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PARITY OF THE PARTITION FUNCTION
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(Communicated by Don Zagier)

Abstract. Let p(n) denote the number of partitions of a non-negative integer
n. A well-known conjecture asserts that every arithmetic progression contains
infinitely many integers M for which p(M) is odd, as well as infinitely many
integers N for which p(N) is even (see Subbarao [22]). From the works of var-
ious authors, this conjecture has been verified for every arithmetic progression
with modulus t when t = 1, 2, 3, 4, 5, 10, 12, 16, and 40. Here we announce that
there indeed are infinitely many integers N in every arithmetic progression for
which p(N) is even; and that there are infinitely many integers M in every
arithmetic progression for which p(M) is odd so long as there is at least one
such M . In fact if there is such an M , then the smallest such M ≤ 1010t7.
Using these results and a fair bit of machine computation, we have verified the
conjecture for every arithmetic progression with modulus t ≤ 100, 000.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive inte-
gers whose sum is n. Euler’s generating function for p(n), the number of partitions
of an integer n, is:

(1)
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn .

Ramanujan discovered various surprising congruences for p(n) when n is in certain
special arithmetic progressions; for example:

p(5n+ 4) ≡ 0 mod 5,

p(7n+ 5) ≡ 0 mod 7,

and
p(11n+ 6) ≡ 0 mod 11.

There are now many proofs of these congruences (and their generalizations) in the
literature (see [1, 2, 3, 4, 5, 6, 7, 11, 12, 23 ] for instance). Surprisingly there do
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not seem to be any such congruences modulo 2 or 3. In fact the parity of p(n)
seems to be quite random, and it is believed that the partition function is ‘equally
often’ even and odd; that is, that p(n) is even for ∼ 1

2x positive integers n ≤ x (see
Parkin and Shanks [19]).

In [22] Subbarao made the following conjecture on the parity of p(n), for those
integers n belonging to any given arithmetic progression:

Conjecture. For any arithmetic progression r (mod t), there are infinitely many
integers M ≡ r (mod t) for which p(M) is odd, and there are infinitely many
integers N ≡ r (mod t) for which p(N) is even.

From the works of Garvan, Kolberg, Hirschhorn, Stanton, and Subbarao (see [6,
9, 10, 13, 16, 22],), this conjecture has been proved for every arithmetic progression
with modulus t when t = 1, 2, 3, 4, 5, 10, 12, 16 and 40.

Using very different methods, we go some way towards a proof of the conjecture.
Using the theory of modular forms, we announce:

Main Theorem 1. For any arithmetic progression r (mod t), there are infinitely
many integers N ≡ r (mod t) for which p(N) is even.

Main Theorem 2. For any arithmetic progression r (mod t), there are infinitely
many integers M ≡ r (mod t) for which p(M) is odd, provided there is one such
M . Furthermore, if there does exist an M ≡ r (mod t) for which p(M) is odd, then
the smallest such M is less than Cr,t, where

Cr,t :=
223A · 37t6

d2

∏
p|6t

(
1− 1

p2

)
−A,

with d := gcd(24r− 1, t) and A > t
24 is a power of 2.

From the two theorems we obtain an algorithm to determine the truth of our
parity conjecture for any given arithmetic progression r (mod t): Compute p(N)
(mod 2) for N = r, r + t, r + 2t, . . . for all such N up to Cr,t. As soon as we find

one odd number we have verified the conjecture. If all these numbers are even then
we have proved that the conjecture is false.

Ken Burrell (Universal Analytics, Inc.) ran an efficient version of this algorithm
on a CRAY C-90, giving the following result:

Main Corollary. For all 0 ≤ r < t ≤ 105, there are infinitely many integers
M ≡ r (mod t) for which p(M) is odd.

2. The main ideas

First we briefly recall essential preliminaries concerning modular forms. For more
on the theory of modular forms see [15].

Let A =

(
a b
c d

)
∈ SL2(Z) act on H, the upper half of the complex plane, by

the linear fractional transformation Az = az+b
cz+d . If N is a positive integer, then we

define the following congruence subgroups of SL2(Z) of level N :

Γ0(N) :=

{(
a b
c d

)
| ad− bc = 1, c ≡ 0 mod N

}
.
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and

Γ1(N) :=

{(
a b
c d

)
| ad− bc = 1, a ≡ d ≡ 1 mod N, and c ≡ 0 mod N

}
.

