Invariants from triangulations of hyperbolic 3-manifolds
Authors:
Walter D. Neumann and Jun Yang
Journal:
Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 72-79
MSC (1991):
Primary 57M50, 30F40, 19E99, 22E40, 57R20
DOI:
https://doi.org/10.1090/S1079-6762-95-02003-8
MathSciNet review:
1350682
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: For any finite volume hyperbolic 3-manifold $M$ we use ideal triangulation to define an invariant $\beta (M)$ in the Bloch group $\mathcal {B}(\mathbb {C})$. It actually lies in the subgroup of $\mathcal {B}(\mathbb {C})$ determined by the invariant trace field of $M$. The Chern-Simons invariant of $M$ is determined modulo rationals by $\beta (M)$. This implies rationality and — assuming the Ramakrishnan conjecture — irrationality results for Chern Simons invariants.
- S. Bloch: Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, Lecture notes U.C. Irvine (1978).
- Armand Borel, Cohomologie de ${\rm SL}_{n}$ et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613–636 (French). MR 506168
- Shiing-shen Chern and James Simons, Some cohomology classes in principal fiber bundles and their application to riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791–794. MR 279732, DOI https://doi.org/10.1073/pnas.68.4.791
- Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989. MR 1001965
- Johan L. Dupont, The dilogarithm as a characteristic class for flat bundles, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 137–164. MR 885101, DOI https://doi.org/10.1016/0022-4049%2887%2990021-1
- Chih Han Sah, Scissors congruences. I. The Gauss-Bonnet map, Math. Scand. 49 (1981), no. 2, 181–210 (1982). MR 661890, DOI https://doi.org/10.7146/math.scand.a-11930
- D. B. A. Epstein and R. C. Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988), no. 1, 67–80. MR 918457
- A.B. Goncharov: Volumes of hyperbolic manifolds and mixed Tate motives, (in preparation).
- Richard M. Hain, Classical polylogarithms, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3–42. MR 1265550, DOI https://doi.org/10.1007/bf01446290
- B. Gross: On the values of Artin $L$-functions, preprint (Brown, 1980).
- Robert Meyerhoff, Density of the Chern-Simons invariant for hyperbolic $3$-manifolds, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 217–239. MR 903867
- Walter D. Neumann, Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic $3$-manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 243–271. MR 1184415
- Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310. MR 1184416
- Walter D. Neumann and Alan W. Reid, Amalgamation and the invariant trace field of a Kleinian group, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 509–515. MR 1094749, DOI https://doi.org/10.1017/S0305004100069942
- W. D. Neumann, J. Yang: Rationality problems for $K$-theory and Chern-Simons invariants of hyperbolic 3-manifolds, Enseignement Mathématique (to appear).
- W. D. Neumann, J. Yang: Bloch invariants of hyperbolic 3-manifolds, in preparation.
- Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), no. 3, 307–332. MR 815482, DOI https://doi.org/10.1016/0040-9383%2885%2990004-7
- Dinakar Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310. MR 991982, DOI https://doi.org/10.1090/conm/083/991982
- Alan W. Reid, A note on trace-fields of Kleinian groups, Bull. London Math. Soc. 22 (1990), no. 4, 349–352. MR 1058310, DOI https://doi.org/10.1112/blms/22.4.349
- A. A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222–244. MR 934225
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI https://doi.org/10.2307/1971277
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI https://doi.org/10.1090/S0273-0979-1982-15003-0
- J. Weeks: Snappea, Software for hyperbolic 3-manifolds, available atftp://ftp.geom.umn.edu/pub/software/snappea
- Don Zagier, Polylogarithms, Dedekind zeta functions and the algebraic $K$-theory of fields, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391–430. MR 1085270
- S. Bloch: Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, Lecture notes U.C. Irvine (1978).
- A. Borel: Cohomologie de $SL_n$ et valeurs de fonction zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 613–636.
- S. Chern, J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794.
