) ).

Proposition 5.16. The indeterminacy locus of the composition map

◦ : Corrd,e ×Corrd′,e′ ��� Corrdd′,ee′

is Im(Φ).

Proof. Let (C̃, D̃) := Φ(C,D, P ) be a point of Im(Φ). We show the indeterminacy
of the point under the composition map by taking lines

A1 → Corrd,e ×Corrd′,e′(= P(Vd,e)× P(Vd′,e′))

through (C̃, D̃) and comparing their image by the composition map.
By Lemma 5.14, we can reduce the problem to the case that the pair (C,D) is not

in the indeterminacy locus. By Proposition 5.8(ii), we can assume that P = [1 : 0]
without loss of generality. Let h1(x) and h2(x) be sections of OP1(d) and OP1(e′)

respectively and let l be a line on Corrd,e ×Corrd′,e′ through the point (C̃, D̃) such
that

l = lh1,h2
: A1 → Corrd,e ×Corrd′,e′ ,

a �→ ([f(x, y)y1 + ah1(x)y
e
0], [g(x, y)x1 + ah2(y)x

d′

0 ]).

We write

f(x, y)y0 =

e∑
i=1

fi(x)y
i
0y

e−i
1 and g(y, z)y0 =

d′∑
j=1

gi(z)y
j
0y

d′−j
1 .

Then we have

res[y0,y1](f(x, y)y1 + ah1(x)y
e
0, g(y, z)y1 + ah2(z)y

d′

0 )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ah1(x) f1(x) · · · fe(x)
ah1(x) f1(x) · · · fe(x)

. . .
. . .

. . .
. . .

ah1(x) f1(x) · · · fe(x)
ah2(z) g1(z) · · · gd′(z)

ah2(z) g1(z) · · · gd′(z)
. . .

. . .
. . .

. . .

ah2(z) g1(z) · · · gd′(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a(h1(x)g1(z)− h2(z)f1(x)) res[y0,y1](f(x, y), g(y, z))

+ a2 · (polynomial).

Therefore we have

◦(l(0)) = [(h1(x)g1(z)− h2(z)f1(x)) res[y0,y1](f(x, y), g(y, z))].

Since the pair (C,D) = ([f(x, y)], [g(y, z)]) has no common factor, we have f1(x) �=
0 or g1(z) �= 0. Thus the point ◦(l(0)) depends on the choice of h1 and h2. Therefore,

at the point (C̃, D̃), the map ◦ has indeterminacy. �
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Definition 5.17. A horizontal (resp. vertical) component of a correspondence C
is an irreducible component of degree (i, 0) (resp. (0, i)) for some i ≥ 1.

Lemma 5.18. If a composition C1◦C2 of correspondences has any horizontal (resp.
vertical) component, then C1 or C2 has a horizontal (resp. vertical) component.

Proof. We note that the first projection p1 : C → P1 has a point P ∈ P1 with non-
finite inverse image if and only if C has a vertical component. Thus, by Remark
5.11, we obtain the assertion. The case of horizontal component is similar. �
Proposition 5.19. The composition map is associative, that is, the following dia-
gram is commutative:

(5.5)

Corrd,e ×Corrd′,e′ ×Corrd′′,e′′ Corrdd′,ee′ ×Corrd′′,e′′

Corrd,e ×Corrd′d′′,e′e′′ Corrdd′d′′,ee′e′′

◦×id

id×◦ ◦

◦

Proof. By Proposition 5.16 and Lemma 5.18, the compositions of the two diagonal
paths in (5.5) are rational map. By Proposition 5.12, the images through the two
paths of a general point of Corrd,e ×Corrd′,e′ ×Corrd′′,e′′ , which indicates the tuple
of correspondences (C,C ′, C ′′), are both given by the upper row of the following
diagram:

˜C ◦ C ′ ◦ C ′′ (P1)4 (P1)2

C × C ′ × C ′′ (P1)6

p.b. id×Δ×Δ×id

p14

⊂×⊂×⊂

Therefore (5.5) is commutative. �
Remark 5.20. In terms of the resultant, this property is known as “associativity
law of resultants” (in [18]). If we admit this fact, we can show Proposition 5.19 by
checking well-definedness of the rational maps

Corrd,e ×Corrd′,e′ ×Corrd′′,e′′ ��� Corrdd′d′′,ee′e′′

in (5.5) at a point in the domain. An example of such a point is (xd − ye, xd′ −
ye

′
, xd′′ − ye

′′
).

Definition 5.21. The iteration map Ψn : Corrd,e ��� Corrdn,en is the map which
sends a bihomogeneous polynomial f(x, y) to the bihomogeneous polynomial (f ◦f ◦
· · · ◦ f)(x, y).