A meromorphic function f(z) on H is called a modular function with positive
integer weight k with respect to congruence subgroup Γ if

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all z ∈ H and all

(
a b
c d

)
∈ Γ. If f(z) is holomorphic on H and at the cusps

of Γ (i.e. the rationals), then f(z) is known as a modular form of weight k with
respect to Γ. If f(z) vanishes at the cusps of Γ, then f(z) is known as a cusp form.

We denote the finite dimensional space of modular forms (resp. cusp forms) of
weight k with respect to Γ1(N) by Mk(N) (resp. Sk(N)). In the variable q = e2πiz ,
a holomorphic modular form f(z) ∈Mk(N) admits a Fourier expansion of the form

f(z) =
∞∑
n=0

a(n)qn.

Of particular interest are certain modular forms in Mk(N) with nice modular
transformation properties with respect to Γ0(N). If χ is a Dirichlet character

mod N, then we say that a form f(z) ∈ Mk(N) (resp. Sk(N) ) is modular form
of weight k with Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all z ∈ H and all

(
a b
c d

)
∈ Γ0(N). The space of such modular forms (resp.

cusp forms) is denoted by Mk(N,χ) (resp. Sk(N,χ)).
The Dedekind eta-function is the principal modular form of interest in this paper;

it is defined by the infinite product

η(z) := q
1
24

∞∏
n=1

(1− qn).

A function f(z) is called an eta-product if it is expressible as a finite product of the
form

f(z) =
∏
δ|N

ηrδ (δz)

where N and each rδ is an integer. Probably the most famous of all eta-products
is Ramanujan’s ∆−function, defined by ∆(z) := η24(z) = q

∏∞
n=1(1− qn)24. This

is the unique normalized weight 12 cusp form on SL2(Z). More generally, Gordon,
Hughes, and Newman (see [8,17,18]) examined the general modular properties of
eta-products.

We construct modular forms that are eta-products whose Fourier expansions
modulo 2 are determined by the values of p(n) modulo 2.
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Proposition 1. For a given positive integer t, let A > t
24 be a power of 2. Define

ft,A(z) by

ft,A(z) :=
η(24z)

η(48z)
∆A(24tz) =

∑
n≥1

at(n)q24n−1.

Then ft,A(z) is a cusp form in S12A(1152t,
(
2
d

)
). Moreover the Fourier expansion

of ft,A(z) mod 2 can be factored as:

(2) ft,A(z) =
∞∑
n=0

at(n)q24n−1 ≡
( ∞∑
n=0

p(n)q24n−1

)( ∞∑
n=0

q24At(2n+1)2

)
mod 2.

Proof. Using the well known properties of the Dedekind eta-function, it is relatively
straightforward to deduce that ft,A(z) is a modular form of weight 12A. It is also
straightforward to deduce that ft,A(z) is a cusp form.

The essential feature of the cusp form ft,A(z) is the convenient fact that ft,A(z)
is essentially the product of the generating function for p(n) and a theta function

mod 2.

Since
1

1−Xn
=

1 +Xn

1−X2n
≡ 1−Xn

1−X2n
mod 2, it follows that

∞∑
n=0

p(n)qn ≡
∞∏
n=1

1− qn
1− q2n

mod 2.

In terms of the eta-functions, we find that

(3)
η(24z)

η(48z)
=

1

q

∞∏
n=1

1− q24n

1− q48n
≡
∞∑
n=0

p(n)q24n−1 mod 2.

The following infinite product identity was proved by Jacobi:

η2(16z)

η(8z)
= q

∞∏
n=1

(1− q16n)2

(1− q8n)
=
∞∑
n=0

q(2n+1)2

.

Therefore since (1−X)2 ≡ (1−X2) mod 2, we find that
(4)

∆(z) = q
∞∏
n=1

(1−qn)24 = q
∞∏
n=1

(1− qn)32

(1− qn)8
≡ q

∞∏
n=1

(1− q16n)2

(1− q8n)
≡
∞∑
n=0

q(2n+1)2

mod 2.

