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THE HARMONIC MAP COMPACTIFICATION OF

TEICHMÜLLER SPACES FOR PUNCTURED RIEMANN

SURFACES

KENTO SAKAI

Abstract. In the paper [The Teichmüller theory of harmonic maps, J. Dif-
ferential Geom. 29 (1989), no. 2, 449–479], Wolf provided a global coordinate
system of the Teichmüller space of a closed oriented surface S with the vector
space of holomorphic quadratic differentials on a Riemann surface X homeo-
morphic to S. This coordinate system is via harmonic maps from the Riemann
surface X to hyperbolic surfaces. Moreover, he gave a compactification of the
Teichmüller space by adding a point at infinity to each endpoint of harmonic
map rays starting from X in the space. Wolf also showed this compactification
coincides with the Thurston compactification.

In this paper, we extend the harmonic map ray compactification to the
case of punctured Riemann surfaces and show that it still coincides with the
Thurston compactification.

1. Introduction

Let S be a finite type oriented surface of genus g with n punctures such that
χ(S) = 2 − 2g − n < 0. The Teichmüller space Tg,n of S is the space of isotopy
classes of complete finite-area hyperbolic metrics on S.

Let σ and ρ be hyperbolic metrics on S. If S is closed, there exists a unique
harmonic diffeomorphism from (S, σ) to (S, ρ) in the isotopy class of the identity
map id: S → S. This follows from work of Eells and Sampson [ES64], Hartman
[Har67], Schoen and Yau [SY78], and Sampson [Sam78]. Moreover, Lohkamp ex-
tended this unique existence result to a punctured surface [Loh91]. Let h(σ, ρ) be
the harmonic diffeomorphism (S, σ) → (S, ρ). Then, the (2, 0)-part of the pullback
metric h(σ, ρ)∗ρ is a finite L1-norm holomorphic quadratic differential on (S, σ).
The (2, 0)-part (h(σ, ρ)∗ρ)2,0 is called the Hopf differential of h(σ, ρ).

By fixing the metric σ of the domain and varying a metric ρ of the target,
we obtain a well-defined map Φ: Tg,n → QD(σ) given by Φ(ρ) = (h(σ, ρ)∗ρ)2,0,
where QD(σ) denotes the vector space of holomorphic quadratic differentials on
(S, σ) with finite L1-norm. Wolf showed Φ is a homeomorphism if S is a closed
surface [Wol89], and Lohkamp generalized it to a closed surface with finitely many
punctures [Loh91].

Thus, we identify Tg,n with QD(σ) via the homeomorphism Φ. The vector space
QD(σ) has a natural compactification obtained by adding a point at infinity to
each ray starting from the origin. Therefore, we obtain a compactification of the
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Teichmüller space Tg,n. The compactification is called the harmonic map compact-

ification and denoted by T harm
g,n . The boundary of the harmonic map compactifica-

tion is identified with the L1-norm unit sphere SQD(σ) in QD(σ).
On the other hand, Thurston introduced a compactification of Tg,n, which is

called the Thurston compactification and denoted by T Th
g,n . Let C = C(S) be the

set of all isotopy classes of essential simple closed curves. The Thurston compacti-
fication is obtained by embedding the Teichmüller space into the projective space
(RC

≥0−{0})/R>0 as a length function and taking its closure in the projective space.
Then, the boundary is the projective space PMF of measured foliations on S, and
it is called the Thurston boundary.

In the case that S is closed (i.e. n = 0), Wolf showed that the homeomor-

phism Φ continuously extends to a homomorphism Φ from T Th
g,0 to T harm

g,0 . This

implies that the restriction of Φ to the Thurston boundary coincides with the
canonical identification Fv of SQD(σ) and PMF , where Fv is induced by the map
Fv : QD(σ) → MF given by the vertical measured foliation Fv(Ψ) for Ψ ∈ QD(σ).
The purpose of this paper is to extend this identification to the case of punctured
Riemann surfaces.

Main Theorem (Theorem 4.7, Proposition 4.6). The homeomorphism Φ: Tg,n →
QD(σ) continuously extends to a homeomorphism Φ from T Th

g,n to T harm
g,n . More-

over, this extension on the boundary coincides with the inverse of the canonical
identification Fv.

This theorem implies the coincidence of two compactifications constructed dif-
ferently, so the harmonic map compactification is independent of the choice of the
fixed metric σ. In addition, the homeomorphism Φ provides a global parametriza-
tion of the Thurston compactification with the closed unit ball in QD(σ). The
proof of the main theorem reproves that the Thurston compactification is home-
omorphic to a closed ball of dimension 6g − 6 + 2n. The proof is relatively easy
compared to Thurston’s original argument [FLP12], which uses difficult results
in high-dimensional topology (the collar neighborhood theorem and generalized
Schöenflies theorem).

Our strategy is based on the original proof for closed surfaces. However, the
compactness of surfaces was essential in Wolf’s proof. Moreover, in our setting,
a holomorphic quadratic differential may have a simple pole at a puncture, so we
need to substantially change his proof.

We outline our proof below, comparing it with Wolf’s proof. Fixing a quadratic
differential Φ0 ∈ SQD(σ), we set ρt = Φ−1(tΦ0) for t > 0. The one-parameter
family {ρt} is called the harmonic map ray in the direction of Φ0. We first show that
the norm of the Beltrami differential of the harmonic diffeomorphism h(t) : (S, σ) →
(S, ρt) converges monotonically to 1 as t → ∞ (Proposition 3.7). For the proof of
this convergence, [Wol89] uses the compactness of a closed surface. Therefore, using
some results on a holomorphic energy function for punctured surfaces in [Loh91], we
prove Proposition 3.7 without the compactness of a surface. From Proposition 3.7,
we obtain the asymptotic length of each arc along a leaf of the horizontal or vertical
measured foliation of Φ0 (Proposition 3.8).

Let β be the identification of QD(σ) and MF given by βΦ = Fv(4Φ). We next
recall Wolf’s fundamental lemma, which is an inequality of the intersection number
function i(βΦ(ρ), ·) and the hyperbolic length function �ρ on C for a metric ρ ∈ Tg,0.
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Theorem ([Wol89, Lemma 4.1]). Fix an isotopy class [γ] ∈ C. Then, for every
ρ ∈ Tg,0, there exist positive constants k0 = k0(‖Φ(ρ)‖) and η = η(‖Φ(ρ)‖, [γ]) such
that

i(βΦ(ρ), [γ]) ≤ �ρ([γ]) ≤ k0i(βΦ(ρ), [γ]) + η,

where k0 ↘ 1 and η‖Φ(ρ)‖−1/2 → 0 as ‖Φ(ρ)‖ → ∞.