From the direct computation of resultants by using Sylvester matrix, or using
the equivariance of resultants in Corollary 5.8(ii), we obtain Proposition 5.22.

Proposition 5.22. Let g ∈ PGL2 � Aut(P1) be a morphism given by g([x0 : x1]) =
[ax0 + bx1 : cx0 + dx1] and f(x, y) be a bihomogeneous polynomial. Then we have

(g ◦ f ◦ g−1)(x, y) = f(ax0 + bx1, cx0 + dx1, ay0 + by1, cy0 + dy1).

Corollary 5.23. For the conjugation action

(5.6) Corrd,e ×PGL2 → Corrd,e : (C, g) �→ g ◦ C ◦ g−1,

the induced action of SL2 on Corrd,e � P(Vd,e) is given by a representation on Vd,e

and the representation is isomorphic to Vd ⊗ Ve.
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Proof. By Proposition 5.22, the action of SL2 on Vd,e is isomorphic to the one on
the tensor space of the space of d-ic forms and the space of e-ic forms, Symd(V

∗
1 )

∗⊗
Syme(V

∗
1 )

∗. By Proposition 4.5, it is isomorphic to Vd ⊗ Ve. �

6. Fundamental properties of the moduli space of correspondence

In this section, we give simple generalizations of the results in [32] and [19], a
characterization of the stable/semistable locus of the group action and the ratio-
nality of the moduli spaces.

6.1. Stability of group action. First, we briefly review the geometric invariant
theory [27].

Definition 6.1 ([27, Definition 1.6]). Let G be a reductive group scheme and X
a scheme with G-action σ : G × X → X. For an invertible sheaf L over X, an
isomorphism φ : σ∗L � p∗2L is said to be G-linearization if φ satisfies the cocycle
condition

p∗23φ ◦ (idG ×σ)∗φ = (μ× idX)∗φ (on G×G×X).

Remark 6.2. If L is very ample and G is affine, then G-linearization is described as
the G(O(X))-action on L(X) compatible with σ.

Remark 6.3. For a G-linearization φ of an invertible sheaf L over a normal scheme
X, φn : σ∗Ln � p∗2Ln is a G-linearization of Ln.

Remark 6.4 ([27, Proposition 1.4]). If there exists no surjective homomorphism
G → Gm of group schemes and X ×k k̄ is normal, G-linearization φ of an invertible
sheaf L is unique if exists.

For a given action and a given invertible sheaf, G-linearization may not be unique,
for instance, if the action is trivial, any regular homomorphism G → Aut(L) gives
a G-linearization.

Definition 6.5 ([27, Definition 1.7]). Let G be a reductive group, X an algebraic
variety with G-action and P a geometric point of X.

(i) P is said to be pre-stable if the stabilizer group of P is finite and there
exists a G-stable affine open neighborhood of P .

Moreover, we suppose that L is an ample invertible sheaf over X with G-
linearization.

(ii) P is said to be L-semistable if for some positive integer n > 0, there exists
f ∈ H0(X,Ln)G such that f(P ) �= 0 and Xf is affine.

(iii) P is said to be (proper) L-stable if P is L-semistable and pre-stable.

The set of pre-stable (resp. L-semistable, L-stable) geometric points is the set of
geometric points of an open subscheme of X called pre-stable (resp. L-semistable,
L-stable) locus. We denote the loci by Xs(Pre) (resp. Xss(L), Xs(L)).

Remark 6.6. For a G-variety X which is isomorphic to a projective space P(V ), we
sometimes write Xs and Xss for the stable locus and semistable locus of any O(n)
with G-linearization.

Remark 6.7 ([27, Converse 1.12]). If the categorical (resp. the geometric) quotient
of X by G exists, then X = Xss(L) (resp. X = Xs(L)) for some ample invertible
sheaf L over X with G-linearization.
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Theorem 6.8 ([27, Theorem 1.1]). Let G be a reductive group, X = SpecR an
affine algebraic variety with G-action. Then the categorical quotient X �G is con-
structed as SpecRG.

Theorem 6.9 ([27, p. 40]). Let G be a reductive group, X a proper algebraic
variety with G-action, L a very ample invertible sheaf with G-linearization. Then
the categorical quotient Xss(L) � G is constructed as Proj

⊕∞
i=0 H

0(X,Li)G.

Definition 6.10. Let G be a reductive group, X a proper algebraic variety with
G-action and L a very ample invertible sheaf over X with G-linearization.

(i) If G = Gm and x = x0 is a fixed closed point of the Gm-action, then
the weight μL(x0) of x0 is −n if the k(x0)

×-representation L|x0
→ L|x0

(Remark 6.2) is isomorphic to (k(x0))(n).
(ii) If G = Gm and x is a closed point, then we take the extension lx : A1 → X

of the Gm-orbit of x by the valuative criterion. The weight μL(x) of x is
the weight of the fixed point lx(0) of the Gm-action.

