The Ehrhart polynomial of a lattice $n$ -simplex
Authors:
Ricardo Diaz and Sinai Robins
Journal:
Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 1-6
MSC (1991):
Primary 52B20, 52C07, 14D25, 42B10, 11P21, 11F20, 05A15; Secondary 14M25, 11H06
DOI:
https://doi.org/10.1090/S1079-6762-96-00001-7
MathSciNet review:
1405963
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The problem of counting the number of lattice points inside a lattice polytope in $\mathbb {R}^{n}$ has been studied from a variety of perspectives, including the recent work of Pommersheim and Kantor-Khovanskii using toric varieties and Cappell-Shaneson using Grothendieck-Riemann-Roch. Here we show that the Ehrhart polynomial of a lattice $n$-simplex has a simple analytical interpretation from the perspective of Fourier Analysis on the $n$-torus. We obtain closed forms in terms of cotangent expansions for the coefficients of the Ehrhart polynomial, that shed additional light on previous descriptions of the Ehrhart polynomial.
- Michel Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653–663 (French). MR 982338
- Sylvain E. Cappell and Julius L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 62–69. MR 1217352, DOI 10.1090/S0273-0979-1994-00436-7
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires, J. Reine Angew. Math. 227 (1967), 25–49 (French). MR 217010, DOI 10.1515/crll.1967.227.25
- F. Hirzebruch and D. Zagier, The Atiyah-Singer theorem and elementary number theory, Mathematics Lecture Series, No. 3, Publish or Perish, Inc., Boston, Mass., 1974. MR 0650832
- Jean-Michel Kantor and Askold Khovanskii, Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de $\textbf {R}^d$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 5, 501–507 (French, with English and French summaries). MR 1239038
- I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192. MR 298542, DOI 10.1112/jlms/s2-4.1.181
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283
- G. Pick, Geometrisches zur Zahlenlehre, Sitzungber. Lotos (Prague) 19 (1899), 311–319.
- Mark A. Pinsky, Pointwise Fourier inversion in several variables, Notices Amer. Math. Soc. 42 (1995), no. 3, 330–334. MR 1316131
- James E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1–24. MR 1198839, DOI 10.1007/BF01444874
- Burton Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271–278. MR 251449, DOI 10.1090/S0002-9947-1969-0251449-9
- C. L. Siegel, Über Gitterpunkte in konvexen Körpern und ein damit zusammenhängendes Extremalproblem, Acta Math. 65 (1935), 307–323.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Richard P. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253. MR 411982, DOI 10.1016/0001-8708(74)90030-9
- David Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–viii and 1–98. MR 823442, DOI 10.1090/memo/0339
- Yi-Jing Xu and Stephen S.-T. Yau, A sharp estimate of the number of integral points in a tetrahedron, J. Reine Angew. Math. 423 (1992), 199–219. MR 1142487, DOI 10.1515/crll.1992.423.199
- Don Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172. MR 357333, DOI 10.1007/BF01351173
- M. Brion, Points entiere dans les polyèdres convexes, Ann. Sci. Ecole Nor. Sup. ($4^{c}$) 21 (1988), 653–663.
- S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bulletin of the AMS (Jan. 1994), 62–69.
- V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), 97–154.
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227 (1967), 25–49.
- F. Hirzebruch and D. Zagier, The Atiyah-Singer index theorem and elementary number theory, Publish or Perish Press, Boston, MA, 1974.
- J. M. Kantor and A. Khovanskii, Une application du Théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entier de $\mathbb {R}^{d}$, C. R. Acad. Sci. Paris, Series I 317 (1993), 501–507.
- I. G. MacDonald, Polynomials associated with finite cell complexes, J. London Math. Soc. (2) 4 (1971), 181–192.
- L. J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. 15 (1951), 41–46.
- M. Newman, Integral matrices, Academic Press, New York, 1972.
- G. Pick, Geometrisches zur Zahlenlehre, Sitzungber. Lotos (Prague) 19 (1899), 311–319.
- M. A. Pinsky, Pointwise Fourier inversion in several variables, Notices of the AMS 42 (1995), 330–334.
- J. Pommersheim, Toric varieties, lattice points, and Dedekind sums, Math. Annalen 295, 1 (1993), 1–24.
- B. Randol, On the Fourier transform of the indicator function of a planar set, Trans. of the AMS (1969), 271–278.
- C. L. Siegel, Über Gitterpunkte in konvexen Körpern und ein damit zusammenhängendes Extremalproblem, Acta Math. 65 (1935), 307–323.
- E. Stein and G. Weiss, Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971.
- R. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253.
- D. Gabai, Genera of the arborescent links, and W. Thurston, A norm for the homology of 3-manifolds, Memoirs of the AMS 59 (1986). ; MR 88h:57014
- Y.-J. Xu and S.S.-T. Yau, A sharp estimate of the number of integral points in a tetrahedron, J. Reine Angew. Math. 423 (1992), 119–219.
- D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
52B20,
52C07,
14D25,
42B10,
11P21,
11F20,
05A15,
14M25,
11H06
Retrieve articles in all journals
with MSC (1991):
52B20,
52C07,
14D25,
42B10,
11P21,
11F20,
05A15,
14M25,
11H06
Additional Information
Ricardo Diaz
Affiliation:
Department of Mathematics, University of Northern Colorado, Greeley, Colorado 80639
Email:
rdiaz@bentley.univnorthco.edu
Sinai Robins
Affiliation:
Department of Mathematics, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0112
MR Author ID:
342098
Email:
srobins@ucsd.edu
Keywords:
Lattice polytopes,
Ehrhart polynomials,
Fourier analysis,
Laplace transforms,
cones,
Dedekind sums
Received by editor(s):
August 4, 1995
Received by editor(s) in revised form:
December 1, 1995
Additional Notes:
Research partially supported by NSF Grant #9508965.
Communicated by:
Svetlana Katok
Article copyright:
© Copyright 1996
American Mathematical Society