The key to showing the inequality is constructing a “staircase” representative
γΦ of an isotopy class [γ] for each Φ ∈ SQD(σ). The representative γΦ satisfies
some conditions. One of the conditions is that γΦ consists of horizontal or vertical
segments of Φ and the intersection number i(βΦ(ρ), γΦ) is equal to i(βΦ(ρ), [γ]).
However, for punctured surfaces, we cannot construct γΦ in the same manner as
[Wol89], since an integrable holomorphic quadratic differential on a punctured Rie-
mann surface may have a simple pole at each puncture. Hence, we show an alternate
theorem as follows.

Theorem (Theorem 4.1). Fix an isotopy class [γ] ∈ C and ε > 0. Then, there
exists a nonnegative number c0 = c0([γ], ε) < ε satisfying the following: for every
ρ ∈ Tg,n, there exist positive constants k0 = k0(‖Φ(ρ)‖, ε) and η = η(‖Φ(ρ)‖, [γ], ε)
such that

i(βΦ(ρ), [γ]) ≤ �ρ([γ]) ≤ k0i(βΦ(ρ), [γ]) + η,

where k0 ↘ 1 and η‖Φ(ρ)‖−1/2 → c0 as ‖Φ(ρ)‖ → ∞.

This proposition is different from Wolf’s lemma in that the limit of η‖Φ(ρ)‖−1/2

may not be 0. Setting the allowance for arbitrarily small ε > 0, we can construct
such a “staircase” representative γΦ. However, unlike Wolf’s lemma, we need to
increase the horizontal measure of the representative γΦ from i(βΦ(ρ), [γ]) by a
little. To estimate the length of the additional horizontal segments, we use some
results on a quadratic differential metric ([Min92,Wol89]). The theorem is a weak
version of [Wol89, Lemma 4.1], but it can lead to the main theorem.

Last, we note a recent development on harmonic map rays. In [PW22], Pan and
Wolf gave some asymptotic relations between harmonic map rays and two other
types of rays in the Teichmüller space. One of them is a Teichmüller ray described
from the viewpoint of complex analysis, and the other is a Thurston stretch ray
described from the viewpoint of hyperbolic geometry.

2. Background

2.1. Harmonic maps. Let S be a closed oriented surface of genus g, and S :=
S − P , where P ⊂ S is a finite set. Let n be the number of the points of P . If
χ(S) = 2 − 2g − n < 0, the surface admits a (complete, finite area) hyperbolic
metric. Throughout this paper, we fix S such that χ(S) < 0 and S is not a thrice
punctured surface. Let σ be a hyperbolic metric on S. The hyperbolic surface
(S, σ) can be regarded as a (punctured) Riemann surface by taking the isothermal
coordinate system for σ.

Let σ|dz|2 and ρ|dw|2 be hyperbolic metrics on S, where z = x+iy and w = u+iv
denote the conformal structures of (S, σ) and (S, ρ), respectively. For a C2 map
f : (S, σ|dz|2) → (S, ρ|dw|2), we define the energy density of f by

e(f) :=
ρ(f(z))

σ(z)
(|fz|2 + |fz̄|2),
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the total energy of f by

E(f) :=
∫
S

ρ(f(z))(|fz|2 + |fz̄|2)
i

2
dzdz̄

and, the holomorphic energy H(f) and the anti-holomorphic energy L(f) by

H(f) :=
ρ(f(z))

σ(z)
|fz|2, L(f) :=

ρ(f(z))

σ(z)
|fz̄|2.

Let J(f) be the Jacobian of f , then J(f) = H(f)−L(f). The Beltrami differential
of f is defined by

ν(f) :=
fz̄dz̄

fzdz
.

The norm of the Beltrami differential of f is a well-defined function on (S, σ).
Clearly, we have |ν(f)|2 = L(f)/H(f).

A C2 map f : (S, σ) → (S, ρ) is said to be harmonic if f is a critical point of the
energy functional E . As the other definition, f is a harmonic map if and only if f
satisfies the Euler-Lagrange equation

fzz̄ +
ρw
ρ
fzfz̄ = 0.

It is a well-known fact that if S is closed, there exists a unique harmonic dif-
feomorphism isotopic to the identity map from (S, σ) to (S, ρ). Eells and Sampson
proved the existence of a harmonic map in each homotopy class [ES64]. Hartman
proved its uniqueness [Har67]. Schoen-Yau and Sampson independently proved
that the harmonic map is a diffeomorphism [SY78,Sam78].

In the case of a punctured surface, Lohkamp showed the following.

Theorem 2.1 ([Loh91]). Let S be a surface of finite type, and σ, ρ be hyperbolic
metrics on S. Then, there exists a unique harmonic diffeomorphism h(σ, ρ) : (S, σ)
→ (S, ρ) such that h(σ, ρ) is homotopic to the identity and E(h(σ, ρ)) < +∞.

2.2. The harmonic map compactification of the Teichmüller space. The
Teichmüller space of the surface S is the quotient space of hyperbolic metrics on S
by the pullback action of a diffeomorphism isotopic to the identity. Let Tg,n denote
the Teichmüller space of S. We often write ρ simply for [ρ] ∈ Tg,n.

A holomorphic quadratic differential Φ on (S, σ) is said to be integrable, if the
|Φ|-area of (S, σ) is finite, namely

‖Φ‖ =

∫
S

|Φ|dxdy < +∞.

Let QD(σ) denote the space of integrable holomorphic quadratic differentials on
(S, σ). For a holomorphic quadratic differential Φ on (S, σ), Φ is integrable if and
only if Φ has a pole of at most order one at each puncture.

Fixing the metric σ of the domain surface, we set h(ρ) := h(σ, ρ) for ρ. Since
(h(ρ)∗ρ)2,0 is a holomorphic quadratic differential on (S, σ) with finite norm
([Loh91] Lemma 7), we can define the map

Φ : Tg,n → QD(σ)

as Φ([ρ]) = (h(ρ)∗ρ)2,0. The uniqueness of the harmonic diffeomorphism shows
that the map Φ is well-defined. Here, we list very useful well-known formulae.
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Proposition 2.2. Let J(ρ) = J(h(ρ)), H(ρ) = H(h(ρ)), L(ρ) = L(h(ρ)), and
ν(ρ) = ν(h(ρ)). Then the following hold:

(I) J(ρ) = H(ρ)− L(ρ)
(II) |Φ(ρ)|/σ2 = H(ρ)L(ρ)
(III) |ν(ρ)|H(ρ)σ = |Φ(ρ)|
(IV) ν(ρ) = L(ρ)/H(ρ)
(V) ΔσH(ρ) = 2H(ρ)− 2L(ρ)− 2
(VI) ΔσL(ρ) = 2L(ρ)− 2H(ρ)− 2 on S − {Φ(ρ) = 0}

Here,

Δσ :=
4

σ

∂2

∂z∂z̄
is the Laplace-Beltrami operator on (S, σ).

For the proof of (V) and (VI), see [Jos06, Lemma 3.10.1].
Theorem 2.3 is shown by Wolf for n = 0 and by Lohkamp for n > 0.

Theorem 2.3 ([Wol89], [Loh91]). Φ is a homeomorphism.

