Embedding unicritical connectedness loci
HTML articles powered by AMS MathViewer
- by Malavika Mukundan;
- Conform. Geom. Dyn. 28 (2024), 131-164
- DOI: https://doi.org/10.1090/ecgd/389
- Published electronically: December 3, 2024
- HTML | PDF | Request permission
Abstract:
In this article, for degree $d\geq 1$, we construct an embedding $\Phi _d$ of the connectedness locus $\mathcal {M}_{d+1}$ of the polynomials $z^{d+1}+c$ into the connectedness locus of degree $2d+1$ bicritical odd polynomials.References
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Dynamical convergence of polynomials to the exponential, J. Differ. Equations Appl. 6 (2000), no. 3, 275–307. MR 1785056, DOI 10.1080/10236190008808229
- Bodil Branner and Adrien Douady, Surgery on complex polynomials, Holomorphic dynamics (Mexico, 1986) Lecture Notes in Math., vol. 1345, Springer, Berlin, 1988, pp. 11–72. MR 980952, DOI 10.1007/BFb0081395
- Bodil Branner and Núria Fagella, Homeomorphisms between limbs of the Mandelbrot set, J. Geom. Anal. 9 (1999), no. 3, 327–390. MR 1757453, DOI 10.1007/BF02921981
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206. MR 945011, DOI 10.1007/BF02392275
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. MR 812271
- Adrien Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 39–63 (French). MR 728980
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Dzmitry Dudko and Mikhail Lyubich, Local connectivity of the Mandelbrot set at some satellite parameters of bounded type, Geom. Funct. Anal. 33 (2023), no. 4, 912–1047. MR 4616693, DOI 10.1007/s00039-023-00637-8
- Dzmitry Dudko and Dierk Schleicher, Homeomorphisms between limbs of the Mandelbrot set, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1947–1956. MR 2888182, DOI 10.1090/S0002-9939-2011-11047-5
- Dominik Eberlein, Sabyasachi Mukherjee, and Dierk Schleicher, Rational parameter rays of the multibrot sets, Dynamical systems, number theory and applications, World Sci. Publ., Hackensack, NJ, 2016, pp. 49–84. MR 3444240
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- Yan Gao and Giulio Tiozzo, The core entropy for polynomials of higher degree, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 7, 2555–2603. MR 4546475, DOI 10.4171/JEMS/1154
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394
- J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 467–511. MR 1215974
- John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 2, Matrix Editions, Ithaca, NY, 2016. Surface homeomorphisms and rational functions. MR 3675959
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Curtis T. McMullen, The Mandelbrot set is universal, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 1–17. MR 1765082
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), xiii, 277–333 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755445
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 279280, DOI 10.1007/978-3-642-85590-0
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Johannes Riedl and Dierk Schleicher, On the locus of crossed renormalization, Sūrikaisekikenkyūsho K\B{o}kyūroku 1042 (1998), 11–31. Problems on complex dynamical systems (Japanese) (Kyoto, 1997). MR 1667914
- Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 477–517. MR 2112117, DOI 10.1090/pspum/072.1/2112117
Bibliographic Information
- Malavika Mukundan
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215
- ORCID: 0000-0003-4783-0231
- Email: mmukunda@bu.edu
- Received by editor(s): December 29, 2022
- Received by editor(s) in revised form: November 6, 2023, and December 9, 2023
- Published electronically: December 3, 2024
- Additional Notes: This material was based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2022 semester.
- © Copyright 2024 American Mathematical Society
- Journal: Conform. Geom. Dyn. 28 (2024), 131-164
- MSC (2020): Primary 37F10
- DOI: https://doi.org/10.1090/ecgd/389
- MathSciNet review: 4840244