- W. Dicks, M. J. Dunwoody: Groups acting on graphs, Camb. Studies in Adv. Math. 17 (1989)
- J. Dupont: The dilogarithm as a characteristic class for flat bundles, J. Pure and App. Algebra 44 (1987), 137–164.
- J. Dupont, H. Sah: Scissors congruences II, J. Pure and App. Algebra 25 (1982), 159–195.
- D. B. A. Epstein, R. Penner: Euclidean decompositions of non-compact hyperbolic manifolds, J. Diff. Geom. 27 (1988), 67–80.
- A.B. Goncharov: Volumes of hyperbolic manifolds and mixed Tate motives, (in preparation).
- R. Hain: Classical polylogarithms, Motives, Proc. Symp. Pure Math, 55 (1994), Part 2, 3–42
- B. Gross: On the values of Artin $L$-functions, preprint (Brown, 1980).
- R. Meyerhoff: Hyperbolic 3-manifolds with equal volumes but different Chern-Simons invariants, in Low-dimensional topology and Kleinian groups, edited by D. B. A. Epstein, London Math. Soc. lecture notes series, 112 (1986) 209–215.
- W. D. Neumann: Combinatorics of triangulations and the Chern Simons invariant for hyperbolic 3-manifolds, in Topology 90, Proceedings of the Research Semester in Low Dimensional Topology at Ohio State (Walter de Gruyter Verlag, Berlin - New York 1992), 243–272.
- W. D. Neumann, A. W. Reid: Arithmetic of hyperbolic manifolds, Topology 90, Proceedings of the Research Semester in Low Dimensional Topology at Ohio State (Walter de Gruyter Verlag, Berlin - New York 1992), 273–310.
- W. D. Neumann, A. W. Reid: Amalgamation and the invariant trace field of a Kleinian group, Math. Proc. Cambridge Philos. Soc. 109 (1991), 509–515.
- W. D. Neumann, J. Yang: Rationality problems for $K$-theory and Chern-Simons invariants of hyperbolic 3-manifolds, Enseignement Mathématique (to appear).
- W. D. Neumann, J. Yang: Bloch invariants of hyperbolic 3-manifolds, in preparation.
- W. D. Neumann, D. Zagier: Volumes of hyperbolic 3-manifolds, Topology 24 (1985), 307–332.
- D. Ramakrishnan: Regulators, algebraic cycles, and values of $L$-functions, Contemp. Math. 83 (1989), 183–310.
- A. W. Reid: A note on trace-fields of Kleinian groups. Bull. London Math. Soc. 22(1990), 349–352.
- A. A. Suslin: Algebraic $K$-theory of fields, Proc. Int. Cong. Math. Berkeley 86, vol. 1 (1987), 222-244.
- W. P. Thurston: Hyperbolic structures on 3-manifolds I: Deformation of acylindrical manifolds. Annals of Math. 124 (1986), 203-246
- W. P. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357–381.
- J. Weeks: Snappea, Software for hyperbolic 3-manifolds, available atftp://ftp.geom.umn.edu/pub/software/snappea
- D. Zagier: Polylogarithms, Dedekind zeta functions, and the algebraic K-theory of fields, In “Arithmetic Algebraic Geometry” (G. v.d. Geer, F. Oort, J. Steenbrink, eds.), Prog. in Math. 89, (Birkäuser, Boston 1991), 391–430.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
57M50,
30F40,
19E99,
22E40,
57R20
Retrieve articles in all journals
with MSC (1991):
57M50,
30F40,
19E99,
22E40,
57R20
Additional Information
Walter D. Neumann
Affiliation:
Department of Mathematics The University of Melbourne Carlton, Vic 3052 Australia
Email:
neumann@maths.mu.oz.au
Jun Yang
Affiliation:
Department of Mathematics Duke University Durham NC 27707
Email:
yang@math.duke.edu
Received by editor(s):
May 5, 1995
Received by editor(s) in revised form:
July 19, 1995
Article copyright:
© Copyright 1995
American Mathematical Society