(iii) For any homomorphism of group schemes λ : Gm → G and a closed point
x, the λ-weight μL(x, λ) of x is the weight of x by the Gm-action on X
induced by λ.

Theorem 6.11 ([27, Theorem 2.1]). Let G be a reductive group, X a proper al-
gebraic variety with G-action and L a very ample invertible sheaf over X with
G-linearization. Then, a closed point x of X is in Xss(L) (resp. Xs(L)) if and
only if μL(x, λ) ≥ 0 (resp. μL(x, λ) > 0) for all nontrivial group homomorphisms
λ : Gm → G.

By Corollary 5.23, the moduli space of correspondences Corrd,e is isomorphic
to P(Vd ⊗ Ve) equivariantly with respect to SL2-actions. By Remark 6.2, an SL2-
linearization is given by the natural representation over H0(P(Vd ⊗ Ve),O(1)) �
(Vd⊗Ve)

∗, the dual representation of Vd⊗Ve. By Proposition 4.5, (Vd⊗Ve)
∗ is iso-

morphic to Vd⊗Ve. By Theorem 6.9, the uniform categorical quotient Corrssd,e � SL2

is constructed as Proj k[Vd ⊗ Ve]
SL2 .

The reductive group PGL2 also has a PGL2-linearization on O( 2
gcd(2,d+e) ) by

Proposition 4.8 and Corollary 5.23. In fact, we have k[V ]SL2 = k[V ]PGL2 for any
finite dimensional representation V of PGL2, therefore

Corrssd,e �PGL2 � Proj
∞⊕
i=0

k[Vd ⊗ Ve]
PGL2

2i � Proj
∞⊕
i=0

k[Vd ⊗ Ve]
SL2 .

Theorem 6.12 generalizes a result in [32].

Theorem 6.12. A divisorial correspondence C given by a bihomogeneous poly-

nomial
∑d

i=0

∑e
j=0 aijx

iyj is not a stable point (resp. not a semistable point) of

Corrd,e if and only if there exists an SL2-conjugate of the coefficient matrix (bij)

such that bij = 0 for all i+ j < d+e
2 (resp. i+ j ≤ d+e

2 ).

Proof. By [32], any maximal subtorus of SL2(k) is conjugate to c : Gm → SL2(k)
such that c(t) :=

(
t 0
0 t−1

)
. For a bihomogeneous polynomial f of degree (d, e), we

have

c(t) · f = f(tx0, t
−1x1, ty0, t

−1y1) =
d∑

i=0

e∑
j=0

t(d+e)−2(i+j)aijx
iyj .

Therefore by Theorem 6.11, we obtain the claim. �
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6.2. Unstable locus of iteration map. Proposition 5.19 implies that (g ◦ C ◦
g−1)n = g ◦ Cn ◦ g−1, so the iteration map Ψn : Corrd,e ��� Corrdn,en (Definition
5.21) is PGL2-equivariant. Therefore, we can define iteration map Dynd,e ���
Dyndn,en if the composition Corrd,e ��� Corrdn,en ��� Dyndn,en is well-defined, that
is, the image of Ψn : Corrd,e ��� Corrdn,en is not contained in the indeterminacy
locus of Corrdn,en ��� Dyndn,en . Using Theorem 6.12, we check this by seeing the
simplest case as in Remark 5.20.

Corollary 6.13. The iteration map Ψn : Corrd,e ��� Corrdn,en induces the rational
map

Φn : Dynd,e ��� Dyndn,en .

Proof. Put l := gcd(d, e), d′ := d/l and e′ := e/l. Then, by direct computation, we
have

Ψn([x
d − ye]) = [(x(d′)nl − y(e

′)nl)l
n−1

].

The largest multiplicity of this iterated correspondence at the point on the diagonal
is min(dn, en) of (0, 0) and (∞,∞). By Theorem 6.12, the point Ψn([x

d − ye]) on
the Corrdn,en is in the semistable locus. Therefore, the composition Corrd,e ���
Corrdn,en ��� Dyndn,en is well-defined, and PGL2-invariant by Proposition 5.19.
By Theorem 6.9, we obtain the rational map Φ : Dynd,e ��� Dyndn,en . �

Remark 6.14. The composition map does not induce a rational map

Dynd,e ×Dynd′,e′ ��� Dyndd′,ee′ ,

because for a general pair of correspondences (C,C ′) and a general g ∈ PGL2, we
have ([C], [C ′]) = ([g ◦ C ◦ g−1], [C ′]) as a point of Dynd,e ×Dynd′,e′ , but C ◦ C ′ is

not PGL2-conjugate to g ◦ C ◦ g−1 ◦ C ′.

