On aspherical presentations of groups

Author:
Sergei V. Ivanov

Journal:
Electron. Res. Announc. Amer. Math. Soc. **4** (1998), 109-114

MSC (1991):
Primary 20F05, 20F06, 20F32; Secondary 57M20

DOI:
https://doi.org/10.1090/S1079-6762-98-00052-3

Published electronically:
December 15, 1998

MathSciNet review:
1662323

Full-text PDF Free Access

Abstract |
References |
Similar Articles |
Additional Information

Abstract: The Whitehead asphericity conjecture claims that if $\langle \mathcal {A} \| \mathcal {R} \rangle$ is an aspherical group presentation, then for every $\mathcal {S} \subset \mathcal {R}$ the subpresentation $\langle \mathcal {A} \| \mathcal {S} \rangle$ is also aspherical. This conjecture is generalized for presentations of groups with periodic elements by introduction of almost aspherical presentations. It is proven that the generalized Whitehead asphericity conjecture (which claims that every subpresentation of an almost aspherical presentation is also almost aspherical) is equivalent to the original Whitehead conjecture and holds for standard presentations of free Burnside groups of large odd exponent, Tarski monsters and some others. Next, it is proven that if the Whitehead conjecture is false, then there is an aspherical presentation $E = \langle \mathcal {A} \| \mathcal {R} \cup z \rangle$ of the trivial group $E$, where the alphabet $\mathcal {A}$ is finite or countably infinite and $z \in \mathcal {A}$, such that its subpresentation $\langle \mathcal {A} \| \mathcal {R} \rangle$ is not aspherical. It is also proven that if the Whitehead conjecture fails for finite presentations (i.e., with finite $\mathcal {A}$ and $\mathcal {R}$), then there is a finite aspherical presentation $\langle \mathcal {A} \| \mathcal {R} \rangle$, $\mathcal {R} = \{ R_{1}, R_{2}, \dots , R_{n} \}$, such that for every $\mathcal {S} \subseteq \mathcal {R}$ the subpresentation $\langle \mathcal {A} \| \mathcal {S} \rangle$ is aspherical and the subpresentation $\langle \mathcal {A} \| R_{1}R_{2}, R_{3}, \dots , R_{n} \rangle$ of aspherical $\langle \mathcal {A} \| R_{1}R_{2}, R_{2}, R_{3}, \dots , R_{n} \rangle$ is not aspherical. Now suppose a group presentation $H = \langle \mathcal {A} \| \mathcal {R} \rangle$ is aspherical, $x \not \in \mathcal {A}$, $W(\mathcal {A} \cup x)$ is a word in the alphabet $(\mathcal {A} \cup x)^{\pm 1}$ with nonzero sum of exponents on $x$, and the group $H$ naturally embeds in $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$. It is conjectured that the presentation $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$ is aspherical if and only if $G$ is torsion free. It is proven that if this conjecture is false and $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$ is a counterexample, then the integral group ring $\mathbb {Z}(G)$ of the torsion free group $G$ will contain zero divisors. Some special cases where this conjecture holds are also indicated.

- I. S. Ashmanov and A. Yu. Ol′shanskiĭ,
*Abelian and central extensions of aspherical groups*, Izv. Vyssh. Uchebn. Zaved. Mat. **11** (1985), 48–60, 85 (Russian). MR **829100**
- J. J. Andrews and M. L. Curtis,
*Free groups and handlebodies*, Proc. Amer. Math. Soc. **16** (1965), 192–195. MR **173241**, DOI 10.1090/S0002-9939-1965-0173241-8
- S. D. Brodskiĭ,
*Equations over groups and groups with one defining relation*, Uspekhi Mat. Nauk **35** (1980), no. 4(214), 183 (Russian). MR **586195**
- Mauricio A. Gutiérrez and John G. Ratcliffe,
*On the second homotopy group*, Quart. J. Math. Oxford Ser. (2) **32** (1981), no. 125, 45–55. MR **606922**, DOI 10.1093/qmath/32.1.45
- James Howie,
*Some remarks on a problem of J. H. C. Whitehead*, Topology **22** (1983), no. 4, 475–485. MR **715251**, DOI 10.1016/0040-9383(83)90038-1
- J. Howie,
*On the asphericity of ribbon disc complements*, Trans. Amer. Math. Soc. **289** (1985), 281–302. 87a:57007
- James Howie,
*On locally indicable groups*, Math. Z. **180** (1982), no. 4, 445–461. MR **667000**, DOI 10.1007/BF01214717
- Johannes Huebschmann,
*Cohomology theory of aspherical groups and of small cancellation groups*, J. Pure Appl. Algebra **14** (1979), no. 2, 137–143. MR **524183**, DOI 10.1016/0022-4049(79)90003-3
- Johannes Huebschmann,
*Aspherical $2$-complexes and an unsettled problem of J. H. C. Whitehead*, Math. Ann. **258** (1981/82), no. 1, 17–37. MR **641666**, DOI 10.1007/BF01450344
- Sergei V. Ivanov,
*The free Burnside groups of sufficiently large exponents*, Internat. J. Algebra Comput. **4** (1994), no. 1-2, ii+308. MR **1283947**, DOI 10.1142/S0218196794000026
- Sergei V. Ivanov and Alexander Yu. Ol′shanskii,
*Some applications of graded diagrams in combinatorial group theory*, Groups—St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge, 1991, pp. 258–308. MR **1123985**, DOI 10.1017/CBO9780511661846.004
- S. V. Ivanov and A. Yu. Ol′shanskiĭ,
*Hyperbolic groups and their quotients of bounded exponents*, Trans. Amer. Math. Soc. **348** (1996), no. 6, 2091–2138. MR **1327257**, DOI 10.1090/S0002-9947-96-01510-3
- Anton A. Klyachko,
*A funny property of sphere and equations over groups*, Comm. Algebra **21** (1993), no. 7, 2555–2575. MR **1218513**, DOI 10.1080/00927879308824692
- Frank Levin,
*Solutions of equations over groups*, Bull. Amer. Math. Soc. **68** (1962), 603–604. MR **142643**, DOI 10.1090/S0002-9904-1962-10868-4
- E. Luft,
*On $2$-dimensional aspherical complexes and a problem of J. H. C. Whitehead*, Math. Proc. Cambridge Philos. Soc. **119** (1996), no. 3, 493–495. MR **1357060**, DOI 10.1017/S0305004100074363
- C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J. **5** (1939), 623–627. MR **13**
- Roger C. Lyndon and Paul E. Schupp,
*Combinatorial group theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR **0577064**
- A. Yu. Ol′shanskiĭ,
*The Novikov-Adyan theorem*, Mat. Sb. (N.S.) **118(160)** (1982), no. 2, 203–235, 287 (Russian). MR **658789**
- A. Yu. Ol′shanskiĭ,
*Groups of bounded period with subgroups of prime order*, Algebra i Logika **21** (1982), no. 5, 553–618 (Russian). MR **721048**
- A. Yu. Ol′shanskiĭ,
*Geometry of defining relations in groups*, Mathematics and its Applications (Soviet Series), vol. 70, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1989 Russian original by Yu. A. Bakhturin. MR **1191619**, DOI 10.1007/978-94-011-3618-1
- Allan J. Sieradski,
*Combinatorial isomorphisms and combinatorial homotopy equivalences*, J. Pure Appl. Algebra **7** (1976), no. 1, 59–95. MR **405434**, DOI 10.1016/0022-4049(76)90067-0
- Leonard Eugene Dickson,
*New First Course in the Theory of Equations*, John Wiley & Sons, Inc., New York, 1939. MR **0000002**