The factorization of ft,A(z) now follows easily from (3) and (4). �
Serre [20] proved the following remarkable theorem regarding the divisibility of
Fourier coefficients of holomorphic integer weight modular forms.

Theorem. (Serre) Let f(z) be a holomorphic modular form of positive integer
weight k on some congruence subgroup of SL2(Z) with Fourier expansion

f(z) =
∞∑
n=0

a(n)qn

where a(n) are algebraic integers in some number field. If m is a positive integer,
then there exists a positive constant α such that the set of integers n ≤ x for which
a(n) is not divisible by m has cardinality � x

logα x .

With this theorem we obtain
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Main Theorem 1. For any arithmetic progression r (mod t), there are infinitely
many integers N ≡ r (mod t) for which p(N) is even.

Proof. Comparing coefficients in (2), it is easy to deduce that

(5) at(Atk
2 + n) ≡

∑
i≥1, i odd

p(At(k2 − i2) + n) mod 2.

Now suppose every N ≥ n0 for which N ≡ r (mod t) has the property that
p(N) is odd. If k ≡ 1 mod 4, then every integer n ≡ r (mod t) in the interval
[Atk2 + n0, At(k + 2)2 + r − t] has the property that at(n) is odd since there are
k + 1

2
many odd summands in (5). After combining all such intervals, we find a set

of positive integers with positive density for which at(n) 6≡ 0 mod 2. This would
contradict Serre’s theorem. �
Now we need to establish that there are infinitely manyM ≡ r (mod t) where p(M)
is odd provided that there is at least one M. To do this we first deduce a technical
lemma about the reduction modulo m of the Fourier expansions of holomorphic
modular forms. Main Theorem 2 follows as a consequence, for if there were only
finitely many M ≡ r (mod t) for which p(M) is odd, then the reduction mod 2
of the relevant modular form contradicts the lemma.

For a given positive integer m and formal power series f :=
∑
n∈Z a(n)qn with

algebraic integer coefficients, we define Ordm(f) to be the smallest integer n for
which a(n) is not divisible by m. A special case of a theorem of Sturm [21] allows
us to computationally determine whether m divides a(n) for every integer n (that
is, to determine whether Ordm(f) =∞).

If f(z) =
∑∞
n=0 a(n)qn ∈ Mk(N) for some positive integer N with algebraic

integer Fourier coefficients from a fixed number field and m is a positive integer,
then Sturm proved that if

Ordm(f) >
k

12
N2
∏
p|N

(1− 1

p2
),

then Ordm(f) = ∞ (i.e. a(n) ≡ 0 mod m for all n). Now we prove the essential
lemma about the reduction of a holomorphic modular form mod m.

Lemma 1. Let f(z) =
∑∞
n=0 a(n)qn where the coefficients a(n) are algebraic inte-

gers in some number field. Let s and w be positive integers and b1, b2, . . . bs distinct
non-zero integers. If m is a positive integer and

f(z) ≡
∑

1≤i≤s

∞∑
n=0

ai(n)qwn
2+bi mod m

where ai(n) 6≡ 0 mod m for infinitely many n ≥ 0, then f(z) is not in Mk(N) for
any pair of positive integers k, and N.

Proof. Suppose that f ∈ Mk(N) for some k and N . If p ≡ 1 (mod N) is prime,
then the image of f under the Hecke operator Tp satisfies

f(z)|Tp =
∑
n≥0

(a(pn) + pk−1a(n/p)) qn

≡
∑
i,n

p|wn2+bi

ai(n) q(wn2+bi)/p + pk−1
∑
i,n

ai(n) q(wn2+bi)p (mod m) ,(6)
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and f |Tp again belongs to Mk(N). We claim that Ordm(f |Tp) < ∞ for every
sufficiently large prime p and Ordm(f |Tp) > C for almost every p, for any given

constant C. Taking C = kN2

12

∏
l|N

(1− l−2) gives a contradiction to Sturm’s theorem.