Remark 6.15. To describe the indeterminacy locus of each Φn : Dynd,e ��� Dyndn,en

is a problem. A conjecture is that each Φn has indeterminacy locus which Φm(m <
n) does not have. The case of quadratic map (d, e) = (1, 2) is shown in [5] and the
case of maps d = 1 in arbitrary degree e is shown in [17].

6.3. Rationality. Let V = V ′ ⊕ V ′′ be a representation of a reductive group
G. Then we have the inclusion morphism k[V ′] → k[V ]. This morphism is G-
equivariant by definition, therefore leads to the morphism k[V ′]G → k[V ]G and the
rational map P(V ∗)ss � G ��� P((V ′)∗)ss � G. If the action of the group G on
(V ′)∗ is free for general point, then the fiber of a general point of P((V ′)∗)ss � G
via P(V ∗)ss �G ��� P((V ′)∗)�G is naturally isomorphic to (V/V ′)∗. Therefore we
have Proposition 6.16.

Proposition 6.16. For a representation of a reductive group G and a representa-
tion V , P(V ∗) � G is rational if there exists a subrepresentation V ′ ⊂ V such that
the action of G on V ′ is generically free and P((V ′)∗) � G is rational.

We recall that the field k we fixed is infinite. Let 1 ≤ d, e be positive integers.
By the Clebsch-Gordan decomposition (Proposition 4.8) and the Schur’s Lemma



312 RIN GOTOU

(Remark 4.9), we have

HomSL2
(Vd+e−1 ⊗ V1, Vd ⊗ Ve)

� HomSL2
(Vd+e ⊕ Vd+e−2, Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ V|d−e|)

� HomSL2
(Vd+e, Vd+e)⊕HomSL2

(Vd+e−2, Vd+e−2)

� k ⊕ k.

For a vector c = (c0, c1) ∈ k ⊕ k (c0, c1 �= 0), we have an injective homomorphism

ρc : Vd+e−1 ⊗ V1 → Vd ⊗ Ve

of representations. Then it induces a surjective rational map

ρ∗c : Corrd,e ��� Corr1,d+e−1 .

Here, homomorphism of representation is indeed equivariant, so we obtain

ρ̄∗c : Dynd,e ��� Dyn1,d+e−1 .

Proposition 6.17. Dynd,e is rational for d, e ≥ 1 and (d, e) �= (1, 1).

Proof. For the case d = 1, this is shown by Levy [19]. In the same paper, it is
also shown SL2(k) acts generically free on the representation VD ⊗ V1 for D ≥ 3.
Therefore the general case follows from Proposition 6.16. �

Remark 6.18. In [16], [21], [22], [23], [24] and [31], the rationality of Corrd,e � SL2 ×
SL2 is shown for some (d, e)’s. The rationality of SL2 leads to the rationality of
Corrd,e for these cases.

Remark 6.19. In [19], the rationality of Dyn1,d � P(V1 ⊗ Vd) � PGL2 is shown by
reducing to the rationality of Fix � P(Vd+e) � PGL2 using the morphism

Ω0 : P(Vd+e−1 ⊗ V1) � P(Vd+e ⊕ Vd+e−2) ��� P(Vd+e).

The isomorphism Fix � P(Vd+e) � PGL2 is explained in Section 7.

7. Multiplier map

7.1. Construction. Let f be a bihomogeneous polynomial

f(x0, x1, y0, y1) =
∑

0≤i≤d, 0≤j≤e

aijx
d−i
0 xi

1y
e−j
0 yj1.

We need to define multipliers of f . We begin with a local argument. We fix an
affine coordinate

(7.1)

(
x̄ =

x1

x0
, ȳ =

y1
y0

)

of the open affine subscheme A1
x × A1

y = U+
P1
x
(x0)× U+

P1
y
(y0) of P

1
x × P1

y.

The restriction of the correspondence f over A1
x × A1

y is given by

f̄(x̄, ȳ) :=
∑

0≤i≤d, 0≤j≤e

aij x̄
iȳj .
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From the implicit function theorem, the derivative, which we denote by dy
dx or(

dy
dx

)
f
(a, b), of the curve V (f̄(x̄, ȳ)) around a point (a, b) ∈ V (f̄(x̄, ȳ)) is given by

(7.2)

(
dy

dx

)
f

(a, b) = − ∂x̄f̄(x̄, ȳ)

∂ȳ f̄(x̄, ȳ)

