On embedding the $1:1:2$ resonance space in a Poisson manifold
Author:
Ágúst Sverrir Egilsson
Journal:
Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 48-56
MSC (1991):
Primary 53
DOI:
https://doi.org/10.1090/S1079-6762-95-02001-4
MathSciNet review:
1350680
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The Hamiltonian actions of $\S ^{1}$ on the symplectic manifold $\mathbb {R}^{6}$ in the $1:1:-2$ and $1:1:2$ resonances are studied. Associated to each action is a Hilbert basis of polynomials defining an embedding of the orbit space into a Euclidean space $V$ and of the reduced orbit space $J^{-1}(0)/\S ^{1}$ into a hyperplane $V_{J}$ of $V$, where $J$ is the quadratic momentum map for the action. The orbit space and the reduced orbit space are singular Poisson spaces with smooth structures determined by the invariant functions. It is shown that the Poisson structure on the orbit space, for both the $1:1:2$ and the $1:1:-2$ resonance, cannot be extended to $V$, and that the Poisson structure on the reduced orbit space $J^{-1}(0)/\S ^{1}$ for the $1:1:-2$ resonance cannot be extended to the hyperplane $V_{J}$.
- Judith M. Arms, Richard H. Cushman, and Mark J. Gotay, A universal reduction procedure for Hamiltonian group actions, The geometry of Hamiltonian systems (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 22, Springer, New York, 1991, pp. 33–51. MR 1123275, DOI https://doi.org/10.1007/978-1-4613-9725-0_4
- Ágúst S. Egilsson. On embedding a stratified symplectic space in a smooth Poisson manifold. Ph.D. thesis 1995.
- André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), no. 2, 253–300 (French). MR 501133
- Bernard Malgrange, Le théorème de préparation en géométrie différentiable. I. Position du problème, Séminaire Henri Cartan, 1962/63, Exp. 11, Secrétariat mathématique, Paris, 1962/1963, pp. 14 (French). MR 0160234
- Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI https://doi.org/10.1016/0034-4877%2874%2990021-4
- John N. Mather, Stability of $C^{\infty }$ mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89–104. MR 232401, DOI https://doi.org/10.2307/1970595
- John N. Mather, Differentiable invariants, Topology 16 (1977), no. 2, 145–155. MR 436204, DOI https://doi.org/10.1016/0040-9383%2877%2990012-X
- Jürgen K. Moser, Lectures on Hamiltonian systems, Memoirs of the American Mathematical Society, No. 81, Amer. Math. Soc., Providence, R.I., 1968. MR 0230498
- A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. Indagationes Math 17 (1955), 390-403.
- J.A. Schouten. On the differential operators of first order in tensor calculus. Convengo di Geometria Differenziale 1953, 1-7.
- Gerald W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68. MR 370643, DOI https://doi.org/10.1016/0040-9383%2875%2990036-1
- Reyer Sjamaar and Eugene Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375–422. MR 1127479, DOI https://doi.org/10.2307/2944350
- A. Weinstein. Private communication.
- H. Weyl. The Classical Groups. Princeton University Press, 1946.
- J. Arms, R. Cushman and M. Gotay. A universal reduction procedure for Hamiltonian group actions. In The Geometry of Hamiltonian Systems. Mathematical Sciences Research Institute Publications 22, Springer-Verlag 1991, 33-51.
- Ágúst S. Egilsson. On embedding a stratified symplectic space in a smooth Poisson manifold. Ph.D. thesis 1995.
- A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geometry 12 (1977), 253-300.
- B. Malgrange. Le théorème de préparation en géométrie différentiable. Séminaire Henri Cartan, 15e année, 1962/63, exposés 11-13, 22. –3451
- J. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics 5 (1974), 121-130.
- J.N. Mather. Stability of $C^\infty$ mappings: I. The division theorem. Annals of Mathematics 87 (1968), 89-104.
- J.N. Mather. Differentiable invariants. Topology 16 (1977), 145-155.
- J.K. Moser. Lectures on Hamiltonian systems. Memoirs of the American Mathematical Society 81 (1968).
- A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. Indagationes Math 17 (1955), 390-403.
- J.A. Schouten. On the differential operators of first order in tensor calculus. Convengo di Geometria Differenziale 1953, 1-7.
- G.W. Schwarz. Smooth functions invariant under the action of a compact Lie group. Topology 14 (1975), 63-68.
- R. Sjamaar and E. Lerman. Stratified symplectic spaces and reduction. Annals of Mathematics 134 (1991), 376-422.
- A. Weinstein. Private communication.
- H. Weyl. The Classical Groups. Princeton University Press, 1946.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
53
Retrieve articles in all journals
with MSC (1991):
53
Additional Information
Ágúst Sverrir Egilsson
Email:
egilsson@math.berkeley.edu
Received by editor(s):
May 8, 1995
Received by editor(s) in revised form:
June 2, 1995
Article copyright:
© Copyright 1995
American Mathematical Society