To see that Ordm(f |Tp) <∞, we observe that only finitely many of the infinitely
many exponents on the right-hand side of (6) can coincide, so that the expression
cannot vanish identically modulo m. Indeed, if (wn2 + bi)p

±1 = (wl2 + bj)p
±1 for

some n 6= l, then w(n+ l)(n− l) = bj − bi implies that both n and l are bounded,
while if (wn2 + bi)p = (wl2 + bj)p

−1 then w(pn + l)(pn − l) = bj − p2bi gives the
same conclusion if no bj is divisible by p2.

For the reverse direction, we observe that if C < p < x and Ordm(f |Tp) =
h < C, then we must have h = (wn2 + bi)/p for some n and i and that this n is
then bounded by

√
Cx− bi. Since each triple (n, i, h) gives at most one prime p =

(wn2 + bi)/h and the number of i’s and h’s is bounded, this shows that for x→∞
there are O(

√
x) primes p < x and congruent to 1 moduloN with Ordm(f |Tp) < C,

and this proves the claim since the total number of primes < x in this congruence
class is � x/ logx by Dirichlet’s theorem.

�
The following lemma follows from the standard fact that if f(z) ∈ Mk(N), then
f
(
z + s

t

)
∈Mk(Nt2).

Lemma 2. Let f(z) =
∑∞
n=0 a(n)qn be a modular form in Mk(N,χ) and let d :=

gcd(r, t). Then

fr,t(z) =
∑

n≡r mod t

a(n)qn

is the Fourier expansion of a modular form in Mk

(
Nt2

d

)
.

We now combine these facts to establish the main theorem of this section.

Main Theorem 2. For any arithmetic progression r ( mod t), there are infinitely
many integers M ≡ r (mod t) for which p(M) is odd, provided there is one such
M. Furthermore, if there does exist an M ≡ r (mod t) for which p(M) is odd, then
the smallest such M is less than Cr,t. where

Cr,t :=
223A · 37t6

d2

∏
p|6t

(
1− 1

p2

)
−A.

where d := gcd(24r− 1, t) and A > t
24 is a power of 2.

Proof. Recall from Proposition 1 that

ft,A(z) :=
η(24z)

η(48z)
∆A(24tz) =

∑
n≥1

at(n)q24n−1 ∈ S12A(1152t, χ).

and

ft,A(z) ≡
∞∑
n=0

p(n)q24n−1
∞∑
n=0

q24At(2n+1)2

mod 2.
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Let d := gcd(24r − 1, t). Therefore by Lemma 2 we define

f24r−1,24t(z) =
∑

n≡24r−1 mod 24t

at(n)qn ∈ S12A

(
213 · 34t3

d

)
,

which when reduced mod 2 is:

f24r−1,24t(z) ≡
∑

n≡r mod t

p(n)q24n−1
∞∑
n=0

q24At(2n+1)2

mod 2.

Note that the arithmetic progression r mod t corresponds to the arithmetic pro-
gression 24r− 1 mod 24t. If p(M) is odd for at least one M ≡ r (mod t) but only
finitely many, then the mod 2 factorization above contradicts Lemma 1. This
proves that if p(M) is odd for at least one M ≡ r (mod t), then p(M) is odd for
infinitely many such M.

The computation of the constant Cr,t follows easily from the bound in Sturm’s
theorem.

�
This theorem then proves that if 0 ≤ r < t, and if p(M) is ever odd for an M ≡ r
(mod t) (hence infinitely often), then the first odd value must occur where M <
Cr,t. It is easy to verify that Cr,t < 1010t7 since t

12 > 2j when we choose the

minimal j such that 2j > t
24 . As a consequence of the two main theorems we find

that the conjecture holds for an arithmetic progression r (mod t) provided there
is at least one N ≡ r mod t for which p(N) is odd. By computing p(n) mod 2
for all n ≤ 5, 000, 000 we found that every arithmetic progression with modulus
t ≤ 100, 000 contains an integer M for which p(M) is odd. Therefore we obtain:

Main Corollary. For all 0 ≤ r < t ≤ 105, there are infinitely many integers
M ≡ r (mod t) for which p(M) is odd.
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