∣∣∣∣
(x̄,ȳ)=(a,b)

if ∂y f̄(a, b) �= 0.
We can use the bihomogeneous polynomial f(x, y) = f(x0, x1, y0, y1) to compute

the value (7.2). From the coordination (7.1), we have the following equations of
rational functions of variables x0, x1, y0, y1:

xd
0y

e
0∂x̄f̄(x̄, ȳ) = ∂x1

f(x, y) = d · f(x, y)− ∂x0
f(x, y) and

xd
0y

e
0∂ȳ f̄(x̄, ȳ) = ∂y1

f(x, y) = d · f(x, y)− ∂y0
f(x, y).(7.3)

Therefore, at a point (a, b) ∈ V +(f) \ V +(∂yf), we have

dy

dx
= −∂x1

f(a, b)

∂y1
f(a, b)

= −−∂x0
f(a, b)

−∂y0
f(a, b)

because f(x, y) = 0 for (x, y) ∈ V +(f). Therefore, for any pair of bihomogeneous
polynomials g0, g1, we have

dy

dx
=

g0(a, b)∂x0
f(a, b) + g1(a, b)∂x1

f(a, b)

g0(a, b)∂y0
f(a, b) + g1(a, b)∂y1

f(a, b)
.

We do not specify the derivation operator g0∂0 + g1∂1 and write the value given by
them by

dy

dx
= −∂xf(a, b)

∂yf(a, b)
.

As we mentioned in Section 1, the fixed point of (the correspondence defined
by) f is ΔP1 ×P1×P1 V+(f) = {z ∈ P1 | f(z, z) = 0}. To describe the tuple of the
multipliers for the fixed points of f , we construct the symmetric form of the fixed
point multipliers σi(f) by

(7.4) 1 +
d+e∑
i=1

(−1)iσi(f)t
i =

∏
z:f(z,z)=0

(
1 +

(∂xf)(z, z)

(∂yf)(z, z)
t

)
.

The map Corrd,e ��� Ad+e given by f �→ (σi(f))i=1,...d+e has indeterminacy locus
which consists of the correspondences that have any y-critical fixed point. To
incorporate correspondences with y-critical fixed points, we prefer to consider the
following homogenized form of the multiplier map:

Corrd,e � f �→

⎡
⎣ ∏
z:f(z,z)=0

(∂yf(z, z) + ∂xf(z, z)t)

⎤
⎦ ∈ P(k[t]d+e).

By Proposition 5.7(iii), we have

(7.5)
∏

z:f(z,z)=0

(∂yf(z, z) + ∂xf(z, z)t) = res[z0,z1](f(z, z), ∂yf(z, z) + ∂xf(z, z)t).

In Subsection 7.2, we need to substitute the variable t. Therefore we define the
multiplier maps as the following.
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Definition 7.1. The fixed point multiplier map is the rational map

λ1,(d,e) : Corrd,e � f �→ [resz(f(z, z), ∂xf(z, z)dx+ ∂yf(z, z)dy)] ∈ P(Dd+e),

where we regard dx and dy as just variables and Dn is the space of n-ic forms in
them. The n-th multiplier map is the rational map λn,(d,e) := λ1,(dn,en) ◦ Ψn if
exists.

By the equivariance of resultant (Corollary 5.8(ii)) and the description of the
conjugation action (Proposition 5.22), the multiplier map λn,(d,e) is invariant under
the conjugation action of PGL2 on Corrd,e. Therefore, by Theorem 6.9, we obtain
a rational map Dynd,e ��� P(Ddn+en). We also denote this map by λn,(d,e).

Remark 7.2. Whether Ψn◦λ1,(dn,en) and Φn◦λ1,(dn,en) are well-defined is a problem.
From the expression of LHS in (7.5), the fixed point multiplier map is defined for
correspondences with no singular fixed point. A simple way to show the well-
definedness is to give a correspondence C of degree (d, e) such that Cn have no
singular fixed point. If d and e are coprime and n is odd, Ψn([x

dye−1]) = [xdn

ye
n−

1] are examples. But the author does not have enough examples to give the well-
definedness for all (d, e, n) yet.

Example 7.3. Consider the bihomogeneous polynomial of degree (2, 2),

f(x, y) = x2y2 − 2x2y − x2 + 2y = x2
1y

2
1 − 2x2

0y0y1 − x2
1y

2
0 + 2x2

0y0y1.

The fixed points of f are

{z = [z0, z1] ∈ P1 | f(z, z) = 0} = {[z0, z1] ∈ P1 | z1/z0 = −1, 0, 1, 2}.