Using the Riemann-Roch theorem, we see that QD(σ) is a vector space of real
dimension 6g − 6 + 2n. Since a vector space can be compactified by adding a
point at infinity to the endpoint of every ray from the origin, we can obtain the
compactification of Tg,n through the homeomorphism Φ. The compactification of

Tg,n is called the harmonic map compactification and denoted by T harm
g,n . In other

words,

T harm
g,n = BQD(σ) ∪ SQD(σ),

where BQD(σ) := {Φ ∈ QD(σ) | ‖Φ‖ < 1} and SQD(σ) := {Φ ∈ QD(σ) | ‖Φ‖ = 1}.

2.3. The Thurston compactification. Here, we put a brief description of T Th
g,n

with reference to [FLP12]. A simple closed curve γ on S is peripheral if γ bounds
a once-punctured disk. If a simple closed curve γ is neither null-homotopic nor
peripheral, γ is said to be essential. Let C = C(S) be the set of all isotopy classes
of essential simple closed curves in S. Given functionals f, g ∈ R

C
≥0, f and g are

said to be equivalent, if there exists a positive real number λ > 0 such that f = λg.
The quotient space of the functionals by the equivalence relation is denoted by
P (RC

≥0), and let π : RC
≥0 − {0} → P (RC

≥0) be the projection. Let MF∗ be the
set of nontrivial measured foliations on S which may have possibly one-pronged
singularities at the punctures. Then, MF∗ can be embedded into R

C
≥0 − {0} by

the map I∗ which is defined by

I∗(F ) := (i(F, ·) : C → R≥0) (F ∈ MF∗),

where i(F, [γ]) is the infimum of the transverse measure of representatives of [γ] ∈ C.
Thus we identify MF∗ with its image in R

C
≥0. Thurston showed that π ◦ I∗(MF∗)

is homeomorphic to a sphere of dimension 6g − 7 + 2n.
For ρ ∈ Tg,n, the length functional �∗(ρ) ∈ R

C
≥0 is given by

�∗(ρ)([γ]) := �ρ([γ]) = inf
γ∈[γ]

�ρ(γ) ([γ] ∈ C).

It is known that �∗ is an embedding of Tg,n into R
C
≥0 − {0} and π ◦ �∗ is still an

embedding of Tg,n into P (RC
≥0).
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Let T Th
g,n be the subset π◦�∗(Tg,n)∪π◦I∗(MF∗) in P (RC

≥0). In fact, it is homeo-

morphic to a closed ball of dimension 6g−6+2n. The boundary π◦I∗(MF∗) of the
Thurston compactification is denoted by PMF . By the construction, the mapping
class group action on Tg,n extends continuously to the Thurston compactification.

3. Deformation Along Harmonic Map Rays

3.1. Norm functions of Beltrami differentials. We denote the inverse home-
omorphism Φ−1 : QD(σ) → Tg,n by ρ .

Definition 3.1. Let Φ0 ∈ SQD(σ). The harmonic map ray in the direction of Φ0

is the ray defined by {ρt := ρ(tΦ0)}t>0 in Tg,n.

Let h(t) denote the unique harmonic diffeomorphism h(ρt) homotopic to the
identity with E(h(ρt)) < +∞. We denote the holomorphic energy by H(t), anti-
holomorphic energy by L(t), and the Beltrami differentials of h(t) by ν(t). Clearly
Φ(ρt) = tΦ0 by the definition. The main purpose of this subsection is to prove
Proposition 3.2.

Proposition 3.2. For any Φ0 ∈ SQD(σ), let {ρt}t>0 be the harmonic map ray in
the direction of Φ0. Then, for every nonzero point p of Φ0, we have

|ν(t)(p)|2 ↗ 1 (as t → ∞).

Remark 3.3. Let M be the domain surface (S, σ). In the case of closed surfaces,
Wolf [Wol89] proved this proposition in the following three steps.

Step 1: Show that |ν(t)(p)|2 converges to 1 almost everywhere on M .
Step 2: Show that (|ν(t)(p)|2)′ > 0 on M − {Φ0(p) = 0}.
Step 3: Exclude the possibility that |ν(t)(p)|2 → δ �= 1 as t → ∞ for a nonzero

point p of Φ0.

If the surface S has punctures, we can proceed Step 1 and Step 3 in essentially
the same way as the paper [Wol89]. Therefore we give the proof of Step 2 here.
Since the compactness of the surface is critical for Step 2 in [Wol89], We prove this
inequality for punctured surfaces.

Proposition 3.4. For every nonzero point p ∈ M − {Φ0(q) = 0}, the derivative
(|ν(t)(p)|2)′ with respect to t is positive.

Proof. By the formula (II) in Proposition 2.2, we have

(H(t)L(t))′ = H ′(t)L(t) + L′(t)H(t) =
2t|Φ0|2
σ2

=
2

t
H(t)L(t).

Therefore, for every p ∈ M − {Φ0(p) = 0},

(3.1)
H ′(t)

H(t)
(p) +

L′(t)

L(t)
(p) =

2

t
.

Next, we introduce some results on the holomorphic energy functions H(t). The
following is shown by Lohkamp.

Lemma 3.5 ([Loh91] Lemma 14). For t1, t2 > 0,

min

{
1,

t2
t1

}
·H(t1) ≤ H(t2) ≤ max

{
1,

t2
t1

}
·H(t1) on M.

Using Lemma 3.5, we show the following.
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Lemma 3.6. For every t > 0 and p ∈ M , we have

0 ≤ H ′(t)

H(t)
(p) <

1

t
,

where H ′ is a derivative with respect to t.

Proof. Since the holomorphic energy H(t) is positive, by Lemma 3.5,

min

{
0, log

t2
t1

}
≤ log

H(t2)

H(t1)
≤ max

{
0, log

t2
t1

}
.

Therefore, we obtain

0 ≤ logH(t2)− logH(t1)

t2 − t1
≤ log t2 − log t1

t2 − t1
.

Setting t1 = t, t2 = t+ h and tending h to 0, we find

(3.2) 0 ≤ H ′(t)

H(t)
≤ 1

t
.

Next, we show that the second inequality of (3.2) is strict. If there exists a point
p0 ∈ M such that H ′(t)/H(t)(p0) = 1/t, since p0 maximizes H ′(t)/H(t), we have

0 ≥ Δσ
H ′(t)

H(t)
(p0) = Δσ(logH(t))′ = 2(H ′(t)− L′(t)).

Therefore, we find H ′(t)(p0) ≤ L′(t)(p0).
This implies that p0 is not a zero of Φ0. If p0 is a zero, by H(t) > 0 and

H(t)L(t) = t2|Φ0(p0)|2/σ2 = 0,

L(t)(p0) = 0

holds for any t > 0. Hence we have H ′(t)(p0) ≤ 0, however this is impossible since
H(t)(p0) > 0 and H ′(t)/H(t)(p0) = 1/t. Thus, we find that Φ0(p0) �= 0.

