Crooked planes
Authors:
Todd A. Drumm and William M. Goldman
Journal:
Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 10-17
MSC (1991):
Primary 51
DOI:
https://doi.org/10.1090/S1079-6762-95-01002-X
MathSciNet review:
1336695
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Crooked planes are polyhedra used to construct fundamental polyhedra for discrete groups of Lorentz isometries acting properly on Minkowski (2+1)-space. These fundamental polyhedra are regions bounded by disjoint crooked planes. We develop criteria for the intersection of crooked planes and apply these criteria to proper discontinuity of discrete isometry groups.
- Auslander,L. and Markus, L., Holonomy of flat affinely connected manifolds, American J. Math. 62 (1955), 139–159
- L. Auslander and L. Markus, Flat Lorentz $3$-manifolds, Mem. Amer. Math. Soc. 30 (1959), 60. MR 131842
- Todd A. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (1992), no. 4, 677–683. MR 1191372, DOI https://doi.org/10.1016/0040-9383%2892%2990001-X
- Todd A. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (1992), no. 4, 677–683. MR 1191372, DOI https://doi.org/10.1016/0040-9383%2892%2990001-X
- Todd A. Drumm, Examples of nonproper affine actions, Michigan Math. J. 39 (1992), no. 3, 435–442. MR 1182499, DOI https://doi.org/10.1307/mmj/1029004598
- Robert Greene (ed.), Differential geometry: geometry in mathematical physics and related topics, Proceedings of Symposia in Pure Mathematics, vol. 54, American Mathematical Society, Providence, RI, 1993. MR 1216523
- ---, Translations and the holonomy of complete affine flat manifolds (preprint)
- Todd A. Drumm and William M. Goldman, Complete flat Lorentz $3$-manifolds with free fundamental group, Internat. J. Math. 1 (1990), no. 2, 149–161. MR 1060633, DOI https://doi.org/10.1142/S0129167X90000101
- ---, The geometry of crooked planes, preprint, 30 pp.
- David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763, DOI https://doi.org/10.1016/0001-8708%2883%2990053-1
- Goldman, W., “Complex hyperbolic geometry,” Oxford Mathematical Monographs (to appear)
- Margulis, G., Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983), 937–940; MR85e:22015
- G. A. Margulis, Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 190–205 (Russian, with English summary). Automorphic functions and number theory, II. MR 741860
- Mess, G., Lorentz spacetimes of constant curvature, (preprint)
- Milnor, J., On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), 178–187
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI https://doi.org/10.1016/0021-8693%2872%2990058-0
- Auslander,L. and Markus, L., Holonomy of flat affinely connected manifolds, American J. Math. 62 (1955), 139–159
- ---Flat Lorentz 3-manifolds, Memoirs Amer. Math. Soc. 30 (1959)
- Drumm, T., Fundamental polyhedra for Margulis space-times, Topology 31 (4) (1992), 677-683
- ---, Linear holonomy of Margulis space-times, J.Diff.Geo. 38 (1993), 679–691
- ---, Examples of nonproper affine actions, Mich. Math. J. 39 (1992), 435–442
- ---, Margulis space-times, Proc. Symp. Pure Math. 54 (1993), Part 2, 191–195
- ---, Translations and the holonomy of complete affine flat manifolds (preprint)
- Drumm, T. and Goldman, W., Complete flat Lorentz 3-manifolds with free fundamental group, Int. J. Math.1 (1990), 149–161
- ---, The geometry of crooked planes, preprint, 30 pp.
- Fried, D. and Goldman, W., Three-dimensional affine crystallographic groups, Adv. Math. 47 (1983), 1–49
- Goldman, W., “Complex hyperbolic geometry,” Oxford Mathematical Monographs (to appear)
- Margulis, G., Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983), 937–940; MR85e:22015
- ---, Complete affine locally flat manifolds with a free fundamental group, J. Soviet Math. 134 (1987), 129–134
- Mess, G., Lorentz spacetimes of constant curvature, (preprint)
- Milnor, J., On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), 178–187
- Tits, J., Free subgroups in linear groups, J. Algebra 20 (1972), 250–270
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
51
Retrieve articles in all journals
with MSC (1991):
51
Additional Information
Todd A. Drumm
Email:
tad@math.upenn.edu
William M. Goldman
Email:
wmg@math.umd.edu
Keywords:
Space-times,
affine,
fundamental polyhedra,
crooked planes
Received by editor(s):
March 11, 1995
Additional Notes:
Goldman was partially supported by NSF grant DMS-8902619 and the University of Maryland Institute for Advanced Computer Studies. Drumm was partially supported by an NSF Postdoctoral fellowship, and thanks Swarthmore College’s KIVA project for their hospitality.
Communicated by:
Gregory Margulis
Article copyright:
© Copyright 1995
American Mathematical Society