Geodesic length functions
and Teichmüller spaces
Author:
Feng Luo
Journal:
Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 34-41
MSC (1991):
Primary 32G15, 30F60
DOI:
https://doi.org/10.1090/S1079-6762-96-00008-X
MathSciNet review:
1405967
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Given a compact orientable surface , let
be the set of isotopy classes of essential simple closed curves in
. We determine a complete set of relations for a function from
to
to be the geodesic length function of a hyperbolic metric with geodesic boundary on
. As a consequence, the Teichmüller space of hyperbolic metrics with geodesic boundary on
is reconstructed from an intrinsic combinatorial structure on
. This also gives a complete description of the image of Thurston's embedding of the Teichmüller space.
- [Bo] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, https://doi.org/10.1007/BF01393996
- [De] Max Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987. Translated from the German and with introductions and an appendix by John Stillwell; With an appendix by Otto Schreier. MR 881797
- [FK] R. Fricke and F. Klein, Vorlesungen über die Theorie der Automorphen Funktionen, Teubner, Leipizig, 1897--1912.
- [FLP] Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308
- [Ke] Linda Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math. (2) 84 (1966), 404–420. MR 203000, https://doi.org/10.2307/1970454
- [Li] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, https://doi.org/10.2307/1970373
- [Lu1] F. Luo, Geodesic length functions and Teichmüller spaces, preprint.
- [Lu2] ------, Non-separating simple closed curves in a compact surface, Topology, in press.
- [Mas] Bernard Maskit, On Klein’s combination theorem. II, Trans. Amer. Math. Soc. 131 (1968), 32–39. MR 223570, https://doi.org/10.1090/S0002-9947-1968-0223570-1
- [Ok] Yoshihide Okumura, On the global real analytic coordinates for Teichmüller spaces, J. Math. Soc. Japan 42 (1990), no. 1, 91–101. MR 1027542, https://doi.org/10.2969/jmsj/04210091
- [Ok1] ------, Global real analytic length parameters for Teichmüller spaces, Hiroshima Math. J. 26 (1) (1996), 165--179. CMP 96:10
- [Sc] Paul Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv. 68 (1993), no. 2, 278–288 (German). MR 1214232, https://doi.org/10.1007/BF02565819
- [So] T. Sorvali, Parametrization for free Möbius groups, Ann. Acad. Sci. Fenn. 579 (1974), 1--12.
- [Th] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, https://doi.org/10.1090/S0273-0979-1988-15685-6
- [Wo] Scott A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987), no. 2, 275–296. MR 880186
Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 32G15, 30F60
Retrieve articles in all journals with MSC (1991): 32G15, 30F60
Additional Information
Feng Luo
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903
Email:
fluo@math.rutgers.edu
DOI:
https://doi.org/10.1090/S1079-6762-96-00008-X
Keywords:
Hyperbolic metrics,
geodesics,
Teichm\"{u}ller spaces
Received by editor(s):
April 9, 1996
Communicated by:
Walter Neumann
Article copyright:
© Copyright 1996
American Mathematical Society