By H(t)− L(t) > 0, we have

L′(t)

L(t)
(p0) ≥

H ′(t)

L(t)
(p0) >

H ′(t)

H(t)
(p0).

However, this contradicts H ′(t)/H(t)(p0) = 1/t and (3.1). �

By Lemma 3.6 and (3.1), we have

L′(t)

L(t)
>

H ′(t)

H(t)
on M − {Φ0(p) = 0}.

Thus, we obtain

(|ν(t)|2)′ =
(
L(t)

H(t)

)′
=

L′(t)H(t)− L(t)H ′(t)

H(t)2
> 0 on M − {Φ0(p) = 0}.

This completes the proof. �
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3.2. Asymptotic length of horizontal and vertical arcs. Given hyperbolic
structures σ, ρ on S, we can isotope ρ so that the identity map id: (S, σ) → (S, ρ)
is harmonic. For the rest of this paper, we always take such a representative in its
isotopy class.

A holomorphic quadratic differential Φ defines two measured foliations on M
which are orthogonal to each other away from the zeros. By changing a conformal
coordinate z on M to the natural coordinate ζ = ξ + iη of Φ, the representation of
Φ in terms of ζ is identically 1 away from zero, that is

Φ dz2 = dζ2.

Then lines parallel to ξ-axis (resp. η-axis) define a singular foliation on M such that
its singular points are zeros of Φ0, and also |dη| (resp. |dξ|) defines a transverse
measure for the singular foliation. We call the measured foliation the horizontal
(resp. vertical) foliation of Φ0, and it is denoted by Fh(Φ) (resp. Fv(Φ)). If Φ0 has
a pole of order one at a puncture on S, the foliation is one-pronged at the puncture.
An arc along a leaf of horizontal (resp. vertical) measured foliation of Φ is called a
horizontal (resp. vertical) arc of Φ0.

Let Φ0 ∈ SQD(σ) and {ρt} be the harmonic map ray in the direction of Φ0.
In this subsection, we consider the asymptotic ρt-length of horizontal and vertical
arcs of Φ0. Here, we recall Wolf’s setting in [Wol89]. For the ray {ρt}, we define
conformal coordinates z = x+ iy on M , such that ∂

∂x and ∂
∂y give an orthonormal

frame field on M and they are respectively maximum and minimum stretching
directions of the differential map dh(t). Then, they are tangent to the horizontal
and vertical foliations of Φ0, respectively. The conformal coordinate z is defined
away from all zeros of Φ0. By the definitions of ∂

∂x and ∂
∂y , they are orthogonal to

each other in the ρt-metric. Thus, we have

tΦ0 dz
2 =

1

4

(∥∥∥∥ ∂

∂x

∥∥∥∥2
ρt

−
∥∥∥∥ ∂

∂y

∥∥∥∥2
ρt

)
dz2.

Therefore, the |Φ(ρt)| metric length of a tangent vector ∂
∂x is

(3.3)

∥∥∥∥ ∂

∂x

∥∥∥∥2
Φ(ρt)

=
1

4

(∥∥∥∥ ∂

∂x

∥∥∥∥2
ρt

−
∥∥∥∥ ∂

∂y

∥∥∥∥2
ρt

)
.

Moreover, by computation, we find

(3.4) |ν(t)| =
1− ‖ ∂

∂y‖ρt
/‖ ∂

∂x‖ρt

1 + ‖ ∂
∂y‖ρt

/‖ ∂
∂x‖ρt

.

Hence, by Proposition 3.2, the following holds.

Proposition 3.7. Let {ρt}t>0 be the harmonic map ray in the direction Φ0. Then

(1) for every p with Φ0(p) �= 0, ‖ ∂
∂y‖ρt

/‖ ∂
∂x‖ρt

↘ 0 as t → ∞, and

(2) for every p with Φ0(p) �= 0, ‖ ∂
∂x‖|4Φ(ρt)|/‖ ∂

∂x‖ρt
↗ 1 as t → ∞.

Proposition 3.8. Let {ρt}t>0 be a harmonic map ray in the direction Φ0. For an
arc γ on M , let �ρt

(γ) denote the ρt-length of γ.

(1) Let γ be a compact horizontal arc of Φ0 containing no zeros of Φ0. Then,
there exist constants c0, c1 > 0 depending only on γ such that for every
t > 1

0 < c0 < �ρt
(γ)t−1/2 < c1 < ∞.
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(2) Let γ be a compact vertical arc of Φ0 (that may contain zeros of Φ0). Then

�ρt
(γ)t−1/2 → 0 as t → ∞.

Proof. This proposition can be shown similarly to [Wol89], using the fact that the
holomorphic energy function is bounded [Loh91, Corollary 3 and Lemma 9] instead
of the compactness for a closed surface. �

Lemma 3.9 for closed surfaces is proved by Minsky in [Min92, Lemma 3.3]. Since
Minsky’s proof works for Lemma 3.9, we omit the proof.

Lemma 3.9. Let Φ ∈ QD(σ). Suppose that p ∈ M is at least distance d away from
poles and zeros of Φ, and

log |ν(Φ)|−1 < b on B|Φ|(p, d),

where B|Φ|(p, d) denotes the |Φ|-radius d disk centered at p, and ν(Φ) = ν(ρ(Φ)).
Then

log |ν(Φ)(p)|−1 <
b

cosh d
.

By using Lemma 3.9 and some estimates in [Wol91], we can bound the asymptotic
ρt-length of horizontal arcs of Φ0 from above by the |Φ0|-length.

Proposition 3.10. Let Φ0 ∈ SQD(σ), and let {ρt}t>0 be the harmonic map ray
in the direction of Φ0. If γ is a compact horizontal arc of Φ0 containing no zeros,
then there exist C,D > 0 depending only on γ such that

�ρt
(γ) < t1/2�|4Φ0|(γ)(1 + Ce−D

√
t) for all t > 0.

Proof. Let Σ(Φ0) denote the set consisting of punctures and zeros of Φ0. We set

d(t) = inf{dt|Φ0|(p, q) | p ∈ γ, q ∈ Σ(Φ0)}.

Then we find that d(t) = t1/2d(1) by the definition of quadratic differential metrics.
We define a constant C0 as

C0 = sup{log |ν(1)(q)|−1 | q ∈ N|Φ0|(γ, d(1)/2)},
where N|Φ0|(γ, d(1)/2) denote the (d(1)/2)-neighborhood of γ in the |Φ0| metric.
Since |ν(t)| increases monotonically in t, we see that for every q ∈ N|Φ0|(γ, d(1)/2)
and every t > 1,

log |ν(t)(q)|−1 < log |ν(1)(q)|−1 ≤ C0.

