Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space


Authors: Luigi Fontana, Steven G. Krantz and Marco M. Peloso
Journal: Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 103-107
MSC (1991): Primary 35J55, 35S15, 35N15, 58A14, 58G05
DOI: https://doi.org/10.1090/S1079-6762-95-03002-2
MathSciNet review: 1369640
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Hodge theory of the de Rham complex in the setting of the Sobolev topology is studied. As a result, a new elliptic boundary value problem is obtained. Next, the Hodge theory of the $\bar {\partial }$-Neumann problem in the Sobolev topology is studied. A new $\bar {\partial }$-Neumann boundary condition is obtained, and the corresponding subelliptic estimate derived.


References [Enhancements On Off] (What's this?)

  • Louis Boutet de Monvel, Comportement d’un opérateur pseudo-différentiel sur une variété à bord. I. La propriété de transmission, J. Analyse Math. 17 (1966), 241–253 (French). MR 239254, DOI 10.1007/BF02788660
  • Louis Boutet de Monvel, Comportement d’un opérateur pseudo-différentiel sur une variété à bord. II. Pseudo-noyaux de Poisson, J. Analyse Math. 17 (1966), 255–304 (French). MR 239255, DOI 10.1007/BF02788661
  • Louis Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), no. 1-2, 11–51. MR 407904, DOI 10.1007/BF02392024
  • G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
  • L. Fontana, S. G. Krantz, M. M. Peloso, Hodge theory in the Sobolev topology for the de Rham complex, preprint.
  • L. Fontana, S. G. Krantz, M. M. Peloso, The $\bar {\partial }$-Neumann problem in the Sobolev topology, in progress.
  • J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
  • D. H. Phong, thesis, Princeton University, 1977.
  • William J. Sweeney, The $D$-Neumann problem, Acta Math. 120 (1968), 223–277. MR 226662, DOI 10.1007/BF02394611

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 35J55, 35S15, 35N15, 58A14, 58G05

Retrieve articles in all journals with MSC (1991): 35J55, 35S15, 35N15, 58A14, 58G05


Additional Information

Luigi Fontana
Affiliation: Dipartimento di Matematica Via Saldini 50 Università di Milano 20133 Milano (Italy)
Email: fontana@vmimat.mat.unimi.it

Steven G. Krantz
Affiliation: Department of Mathematics Washington University St. Louis, MO 63130 (U.S.A.)
Email: sk@math.wustl.edu

Marco M. Peloso
Affiliation: Dipartimento di Matematica Politecnico di Torino 10129 Torino (Italy)
Email: peloso@polito.it

Keywords: Hodge theory, de Rham complex, $\bar {\partial }$-Neumann complex, elliptic estimates, subelliptic estimates, pseudodifferential boundary problems
Received by editor(s): July 29, 1995
Additional Notes: Second author supported in part by the National Science Foundation
Third author supported in part by the Consiglio Nazionale delle Ricerche
Article copyright: © Copyright 1996 American Mathematical Society