The derivative dy
dx around a fixed point z is given by

−∂x1
f(z, z)

∂y1
f(z, z)

= −2z3 − 4z2 − 2z

2z3 − 2z2 + 2
= −z3 − 2z2 − z

z3 − z2 + 1
,

thus the multipliers are
{
−2, 0, 2, 2

5

}
. The symmetric form of the multiplier is given

by

(t+ 2) t (t− 2)

(
t− 2

5

)
= t4 − 2

5
t3 − 4t2 +

8

5
t =

1

5
(5t4 − 2t3 − 20t2 + 8t).

Indeed, by Definition 7.1, we obtain the point in P(D4) corresponding to the sym-
metric form:

λ1,(d,e)(f) = [resz(z
4 − 2z3 − z2 + 2z, (2z3 − 4z2 − 2z)dx+ (2z3 − 2z2 + 2)dy)]

= [−128(dx)3(dy) + 320(dx)2(dy)2 + 32(dx)(dy)3 − 80(dy)4]

= [8(dx)3(dy)− 20(dx)2(dy)2 − 2(dx)(dy)3 + 5(dy)4].

The sequence of coefficients (0, 8,−20,−2, 5) satisfies the equation

2 · 0 + 1 · 8 + 0 · (−20)− 1 · (−2)− 2 · 5 = 0,

this is the Woods Hole formula for this correspondence.
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7.2. Resultant form of the Woods Hole formula. For any pair of variables
(α0, α1), we define a derivative operator dα by

dα := −α0∂α0
+ α1∂α1

.

We also recall that the Cayley operator Ωxy is defined by Ωxy := ∂x0
∂y1

− ∂y0
∂x1

and the Clebsch-Gordan decomposition is defined by

Ωmf(z0, z1) :=
(
Ωm

xyf(x0, x1, y0, y1)
)∣∣

(x0,x1)=(y0,y1)=(z0,z1)
.

In particular, Ω0f(z) = f(z, z) gives the fixed points of f . Moreover, we can give a
representation-theoretic decomposition of the multiplier map as follows.

Lemma 7.4. Let

f = f(x, y) =
∑
i,j

aijx
d−i
0 xi

1y
e−j
0 yj1

be a bihomogeneous polynomial of degree (d, e). Then we have(
(dxf)(z, z)
(dyf)(z, z)

)
=

(
d

d+e
2

d+e
e

d+e − 2
d+e

)(
dz(Ω

0f)(z)
z0z1(Ω

1f)(z)

)
.

Proof. From the definition of Cayley operator (4.1) and the operators dx, dy and
dz, we have

(dxf)(z, z) =
∑
i,j

(d− 2i)aijz
i+j ,

(dyf)(z, z) =
∑
i,j

(e− 2j)aijz
i+j ,

dz(Ω
0f)(z) =

∑
i,j

(d+ e− 2i− 2j)aijz
i+j and

z0z1(Ω
1f)(z) =

∑
i,j

(−ei+ dj)aijz
i+j ,

where zi+j is the abbreviation of zd+e−i−j
0 zi+j

1 . This leads to(
dz(Ω

0f)(z)
z0z1(Ω

1f)(z)

)
=

(
1 1
e
2

−d
2

)(
(dxf)(z, z)
(dyf)(z, z)

)

and this is equivalent to the assertion. �

For any pair of positive integers d′, e′, we take the basis (dz0(d′,e′), dz
1
d′+e′) of

D1 = k · dx⊕ k · dy by

(7.6) dz0(d′,e′) :=
d′

d′ + e′
dx+

e′

d′ + e′
dy and dz1d′+e′ :=

2

d′ + e′
dx− 2

d′ + e′
dy.

This coordinate change helps to give Proposition 7.5.

Proposition 7.5. For each c ∈ (k×)2, let Ac be the automorphism of P(Dd+e)
induced by the linear automorphism(

dz0(d,e)
dz1d+e

)
�→
(
c0dz

0
(1,d+e−1)

c1dz
1
d+e

)
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on D1. Then, the following diagram is commutative:

Dynd,e P(Dd+e)

Dyn1,d+e−1 P(Dd+e).

λ1,(d,e)

ρ̄c Ac

λ1,(1,d+e−1)

Proof. By Lemma 7.4, we have

dxf(z, z)dx+ dyf(z, z)dy = dz(Ω
0f)(z)dz0(d′,e′) + z0z1Ω

1f(z)dz1d′+e′ .

For a vector c = (c0, c1) ∈ (k×)2, the morphism ρc : Vd,e → Vd+e−1,1 of representa-
tion is defined as Ωiρc(f) = ci · Ωif (i = 0, 1) for any f ∈ Vd,e. Therefore, for any
bihomogeneous polynomial f ∈ Vd,e, we have

λ1,(d,e)(f) = resz(Ω
0f(z), dz(Ω

0f)(z)dz0(d,e) + z0z1Ω
1f(z)dz1d+e) and

λ1,(1,d+e−1) ◦ ρc(f) = resz(Ω
0f(z), c0dz(Ω

0f)(z)dz0(d+e−1,1) + c1z0z1Ω
1f(z)dz1d+e).