Therefore, by Lemma 3.9,

log |ν(t)|−1 <
C0

cosh(d(t)/2)
=

C0

cosh
(
t1/2d(1)/2

) < C0e
−
√
td(1)/2

holds on γ. Then, we have

|ν(t)|−1/2 − 1 <
1

|ν(1)|1/2 (1− |ν(t)|2)

≤ 1

minγ |ν(1)|1/2
log |ν(t)|−2

≤ 2

minγ |ν(1)|1/2
C0e

−
√
td(1)/2.
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Setting

C =
2

minγ |ν(1)|1/2
C0 and D = d(1)/2,

we have

�ρt
(γ) =

∫
γ

∥∥∥∥ ∂

∂x

∥∥∥∥
ρt

ds

=

∫
γ

{H(t)1/2 + L(t)1/2} dsσ

=

∫
γ

H(t)1/2(1 + |ν(t)|) dsσ

=

∫
γ

t1/2|Φ0|1/2
|ν(t)|1/2 (1 + |ν(t)|) dsσ

σ1/2

= t1/2
∫
γ

(1 + (|ν(t)|−1/2 − 1))(2− (1− |ν(t)|)) ds|Φ0|

< 2t1/2
∫
γ

(1 + (|ν(t)|−1/2 − 1)) ds|Φ0|

< t1/2�|4Φ0|(γ)(1 + Ce−D
√
t),

as 2�|Φ0|(γ) = �|4Φ0|(γ). We obtain the desired inequality. �

Corollary 3.11. Under the assumptions of Proposition 3.10,

lim
t→∞

t−1/2�ρt
(γ) ≤ �|4Φ0|(γ)

holds.

Lemma 3.12 will be used in the proof of Proposition 4.3.

Lemma 3.12. Let q ∈ S − S, a puncture of S. Then for every Φ ∈ QD(σ),

�|Φ|(∂B|Φ|(q, R)) ≤ L1R,

where L1 is a constant which depends only on the topological type of S.

Remark 3.13. Note for closed Riemann surfaces that Lemma 3.12 is a special case
of Lemma 4.1 in [Min92]. For every point p ∈ S, let ordp Φ denote the order of Φ
at p. We know that a singularity p has a cone angle of (n + 2)π, or concentrated
curvature −nπ, where n = ordp Φ. Note that, if p is a pole of Φ, then ordp Φ = −1.

Proof. For a number r with 0 ≤ r ≤ R, we set γr = ∂B|Φ|(q, r). Then, we have

d

dr
�|Φ|(γr) = κ(γr),

where κ(γr) is a total curvature of γr in the |Φ|-metric. By the Gauss-Bonnet
theorem, we have

κ(γr) = 2πχ(B|Φ|(q, r))−
∑

p∈B|Φ|(q,R)

(−(ordp Φ)π)

≤ 2π + (4g − 4 + n)π.

Therefore, �|Φ|(γR) =
∫ R

0
κ(γr) dr ≤ (4g − 2 + n)πR follows. �
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4. The Identification of the Compactifications

4.1. The fundamental lemma. As described at the beginning of the previous
section, a holomorphic quadratic differential Φ on M defines the vertical measured
foliation on M . In fact, by the Hubbard-Masur theorem, the map Φ �→ Fv(Φ) is a
homeomorphism from QD(σ) toMF ([HM79], also see [Gar87, p.206] for punctured
surfaces), whereMF denotes the set of measured foliations on S (hereMF contains
the empty measured foliation). We define a homeomorphism β : QD(σ) → MF by
βΦ = Fv(4Φ). Then, by the definition of the transverse measure of βΦ, we find
that, for every [γ] ∈ C

i(βΦ, [γ]) = ‖Φ‖1/2i(β(Φ/‖Φ‖), [γ]).
The main purpose of this subsection is to prove the following proposition anal-

ogous to [Wol89, Lemma 4.6].

Theorem 4.1. Fix [γ] ∈ C and ε > 0. Then, for every ρ ∈ Tg,n, there exist
nonnegative constants c0 = c0([γ], ε), k0 = k0(ε, ‖Φ(ρ)‖) and η = η([γ], ε, ‖Φ(ρ)‖)
such that

i(βΦ(ρ), [γ]) ≤ �ρ([γ]) ≤ k0i(βΦ(ρ), [γ]) + η,

and
k0 ↘ 1, η‖Φ(ρ)‖−1/2 → c0 < ε as ‖Φ(ρ)‖ → ∞.

Remark 4.2. In the statement of Lemma 4.6 in [Wol89], it is written that the
constant k0 depends on [γ]. However, from his proof, one can observe it is actually
independent.

Proof. The lower bound i(βΦ(ρ), [γ]) ≤ �ρ([γ]) is shown in the same manner as
[Wol89], so we omit the proof here.

In order to show the upper bound, we first show Proposition 4.3.

Proposition 4.3. For each Φ ∈ SQD(σ), we can construct a representative γΦ ∈
[γ] so that there exist domains R0 = R0([γ], ε) and R1 = R1(ε) containing all
punctures of M , constants δ = δ(ε) > 0,K = K([γ]) > 0, and positive integers
L = L([γ]),m = m([γ], ε) satisfying the following conditions:

(1) The curve γΦ consists of horizontal and vertical arcs of Φ and does not
intersect with the neighborhood R0 = R0([γ], ε) of the punctures of M .

(2) The horizontal arcs of γΦ are divided into the main part γh
Φ and the addi-

tional part γ̃h
Φ such that

• the main part γh
Φ is disjoint from(⋃

p

Bσ(p, δ)

)
∪R1,

where the union is over all zeros p of Φ.
• the number of the connected segments constituting the additional part
γ̃h
Φ is at most m = m([γ], ε), and they are disjoint from some neigh-

borhood of zeros of Φ.
(3) i(βΦ, γh

Φ) = i(βΦ, [γ]) and i(βΦ, γ̃h
Φ) < ε.

(4) The total |Φ|-length of the vertical arcs of γΦ is uniformly bounded by K =
K([γ]), i.e. i(β(−Φ), γv

Φ) < K, where γv
Φ is the union of the vertical arcs.

Moreover, the number of the connected segments of the vertical arcs which
contain a zero of Φ is at most L = L([γ]).
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Proof. We fix Φ0 ∈ SQD(σ). By the compactness of SQD(σ), it is enough to show
that the claim holds on a neighborhood of Φ0.

For a quadratic differential Φ ∈ SQD(σ), we let

Z(Φ) = {zeros of Φ in M},
Preg(Φ) = {punctures which are regular points or zeros of Φ},
Ppole(Φ) = {punctures which are poles of Φ},

Σ(Φ) = Z(Φ) ∪ Preg(Φ) ∪ Ppole(Φ), the singular set of Φ.

