Meromorphic functions with a polar asymptotic value
HTML articles powered by AMS MathViewer
- by Tao Chen and Linda Keen;
- Conform. Geom. Dyn. 28 (2024), 1-36
- DOI: https://doi.org/10.1090/ecgd/390
- Published electronically: May 10, 2024
- HTML | PDF | Request permission
Abstract:
This paper is part of a general program in complex dynamics to understand parameter spaces of transcendental maps with finitely many singular values.
The simplest families of such functions have two asymptotic values and no critical values. These families, up to affine conjugation, depend on two complex parameters. Understanding their parameter spaces is key to understanding families with more asymptotic values, just as understanding quadratic polynomials was for rational maps more generally.
The first such families studied were the one-dimensional slices of the exponential family, $\exp (z) + a$, and the tangent family $\lambda \tan z$. The exponential case exhibited phenomena not seen for rational maps: Cantor bouquets in both the dynamic and parameter spaces, and no bounded hyperbolic components. The tangent case, with its two finite asymptotic values $\pm \lambda i$, is closer to the rational case, a kind of infinite degree version of the latter.
In this paper, we consider a general family that interpolates between $\exp (z) + a$ and $\lambda \tan z$. Our new family has two asymptotic values and a one-dimensional slice for which one of the asymptotic values is constrained to be a pole, the “polar asymptotic value” of the title. We show how the dynamic and parameter planes for this slice exhibit behavior that is a surprisingly delicate interplay between that of the $\exp (z) + a$ and $\lambda \tan z$ families.
References
- M. Astorg, A. M. Benini, and N. Fagella, Bifurcation loci of families of finite type meromorphic maps, arXiv:2107.02663v3, 2023.
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014. With contributions by Xavier Buff, Shaun Bullett, Adam L. Epstein, Peter Haïssinsky, Christian Henriksen, Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei and Michael Yampolsky. MR 3445628, DOI 10.1017/CBO9781107337602
- I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. II. Examples of wandering domains, J. London Math. Soc. (2) 42 (1990), no. 2, 267–278. MR 1083445, DOI 10.1112/jlms/s2-42.2.267
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241–248. MR 1116639, DOI 10.1017/S014338570000612X
- I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603–618. MR 1145612, DOI 10.1017/S0143385700006386
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651–656. MR 1189754, DOI 10.1007/BF03323112
- Tao Chen, Yunping Jiang, and Linda Keen, Cycle doubling, merging, and renormalization in the tangent family, Conform. Geom. Dyn. 22 (2018), 271–314. MR 3880593, DOI 10.1090/ecgd/327
- Tao Chen, Yunping Jiang, and Linda Keen, Accessible boundary points in the shift locus of a family of meromorphic functions with two finite asymptotic values, Arnold Math. J. 8 (2022), no. 2, 147–167. MR 4446268, DOI 10.1007/s40598-020-00169-1
- Tao Chen, Yunping Jiang, and Linda Keen, Slices of parameter space for meromorphic maps with two asymptotic values, Ergodic Theory Dynam. Systems 43 (2023), no. 1, 99–139. MR 4518492, DOI 10.1017/etds.2021.108
- Tao Chen and Linda Keen, Slices of parameter spaces of generalized Nevanlinna functions, Discrete Contin. Dyn. Syst. 39 (2019), no. 10, 5659–5681. MR 4027006, DOI 10.3934/dcds.2019248
- Tao Chen and Linda Keen, Dynamics of the meromorphic families $f_\lambda =\lambda \tan ^pz^q$, New Zealand J. Math. 52 (2021 [2021–2022]), 469–510. MR 4381787, DOI 10.53733/135
- Robert L. Devaney, Structural instability of $\textrm {exp}(z)$, Proc. Amer. Math. Soc. 94 (1985), no. 3, 545–548. MR 787910, DOI 10.1090/S0002-9939-1985-0787910-2
- Robert L. Devaney, Núria Fagella, and Xavier Jarque, Hyperbolic components of the complex exponential family, Fund. Math. 174 (2002), no. 3, 193–215. MR 1924998, DOI 10.4064/fm174-3-1
- Robert L. Devaney and Lisa R. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 55 (1987), no. 2, 253–266. MR 894579, DOI 10.1215/S0012-7094-87-05513-X
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. MR 812271
- Robert L. Devaney and Linda Keen, Dynamics of meromorphic maps: maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 55–79. MR 985854, DOI 10.24033/asens.1575
- Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503. MR 873428, DOI 10.1017/S0143385700003655
- Núria Fagella and Linda Keen, Stable components in the parameter plane of transcendental functions of finite type, J. Geom. Anal. 31 (2021), no. 5, 4816–4855. MR 4244887, DOI 10.1007/s12220-020-00458-3
- Markus Förster, Lasse Rempe, and Dierk Schleicher, Classification of escaping exponential maps, Proc. Amer. Math. Soc. 136 (2008), no. 2, 651–663. MR 2358507, DOI 10.1090/S0002-9939-07-09073-9
- Linda Keen and Janina Kotus, Dynamics of the family $\lambda \tan z$, Conform. Geom. Dyn. 1 (1997), 28–57. MR 1463839, DOI 10.1090/S1088-4173-97-00017-9
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Dierk Schleicher, Attracting dynamics of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 3–34. MR 1976827
- B. Skorulski, Non-ergodic maps in the tangent family, Indag. Math. (N.S.) 14 (2003), no. 1, 103–118. MR 2015602, DOI 10.1016/S0019-3577(03)90074-7
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Zhuan Ye, Structural instability of exponential functions, Trans. Amer. Math. Soc. 344 (1994), no. 1, 379–389. MR 1242788, DOI 10.1090/S0002-9947-1994-1242788-8
- Jian Ying Zhou and Zhong Li, Structural instability of the mapping $z\to \lambda \exp (z)\ (\lambda >e^{-1})$, Sci. China Ser. A 32 (1989), no. 10, 1153–1163. MR 1057994
Bibliographic Information
- Tao Chen
- Affiliation: Department of Mathematics, Engineering and Computer Science, Laguardia Community College, CUNY, Long Island City, New York 11101; and Department of Mathematics, CUNY Graduate Center, New York, New York 10016
- MR Author ID: 1004078
- ORCID: 0000-0002-9132-2392
- Email: tchen@lagcc.cuny.edu
- Linda Keen
- Affiliation: Department of Mathematics, CUNY Graduate Center, New York, New York 10016
- MR Author ID: 99725
- ORCID: 0000-0002-2616-4017
- Email: lkeen@gc.cuny.edu, linda.keenbrezin@gmail.com
- Received by editor(s): April 25, 2023
- Received by editor(s) in revised form: October 24, 2023
- Published electronically: May 10, 2024
- Additional Notes: This work was supported by the National Science Foundation under Grant No. 1440140, while the second author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the spring semester 2022
- © Copyright 2024 American Mathematical Society
- Journal: Conform. Geom. Dyn. 28 (2024), 1-36
- MSC (2020): Primary 37F10, 37F31, 37F20; Secondary 32G05, 30D30, 30F60
- DOI: https://doi.org/10.1090/ecgd/390
- MathSciNet review: 4744822