This shows the assertion. �

Remark 7.6. For a bihomogeneous polynomial f =
∑

i,j aijx
iyj , we have

λ1,(d,e)(f) = [resz((Ω
0f)(z), dz(Ω

0f)(z)dz0(d,e) + z0z1(Ω
1f)(z)dz1d+e)] ∈ P(Dd+e).

From the definition of resultant, we can see that each coefficient is divisible by
a00ade. As a point of P(Dd+e), we have

(7.7) λ1,(d,e)(f) = [resz((Ω
0f)(z), dz(Ω

0f)(z)dz0(d,e)+z0z1(Ω
1f)(z)dz1d+e)/a00ade].

As a (d+ e)-ic form of variables dz0(d,e) and dz1d+e, the coefficient of (dz1d+e)
d+e on

(7.7) is
resz(Ω

0f(z), z0z1Ω
1f(z))/a00ade = resz(Ω

0f(z),Ω1f(z)),

this is SL2-invariant by Proposition 5.8(ii). From the invariance of the multiplier
map, the other coefficients of (7.7) are SL2-invariant on Corrd,e of degree 2(d+e−1).

For any basis {ds, dt} of D1, the coefficient function [(ds)i(dt)n−i] ∈ D∗
n is the

dual base of (ds)i(dt)n−i with respect to the basis {(ds)i(dt)n−i}0≤i≤n of Dn. We
also note that D∗

n � H0(P(Dn),O(1)).

Theorem 7.7. The image of λ1,(d,e) : Dynd,e ��� P(Dd+e) is the hyperplane defined
by

(7.8) [(dz0)d+e−1(dz1)1] = 0,

where [(dz0)d+e−1dz1] is the coefficient function of (dz0(d,e))
d+e−1dz1d+e.

We see an example before the proof.

Example 7.8. Let

f(x, y) := 2x2y2 + x2y + 4xy2 − 2x− 3y − 2

be the bihomogeneous polynomial of degree (2, 2). Then we have

Ω0f(z) = 2z4 + 5z3 − 5z − 2,

dz(Ω
0f)(z) = 8z4 + 10z3 + 10z + 8 and

zΩ1f(z) = z(−6z2 + 2).
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Therefore, we have

λ1,(2,2)(f) = resz(2z
4 + 5z3 − 5z − 2, (8z4 + 10z2 + 10z + 8)dz0 + z(−6z2 + 2)dz1)

= 24(5832(dz0)4 − 7344(dz0)2(dz1)2 + 1600(dz0)(dz1)3 − 88(dz1)4)

and the coefficient of (dz0)3(dz1)1 is 0.

Proof of Theorem 7.7. By Proposition 7.5, it is enough to show the assertion for
e = 1, the case of the moduli space of maps. We show the index theorem (1.3)
is equivalent to the hyperplane [(dz0)d(dz1)1] = 0 by the coordinate change. The
coordinate change is induced by the coordinate change(

dz0

dz1

)
=

(
d

d+1
2

d+1
1

d+1 − 2
d+1

)(
dx
dy

)
on D1, which induces a coordinate change(

[dz0]
[dz1]

)
=

(
d

d+1
2

d+1
1

d+1 − 2
d+1

)−1(
[dx]
[dy]

)
=

(
1 1
1
2

−d
2

)(
[dx]
[dy]

)
on D∗

1 .
We note that Dn is naturally isomorphic to (Symn(D

∗
1))

∗, so D∗
n is naturally

isomorphic to Symn(D
∗
1). The vector space of n-ic form of D∗

1 is isomorphic to
the vector space (Symn(D

∗∗
1 ))∗ � (Symn D1)

∗ and the canonical morphism βn :
Symn(D

∗
1) → (Symn D1)

∗ is given by βn([(ds)
i(dt)n−i]) =

(
n
i

)
[ds]i[dt]n−i for any

basis {ds, dt} of D1 (Remark 4.6). Therefore, we have

βd+1([(dz
0)d(dz1)]) =

(
d+ 1

1

)
[dz0]d[dz1]

= (d+ 1)([dx] + [dy])d(
1

2
[dx]− d

2
[dy])

=
d+ 1

2

(
d+1∑
i=0

(
d ·
(

d

i− 1

)
−
(
d

i

))
[dx]i[dy]d+1−i

)

=
d+ 1

2

(
d+1∑
i=0

(i− 1)

(
d+ 1

i

)
[dx]i[dy]d+1−i

)

= βd+1

(
d+ 1

2

d+1∑
i=0

(i− 1)[(dx)i(dy)d+1−i]

)
,

where we used

d ·
(

d

i− 1

)
−
(
d

i

)
=

(
d+ 1

i

)(
d

i

d+ 1
− d+ 1− i

d+ 1

)
= (i− 1)

(
d+ 1

i

)

and
(
d
i

)
= 0 for i < 0, d < i.