Furthermore, we pick a positive constant δ′ = δ′(Φ0) such that, for all distinct
pi, pj ∈ Σ(Φ0), the |Φ0|-distance between B|Φ0|(pi, 2δ

′) and B|Φ0|(pj , 2δ
′) is at least

2δ′, and also

δ′(Φ0) <
(

min
Φ∈SQD(σ)

inj |Φ|
)
/(8g − 5 + 2n),

where we set inj |Φ| := inf [γ]∈C �|Φ|([γ])/2. We may assume ε < δ′, since ε > 0 is
arbitrary. Then, we pick a sufficiently small neighborhood N of Φ0 in SQD(σ) so
that every Φ ∈ N satisfies the following conditions:

(1) The connected components of

N(Σ(Φ0), δ
′) :=

⋃
p∈Σ(Φ0)

B|Φ0|(p, δ
′)

bijectively correspond to the connected components of

N(Σ(Φ), δ′) :=
⋃

p∈Σ(Φ)

B|Φ|(p, δ
′)

by the correspondence between Σ(Φ) and Σ(Φ0).
(2) If we fill the punctures, every connected component C of N(Σ(Φ), δ′) is

topologically a disk, and the |Φ|-distance between C and the other con-
nected components is at least δ′.

(3) The total length of critical vertical leaves of Φ contained in N(Σ(Φ), δ′) is
uniformly bounded from above by a constant K1 = K1(Φ0).

(4) The zeros of Φ splitting off (see Figure 1) from q ∈ Preg(Φ0) is contained
in B|Φ|(q, r/2), where r is a sufficiently small constant which depends only
on [γ], ε and Φ0 and is defined later in (4.3).

Under the preparation, we describe the construction of the representative γΦ for
each Φ ∈ N . First, we begin with the |Φ|-geodesic representative ΓΦ of [γ]. Note
that ΓΦ may touch some punctures and cannot be realized on M in a strict sense
(see Figure 2). (If all of punctures of S are simple poles of Φ, there exists a strict
|Φ|-geodesic representative of [γ] in M , see [Sya96].) Each segment of the geodesic
representative ΓΦ outside of N(Σ(Φ), δ′) is a Euclidean straight line segment, so
we replace such a straight segment of ΓΦ with a Φ-staircase curve which is a union
of horizontal and vertical arcs of Φ. Let Γ′

Φ be the resulting curve. Then

i(βΦ,Γ′
Φ) = i(βΦ, [γ]) and i(β(−Φ),Γ′

Φ) < max
Φ∈SQD(σ)

�|4Φ|([γ]).

Next, let C be a connected component of N(Σ(Φ), δ′). Then, the number of
punctures contained in C is at most one.

Claim 4.4. The number of connected components of Γ′
Φ ∩ C is, at most, a =

a([γ], δ′).
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Figure 1. The zeros split off from a puncture.

Figure 2. Left and middle: we illustrate examples of the geodesic
representative in a slightly broad sense around a puncture. Note
that there is no such a representative in the right of the figures.

Proof.

Case I. We suppose that C contains a puncture q. Then, C contains, at most,
4g − 4 + n zeros of Φ. Therefore, C is contained in the disk

(4.1) D := B|Φ|(q, (8g − 7 + 2n)δ′).

The disk D does not contain the other puncture and D is embedded into M , since
(8g − 7 + 2n)δ′ < inj |Φ|. Let p be a zero of Φ contained in C. Let Γ′′

Φ denote a
connected component of ΓΦ ∩D. Notice that B|Φ|(p, δ

′) may not be a convex set,
since it can contain a pole of Φ at the puncture q. However, considering a double
branched covering of D, we find that the number of the connected components
of Γ′′

Φ ∩ B|Φ|(p, δ
′) is at most two (see Figure 3). Thus, the number of connected

components of Γ′′
Φ∩C is at most 2(4g−3+n), where 4g−3+n is the maximum of

the number of the disks constituting C. Let γ′ denote a subarc of ΓΦ which leaves
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q p q̃

p̃

p̃

Figure 3. Left: it is difficult to directly understand the δ′-
neighborhood of a zero near a pole of Φ. Right: the lift of the
double cover branched at the puncture q.

D and comes back to D. The endpoints of γ′ are on ∂D. Then, since D is convex
and ΓΦ is geodesic, γ′ is not isotopic to ∂D rel the endpoints. Thus, we see that
the |Φ|-length of γ′ is at least δ′. By the above discussion, we find that, every time
ΓΦ intersects D, the number of the connected components of C ∩ ΓΦ increases by
at most 8g − 6 + 2n and also the number of the connected components of ΓΦ ∩D
is at most

(4.2)

⌈
max

Φ∈SQD(σ)
{�|4Φ|([γ])}/δ′(Φ0)

⌉
.

Case II. Suppose next that C contains no punctures. Then, C contains, at most
4g− 4+n, zeros of Φ. Therefore, the |Φ|-diameter of C is, at most, (8g− 8+2n)δ′.
Hence, C is contained in a ball B = B|Φ|(p0, (4g−4+n)δ′) for a point p0 ∈ M . Then
the ball contains at most one puncture, since (8g − 8 + 2n)δ′ < (8g − 5 + 2n)δ′ <
inj |Φ|.

Then we have two cases. First, suppose that B contains a puncture q. Then

D = B|Φ|(q, (8g − 7 + 2n)δ′)

contains B, and D contains no other punctures. Therefore D is convex, and thus
we can apply the argument of Case I to D. However, B|Φ|(p, δ

′) is now convex
for a zero p of Φ contained in C, so we do not need to take a double branched
covering. Thus we obtain the desired upper bounds. Second, suppose that B
contains no punctures. If the neighborhood N|Φ|(B, δ′) of B contains a puncture q,
B is contained in the disk

D = B|Φ|(q, (8g − 7 + 2n)δ′).

Therefore we can show the desired claim as in the first case that C contains a
puncture q. If the neighborhood N|Φ|(B, δ′) of B does not contain a puncture, each
connected component of ΓΦ \ B has length at least δ′. Then, setting D = B, we
again apply the argument of Case I to D.

�
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Figure 4. The dotted lines denote vertical leaves of Φ. The black
points denote intersections of critical vertical arcs and γ. The
upper right figure illustrates the lift of the foliation in the upper
left figure.

Let γ denote a connected component of Γ′
Φ ∩ C. If a vertical arc of Φ contains

a singular point of Φ as its endpoint, then it is called a critical vertical arc. Then,
either (i) γ has at most one intersection with each critical vertical arc contained in
C, or (ii) γ is a union of critical vertical arcs. We leave the curves in Case (ii), and
deform the curves in Case (i). The number of the critical vertical arcs contained in
C is, at most, 3(4g − 4 + n) + 1, so the number of the intersections of γ and the
critical vertical arcs is clearly finite. Then, we divide γ at these intersection points
into finitely many segments. For each such segment of γ, we replace it with a curve
consisting of horizontal arcs and vertical arcs of Φ. Then, we drag the horizontal
measure out of C by adding vertical arcs (Figure 4). Then we set

R1 =
⋂

Φ∈N

⎛⎝ ⋃
q∈S−S

B|Φ|(q, δ
′)

⎞⎠ .

Let γ̂ denote the resulting curve from γ.
Next, we add the following operation, which is denoted by (∗), for each connected

component α of γ̂ ∩B|Φ|(q, r):

(1) isotope α to ∂B|Φ|(q, r) rel the endpoints, and
(2) then further isotope α on ∂B|Φ|(q, r) to a union of vertical and horizontal

arcs tangent to ∂B|Φ|(q, r) (see Figure 5).

