On the existence of positive solutions of Yamabe-type equations on the Heisenberg group
Authors:
L. Brandolini, M. Rigoli and A. G. Setti
Journal:
Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 101-107
MSC (1991):
Primary 35H05; Secondary 35J70
DOI:
https://doi.org/10.1090/S1079-6762-96-00014-5
MathSciNet review:
1426719
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study nonexistence, existence and uniqueness of positive solutions of the equation $\Delta _{H^n}u+a(x)u-b(x)u^\sigma =0$ with $\sigma >1$ on the Heisenberg group $H^n$. Our results hold, with essentially no changes, also for the Euclidean version of the above equation. Even in this case they appear to be new.
- B. Bianchini and M. Rigoli, Nonexistence and uniqueness of positive solutions of Yamabe type equations on nonpositively curved manifold, preprint.
- L. Brandolini, M. Rigoli, and A. G. Setti, Positive solutions of Yamabe-type equations on the Heisenberg group, preprint.
- Kuo-Shung Cheng and Jenn-Tsann Lin, On the elliptic equations $\Delta u=K(x)u^\sigma$ and $\Delta u=K(x)e^{2u}$, Trans. Amer. Math. Soc. 304 (1987), no. 2, 639–668. MR 911088, DOI 10.1090/S0002-9947-1987-0911088-1
- Kuo-Shung Cheng and Wei-Ming Ni, On the structure of the conformal scalar curvature equation on $\textbf {R}^n$, Indiana Univ. Math. J. 41 (1992), no. 1, 261–278. MR 1160913, DOI 10.1512/iumj.1992.41.41015
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- David Jerison and John M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 57–63. MR 741039, DOI 10.1090/conm/027/741039
- David Jerison and John M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), no. 2, 167–197. MR 880182
- David Jerison and John M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), no. 1, 1–13. MR 924699, DOI 10.1090/S0894-0347-1988-0924699-9
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- A. Ratto, M. Rigoli, and L. Véron, Scalar curvature and conformal deformation of noncompact Riemannian manifolds, Math. Z. (to appear).
- B. Bianchini and M. Rigoli, Nonexistence and uniqueness of positive solutions of Yamabe type equations on nonpositively curved manifold, preprint.
- L. Brandolini, M. Rigoli, and A. G. Setti, Positive solutions of Yamabe-type equations on the Heisenberg group, preprint.
- K. S. Cheng and J. T. Lin, On the elliptic equations $\Delta u=K(x)u^\sigma$ and $\Delta u=K(x)e^{2u}$, Trans. Amer. Math. Soc. 304 (1987), 639–668.
- K. S. Cheng and W. M. Ni, On the structure of the conformal scalar curvature equation on ${\mathbb R}^n$, Indiana Univ. Math. J. 41 (1992), 261–278.
- L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1968), 147–171.
- D. Jerison and J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Cont. Math. 27 (1984), 57–63.
- —, The Yamabe problem on CR manifolds, J. Diff. Geom. 25 (1987), 167–197.
- —, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), 1–12.
- W. M. Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493–529.
- A. Ratto, M. Rigoli, and L. Véron, Scalar curvature and conformal deformation of noncompact Riemannian manifolds, Math. Z. (to appear).
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
35H05,
35J70
Retrieve articles in all journals
with MSC (1991):
35H05,
35J70
Additional Information
L. Brandolini
Affiliation:
Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy
MR Author ID:
294667
ORCID:
0000-0002-9670-9051
Email:
brandolini@vmimat.mat.unimi.it
M. Rigoli
Affiliation:
Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy
MR Author ID:
148315
Email:
rigoli@vmimat.mat.unimi.it
A. G. Setti
Affiliation:
Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy
MR Author ID:
289546
Email:
setti@vmimat.mat.unimi.it
Keywords:
Heisenberg group,
hypoelliptic equations,
CR-Yamabe problem
Received by editor(s):
March 8, 1996
Communicated by:
Richard Schoen
Article copyright:
© Copyright 1997
American Mathematical Society