Therefore, the hyperplane defined by [(dz0)d(dz1)] = 0 is the one defined by∑d+1
i=0 (i− 1)[(dx)i(dy)d+1−i] = 0. By (7.4) and Definition 7.1, this is also the same

as one which the index theorem (1.3) defines.
The surjectivity of the multiplier map onto the hyperplane is shown in [10]. �

The only linear relation between the elementary symmetric polynomials of fixed
point multipliers is the one obtained by the coordinate change from (7.8). The
Woods Hole formula for correspondences (1.4) should be such a relation. It is easy
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to check this fact by a similar computation to the above proof. Moreover, if starting
this argument from the Woods Hole Formula for rational maps (1.3), this gives an
alternative proof of (1.4).

Corollary 7.9. Let d, e ≥ 2 be positive integers and let C be a correspondence
defined by the bihomogeneous polynomial f(x, y) = 0 of degree (d, e). Then, we
have the Woods Hole formula

(7.9)
d+e∑
i=0

(−1)i(e− i)σi(f) = 0.

Proof. Let us fix the vector c = (1, 1) for the morphism ρc. Then, by the proof of
Proposition 7.5, we have(

dz0

dz1

)
=

(
d

d+e
2

d+e
e

d+e − 2
d+e

)(
dx
dy

)
and

(
[dz0]
[dz1]

)
=

(
1 1
e
2

−d
2

)(
[dx]
[dy]

)
.

Therefore, the equation

d·
(
d+e−1

i−1

)
−e·

(
d+e−1

i

)
=

(
d+e

i

)(
d

i

d+ e
−e

d+e−i

d+e

)
=(i−e)

(
d+e

i

)
of binomial coefficients leads to

βd+e([(dz
0)d+e−1(dz1)]) = βd+e

(
d+ e

2

d+e∑
i=0

(i− e)[(dx)i(dy)d+e−i]

)
.

Then, Theorem 7.7 leads to

(7.10)

d+e∑
i=0

(e− i)[(dx)i(dy)d+e−i](λ1,(d,e)(f)) = 0.

By Definition 7.1 and (7.4), we have

(7.11) λ1,(d,e)(f) =

[
d+e∑
i=0

(−1)iσi(f)(dx)
i(dy)d+e−i

]
∈ P(Dd+e).

By applying (7.10) to (7.11), we obtain

d+e∑
i=0

(−1)i(i− e)σi(f) = 0.

�

The representational simplification gives the following result from the Woods
Hole formula.

Corollary 7.10. For an arbitrary field K and any polynomials f, g ∈ K[x] of
degree deg f ≥ 3 and deg f ≥ deg g + 2,

∂

∂t
resx(f(x), f

′(x) + tg(x))

∣∣∣∣
t=0

= 0.

Proof. We first consider the case where K = k is a field of characteristic zero.
We put d := deg f . By Proposition 4.8, there exists a bihomogeneous polyno-
mial F (x, y) of degree (d − 1, 1) such that Ω0F (z) = f(z) and Ω1F (z) = g(z).
By Remark 7.6 and Theorem 7.7, we have the k-coefficient of t of the polynomial
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resz(f(z), zf
′(z) + tzg(z)) ∈ k[t] is 0. Since resultant is Z-polynomial of the coeffi-

cients of f and g, the coefficient of t is 0 in arbitrary characteristics. This leads to
the assertion. �

Remark 7.11. Corollary 7.10 also can be proved by the following idea. We can
expand the resultant as

(7.12) resx(f(x), f
′(x) + tg(x)) = Δ(f) + t · F1(f, g) + t2 · (polynomial),

where Δ(f) = resx(f(x), f
′(x)) is the discriminant of f . From another expression

of resultant

resx

⎛
⎝ad

d∏
i=1

(x− αi), be

e∏
j=1

(x− βj)

⎞
⎠ = aedb

d
e

d∏
i=1

e∏
j=1

(αi − βj),

we have Δ(f) = 0 if and only if f have a multiple root. If we perturb the coefficients
of f ′ by t, each solution of f ′ moves O(t) (t → 0). Then, if f have a multiple root
α, we have two factors of the form (α − (α + O(t))) (t → 0) on the resultant of
(7.12) factored by the above equation. Thus, we have F1 = 0 in (7.12) if Δ(f) = 0.
By looking at degrees of each variables on Δ(f) and F1(f, g), we obtain F1 = 0.
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