By this operation (∗), γΦ does not enter the r-neighborhood of the puncture q.
Since, by Lemma 3.12, the |Φ|-length of ∂B|Φ|(q, r) is at most L1r, the operation
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Figure 5. This is an example of a vertical arc in B|Φ|(q, r). By
the operation (∗), we let the curve not enter B|Φ|(q, r).

(∗) increases the horizontal measure by at most L1r. Thus, if we take r so that

(4.3) m1aL1r < ε,

then the increase of horizontal measure due to the operation (∗) is less than ε,
where m1 is the upper bounds on the total number of the operation (∗) all over
each γ̂ and a is the constant as in Claim 4.4. Moreover, m1 depends only on the
topology of M . Thus, we set a domain R0 by

R0 =
⋂

Φ∈N

⎛⎝ ⋃
q∈S−S

B|Φ|(q, r)

⎞⎠
and define γΦ as the resulting representative of [γ]. The constant δ and the domain
R1 in Proposition 4.3 is determined by δ′. �

Next, we describe the constant k0. For ρ ∈ Tg,n, we set

M ′ = M −R1, Mδ(ρ) = M ′ −
⋃

p∈Z(Φ)

Bσ(p, δ).

Furthermore, we define a function k2 by

k2(ρ) = max
p∈Mδ(ρ)

‖( ∂
∂x )p‖ρ

‖( ∂
∂x )p‖|4Φ(ρ)|

.

Claim. The function k2 is upper semicontinuous in Tg,n.

Proof. This proof is similar to that in [Wol89, p.464]. �

Hence, defining a function κA : SQD(σ) → R≥0 for A > 0 by

κA(Φ0) := k2(ρ(AΦ0)),
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we find that κA is the upper semicontinuous function on SQD(σ). Since a upper
semicontinuous function on a compact set has a maximum, we set

k0(A, ε) = max
Φ0∈SQD(σ)

κA(Φ0).

Then, by Proposition 3.7, for every p ∈ Mδ(Φ0),

‖( ∂
∂x )p‖ρ(AΦ0)

‖( ∂
∂x )p‖|4AΦ0|

↘ 1 as A → ∞.

Therefore κA(Φ0) ↘ 1 as A → ∞. Since {κA} converges uniformly on SQD(σ) by
Dini’s theorem, we find that k0 ↘ 1 as A → ∞. Thus we have

�ρ(γ
h
Φ0(ρ)

) =
∑

γ⊂γh
Φ0

∫
γ

∥∥∥∥ ∂

∂x

∥∥∥∥
ρ

ds

≤ sup
γh
Φ0

‖( ∂
∂x )p‖ρ

‖( ∂
∂x )p‖|4Φ(ρ)|

∑∫
γ

∥∥∥∥ ∂

∂x

∥∥∥∥
|4Φ(ρ)|

ds

≤ k2(ρ)i(βΦ(ρ), γ
h
Φ0
)

≤ k0(A, ε)i(βΦ(ρ), γh
Φ0
),

where Φ0(ρ) := Φ(ρ)/‖Φ(ρ)‖.
Finally, we describe the way of setting the constant η = η([γ], ε, A). By Propo-

sition 3.8, for any Φ0 ∈ SQD(σ)

�ρ(AΦ0)(γ
v
Φ0

)A−1/2 → 0 as A → ∞.

Since γΦ0
continuously changes with respect to Φ0 and γv

Φ0
contains at most finite

zeros of Φ0, the total σ-length of γv
Φ0

is bounded from above. Therefore, we conclude
that there exists a constant η1([γ], A) such that∑

γ⊂γv
Φ0(ρ)

�ρ(γ) < η1 and η1A
−1/2 → 0 as A → ∞.

By Proposition 3.10 and the construction of the representative γΦ ∈ [γ] for Φ ∈
SQD(σ), we can take constants C and D (see Remark 4.5) such that, for every
Φ ∈ SQD(σ),

(4.4) �ρ(tΦ)(γ̃
h
Φ) < t1/2i(βΦ, γ̃h

Φ)(1 + Ce−D
√
t).

Therefore, if we set

c0 = c0([γ], ε) = sup
Φ∈SQD(σ)

i(βΦ, γ̃h
Φ)

and

η2 = η2([γ], ε, A) = A1/2c0(1 + Ce−D
√
t),

then, for every Φ ∈ SQD(σ),

�ρ(tΦ)(γ̃
h
Φ) < η2 and η2A

−1/2 → c0 < ε
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as A → ∞. Hence, setting η := η1 + η2, we have ηA−1/2 → c0 as A → ∞. Thus,
for every ρ ∈ ρ(A · SQD(σ)),

�ρ([γ]) ≤ �ρ(γΦ0(ρ))

= �ρ(γ
h
Φ0(ρ)

) + �ρ(γ̃
h
Φ0(ρ)

) + �ρ(γ
v
Φ0(ρ)

)

< k0i(βΦ(ρ), [γ]) + η,

and the proof is complete. �

Remark 4.5. Here, we describe the setting of η2, namely the constants C and D in
(4.4). In the proof of Proposition 3.10, D is determined by the |Φ|-distance from a
horizontal arc to zeros of Φ. Now, for each Φ ∈ SQD(σ), γ̃h

Φ is at least r/2 away
from zeros of Φ in the |Φ| metric, so the constant D can be taken uniformly on
SQD(σ). Moreover, we take the constant C as follows. We set r′ > 0 so that, for
every Φ ∈ SQD(σ) and every p ∈ Z(Φ),

Bσ(p, r
′) ⊂ B|Φ|(p, r/2).

By the same manner as the upper semicontinuity of k2, we conclude that the map

Φ �→ min
p∈Mr′ (ρ(Φ))

|ν(Φ)|

is lower semicontinuous on QD(σ). Therefore, there exists a lower bound of
minp∈Mr′ (ρ(Φ)) |ν(Φ)(p)| for Φ ∈ SQD(σ).

Thus we find that |ν(Φ)| ≥ C1 > 0 and log |ν(Φ)|−1 ≤ C2 < +∞ on γ̃h
Φ (⊂

Mr′(ρ(Φ))) for every Φ ∈ SQD(σ). Therefore we obtain the desired constant C,
since it is given by C1 and C2 as in the proof of Proposition 3.10.

4.2. The extended homeomorphism. The following lemma is an extension of
[Wol89, Lemma 4.7] for punctured surfaces.

Proposition 4.6. Let {ρi} ⊂ Tg,n be a sequence diverging to ∞ (i.e. it leaves
every compact set in Tg,n). Then {π ◦ �(ρi)} converges in PMF if and only if
{π ◦ βΦ(ρi)} converges in PMF . Moreover, their limits in PMF coincide when
they converge.

