Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface
Authors:
Lisa C. Jeffrey and Frances C. Kirwan
Journal:
Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 57-71
MSC (1991):
Primary 58F05, 14F05, 53C05
DOI:
https://doi.org/10.1090/S1079-6762-95-02002-6
MathSciNet review:
1350681
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We outline a proof of formulas (found by Witten in 1992 using physical methods) for intersection pairings in the cohomology of the moduli space $M(n,d)$ of stable holomorphic vector bundles of rank $n$ and degree $d$ (assumed coprime) and fixed determinant on a Riemann surface of genus $g \ge 2$.
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI https://doi.org/10.1098/rsta.1983.0017
- M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28. MR 721448, DOI https://doi.org/10.1016/0040-9383%2884%2990021-1
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720
- Nicole Berline and Michèle Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539–541 (French, with English summary). MR 685019
- Nicole Berline and Michèle Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983), no. 2, 539–549 (French). MR 705039
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344
- S. K. Donaldson, Gluing techniques in the cohomology of moduli spaces, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 137–170. MR 1215963
- J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259–268. MR 674406, DOI https://doi.org/10.1007/BF01399506
- J.J. Duistermaat, Equivariant cohomology and stationary phase, Utrecht preprint no. 817 (1993).
- Michel Duflo and Michèle Vergne, Orbites coadjointes et cohomologie équivariante, The orbit method in representation theory (Copenhagen, 1988) Progr. Math., vol. 82, Birkhäuser Boston, Boston, MA, 1990, pp. 11–60 (French). MR 1095340
- V. Guillemin, J. Kalkman, A new proof of the Jeffrey-Kirwan localization theorem, to appear (1994).
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
- Lisa C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann. 298 (1994), no. 4, 667–692. MR 1268599, DOI https://doi.org/10.1007/BF01459756
- L.C. Jeffrey, Symplectic forms on moduli spaces of flat connections on 2-manifolds, to appear in Proceedings of the Georgia International Topology Conference (Athens, GA, 1993), ed. W. Kazez.
- L.C. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math. J. 77 (1995) 407-429.
- L.C. Jeffrey, F.C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291-327.
- L.C. Jeffrey, F.C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, in preparation.
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741
- Frances Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc. 5 (1992), no. 4, 853–906. MR 1145826, DOI https://doi.org/10.1090/S0894-0347-1992-1145826-8
- S.K. Martin, Cohomology rings of symplectic quotients, preprint (1994).
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI https://doi.org/10.2307/1970710
- A. Szenes, The combinatorics of the Verlinde formula, preprint alg-geom/9402003; A. Szenes, private communication.
- Michael Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992), no. 1, 131–149. MR 1152228
- Edward Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153–209. MR 1133264
- Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303–368. MR 1185834, DOI https://doi.org/10.1016/0393-0440%2892%2990034-X
- M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A308 (1982) 523-615.
- M.F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28.
- N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag (Grundlehren vol. 298), 1992.
- N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539-541.
- N. Berline, M. Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983) 539-549.
- T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups (Graduate Texts in Mathematics vol. 98) Springer-Verlag, 1985.
- S.K. Donaldson, Gluing techniques in the cohomology of moduli spaces, in Topological Methods in Modern Mathematics (Proceedings of 1991 conference in Stony Brook, NY in honour of the sixtieth birthday of J. Milnor), Publish or Perish.
- J.J Duistermaat, G. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268; ; Addendum, 72 (1983) 153-158. MR 84h:58051b
- J.J. Duistermaat, Equivariant cohomology and stationary phase, Utrecht preprint no. 817 (1993).
- M. Duflo, M. Vergne, Orbites coadjointes et cohomologie équivariante, in M. Duflo, N.V. Pedersen, M. Vergne (ed.), The Orbit Method in Representation Theory (Progress in Mathematics, vol. 82), Birkhäuser, (1990) 11-60.
- V. Guillemin, J. Kalkman, A new proof of the Jeffrey-Kirwan localization theorem, to appear (1994).
- S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
- L. Hörmander, The Analysis of Linear Partial Differential Operators I (Grundlehren v. 256), Springer, 1983.
- L.C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Annalen 298 (1994) 667-692.
- L.C. Jeffrey, Symplectic forms on moduli spaces of flat connections on 2-manifolds, to appear in Proceedings of the Georgia International Topology Conference (Athens, GA, 1993), ed. W. Kazez.
- L.C. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math. J. 77 (1995) 407-429.
- L.C. Jeffrey, F.C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291-327.
- L.C. Jeffrey, F.C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, in preparation.
- F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press (1984).
- F. Kirwan, The cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992) 853-906.
- S.K. Martin, Cohomology rings of symplectic quotients, preprint (1994).
- M.S. Narasimhan, C.S. Seshadri, Stable and unitary bundles on a compact Riemann surface, Ann. Math. 82 (1965) 540-567.
- A. Szenes, The combinatorics of the Verlinde formula, preprint alg-geom/9402003; A. Szenes, private communication.
- M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Diff. Geom. 35 (1992) 131-149.
- E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991) 153-209.
- E. Witten, Two dimensional gauge theories revisited, preprint hep-th/9204083; J. Geom. Phys. 9 (1992) 303-368.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
58F05,
14F05,
53C05
Retrieve articles in all journals
with MSC (1991):
58F05,
14F05,
53C05
Additional Information
Lisa C. Jeffrey
Affiliation:
Lisa C. Jeffrey, Mathematics Department, Princeton University, Princeton, NJ 08544, USA
Email:
jeffrey@math.princeton.edu
Frances C. Kirwan
Affiliation:
Frances C. Kirwan, Balliol College, Oxford OX1 3BJ, UK
Email:
fkirwan@vax.ox.ac.uk
Keywords:
Moduli spaces,
symplectic geometry,
intersection pairings
Received by editor(s):
June 28, 1995
Additional Notes:
This material is based on work supported by the National Science Foundation under Grant. No. DMS-9306029.
Article copyright:
© Copyright 1995
American Mathematical Society