Proof. We can take finitely many essential simple closed curves [γ1], . . . , [γk] ∈ C
and a positive number δ > 0 so that

k∑
j=1

i(βΦ0, [γj ]) > δ > 0

holds for every Φ0 ∈ SQD(σ).
Suppose that π ◦ �(ρn) converges. Then, there exists a sequence {λn} ⊂ R>0

such that λn�(ρn) converges in R
C
≥0. Therefore, there exists B > 0 such that, for
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each n ∈ N,

B >

k∑
j=1

λn�ρn
([γj ])

> λn

k∑
j=1

i(βΦ(ρn), [γj ]) (By Theorem 4.1)(4.5)

= λn‖Φ(ρn)‖1/2
k∑

j=1

i(β(Φ(ρn)/‖Φ(ρn)‖), [γj ])

> (λn‖Φ(ρn)‖1/2)δ.
Hence, we see that

λn · η([γ], ε, ‖Φ(ρn)‖) < (B/δ) · η‖Φ(ρn)‖−1/2.

By Theorem 4.1,
lim
n→∞

η‖Φ(ρn)‖−1/2 = c0([γ], ε) < ε.

Moreover, for any ε > 0 and [γ] ∈ C,
λni(βΦ(ρn), [γ]) = λn‖Φ(ρn)‖1/2i(β(Φ(ρn)/‖Φ(ρn)‖), [γ])

< (B/δ) max
Φ0∈SQD(σ)

i(βΦ0, [γ]).

Thus by Theorem 4.1, for any ε > 0 and [γ] ∈ C,
|λn�ρn

([γ])− λni(βΦ(ρn), [γ])| < (k0 − 1)λni(βΦ(ρn), [γ]) + λnη

and
(k0 − 1)λni(βΦ(ρn), [γ]) → 0

as n → ∞. Therefore, for any ε > 0 and [γ] ∈ C,
lim
n→∞

(λn�ρn
([γ])− λni(βΦ(ρn), [γ])) < ε.

Since we can take arbitrarily small ε > 0, we have

lim
n→∞

λn�(ρn) = lim
n→∞

λnβΦ(ρn) in R
C
≥0.

Thus we conclude that

lim
n→∞

π ◦ βΦ(ρn) = lim
n→∞

π ◦ �(ρn).

We can show the converse in the same manner by starting with (4.5). �

Define a map ψ : T Th
g,n → T harm

g,n by

ψ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
lim
n→∞

Φ(xn)

‖Φ(xn)‖
, 1

)
(x ∈ ∂ThTg,n, {xn} ⊂ Tg,n with xn → x)

(
Φ(x)

‖Φ(x)‖ ,
4‖Φ(x)‖

1 + 4‖Φ(x)‖

)
(x ∈ Tg,n),

where we use the polar coordinates in BQD(σ) (i.e. for (r, θ) ∈ BQD(σ), θ ∈
SQD(σ) and r ∈ [0, 1]).

Our main theorem, Theorem 4.7, is shown from Proposition 4.6. The proof is
similar to that of [Wol89, Theorem 4.1]. However we write the proof here for the
sake of completeness.
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Theorem 4.7. The map ψ is a homeomorphism.

Proof. We first show that ψ is well-defined on PMF . For sequences {xn}, {x′
n}

with xn, x
′
n → x ∈ PMF , there exist

lim
n→∞

π ◦ βΦ(xn) and lim
n→∞

π ◦ βΦ(x′
n),

and they coincide by Proposition 4.6. Therefore there exist sequences {λn}, {λ′
n}

such that
lim
n→∞

λnβΦ(xn) = lim
n→∞

λ′
nβΦ(x

′
n).

Since β is a homeomorphism,

lim
n→∞

λ2
nΦ(xn) = lim

n→∞
λ′
n
2
Φ(x′

n).

Hence, we have

lim
n→∞

Φ(xn)

‖Φ(xn)‖
= lim

n→∞

λ2
nΦ(xn)

λn
2‖Φ(xn)‖

= lim
n→∞

λ′
n
2
Φ(x′

n)

λ′
n
2‖Φ(x′

n)‖
= lim

n→∞

Φ(x′
n)

‖Φ(x′
n)‖

.

Thus, ψ is well-defined.
We secondly show that ψ is continuous. In particular, we need to show ψ is

continuous at a point x ∈ PMF . Let {xn} be a sequence in Tg,n with xn → x.
Then, since xn diverges to ∞,

4‖Φ(xn)‖
1 + 4‖Φ(xn)‖

→ 1 as n → ∞.

Thus, we find that the second component of ψ is continuous. The first component
is continuous by the definition of ψ.

We thirdly show that ψ is injective. The injectivity on Tg,n follows from the
injectivity of Φ. Therefore, we need to show ψ is injective on PMF . Suppose that
ψ(x) = ψ(x′) for x, x′ ∈ PMF . Let xn and x′

n be sequences in Tg,n such that
xn → x ∈ PMF and x′

n → x′ ∈ PMF as n → ∞. Since ψ(x) = ψ(x′), we have

lim
n→∞

Φ(xn)

‖Φ(xn)‖
= lim

n→∞

Φ(x′
n)

‖Φ(x′
n)‖

.

Therefore, we have

lim
n→∞

π ◦ βΦ(xn) = lim
n→∞

π ◦ βΦ(x′
n).

By Proposition 4.6, we have

lim
n→∞

π ◦ �(xn) = lim
n→∞

π ◦ �(x′
n).

This implies x = x′. Thus we find that ψ is injective on PMF .
We next show that ψ is surjective. The restriction ψ|Tg,n

is surjective, since Φ
is a homeomorphism, so we need to show the surjectivity for SQD(σ). Taking each
θ ∈ SQD(σ), we set xn = Φ−1(nθ). Then π◦βΦ(xn) = π◦β(nθ) = [Fv(θ)] ∈ PMF
for every n. Therefore, we have

lim
n→∞

π ◦ �(xn) = [Fv(θ)]

by Proposition 4.6. Thus,

ψ([Fv(θ)]) =

(
lim
n→∞

Φ(xn)

‖Φ(xn)‖
, 1

)
= (θ, 1).

Thus, ψ is surjective.
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We finally show that ψ−1 is continuous. Let (θn, rn) → (θ, 1) as n → ∞ for each
θ ∈ SQD(σ), where θn ∈ SQD(σ) and rn ∈ (0, 1). Then

ψ−1(θn, rn) = Φ−1

(
rnθn

4(1− rn)

)
and ψ−1(θ, 1) = [Fv(θ)].

Therefore, setting xn = ψ−1(θn, rn), we have

π ◦ βΦ(xn) = [Fv(θn)].

Thus,

ψ−1(θ, 1) = [Fv(θ)] = lim
n→∞

[Fv(θn)] = lim
n→∞

π ◦ βΦ(xn) = lim
n→∞

ψ−1(θn, rn),

and this completes the proof. �

Remark 4.8. This is another proof that the Thurston compactification T Th
g,n is a

closed ball of dimension 6g − 6 + 2n.
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