- I.S. Ashmanov and A.Yu. Ol’shanskii,
*On abelian and central extensions of aspherical groups*, Izv. Vyssh. Uchebn. Zaved. Mat. **11** (1985), 48–60.
- J.J. Andrews and M.L. Curtis,
*Free groups and handlebodies*, Proc. Amer. Math. Soc. **16** (1965), 192–195.
- S.D. Brodskii,
*Equations over groups and groups with a single defining relation*, Uspekhi Mat. Nauk **35** (1980), 183.
- M. Gutierrez and J.G. Ratcliffe,
*On the second homotopy group*, Quart. J. Math. Oxford **32** (1981), 45–55.
- J. Howie,
*Some remarks on a problem of J.H.C. Whitehead*, Topology **22** (1983), 475–485.
- J. Howie,
*On the asphericity of ribbon disc complements*, Trans. Amer. Math. Soc. **289** (1985), 281–302. 87a:57007
- J. Howie,
*On locally indicable groups*, Math. Z. **180** (1982), 445–461.
- J. Huebschmann,
*Cohomology theory of aspherical groups and of small cancellation groups*, J. Pure Appl. Algebra **14** (1979), 137–143.
- J. Huebschmann,
*Aspherical 2-complexes and an unsettled problem of J.H.C. Whitehead*, Math. Ann. **258** (1981), 17–37.
- S.V. Ivanov,
*The free Burnside groups of sufficiently large exponents*, Internat. J. Algebra Comp. **4** (1994), 1-308.
- S.V. Ivanov and A.Yu. Ol’shanskii,
*Some applications of graded diagrams in combinatorial group theory*, London Math. Soc. Lecture Note Ser. **160** (1991), 258-308.
- S.V. Ivanov and A.Yu. Ol’shanskii,
*Hyperbolic groups and their quotients of bounded exponents*, Trans. of the Amer. Math. Soc **348** (1996), 2091–2138.
- A. Klyachko,
*A funny property of sphere and equations over groups*, Comm. Algebra **122** (1994), 1475–1488.
- F. Levin,
*Solutions of equations over groups*, Bull. Amer. Math. Soc. **62** (1962), 603–604.
- E. Luft,
*On 2-dimensional aspherical complexes and a problem of J.H.C. Whitehead*, Math. Proc. Cambridge Phil. Soc. **119** (1996), 493–495.
- R.C. Lyndon,
*Cohomology theory of groups with a single defining relation*, Ann. Math. **52** (1950), 650–655.
- R.C. Lyndon and P.E. Schupp,
*Combinatorial group theory*, Springer-Verlag, 1977.
- A.Yu. Ol’shanskii,
*On the Novikov-Adian theorem*, Mat. Sbornik **118** (1982), 203–235.
- A.Yu. Ol’shanskii,
*Groups of bounded period with subgroups of prime order*, Algebra i Logika **21** (1982), 553–618.
- A.Yu. Ol’shanskii,
*Geometry of defining relations in groups*, English translation in Math. and Its Applications (Soviet series), 70, Kluwer Acad. Publishers, 1991 (1989).
- A.J. Sieradski,
*Combinatorial isomorphisms and combinatorial homotopy equivalences*, J. Pure Appl. Algebra **7** (1976), 59–65.
- J.H.C. Whitehead,
*On adding relations to homotopy groups*, Ann. Math. **42** (1941), 409–428.

Similar Articles

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
20F05,
20F06,
20F32,
57M20

Retrieve articles in all journals
with MSC (1991):
20F05,
20F06,
20F32,
57M20

Additional Information

**Sergei V. Ivanov**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801

Email:
ivanov@math.uiuc.edu

Received by editor(s):
April 13, 1998

Published electronically:
December 15, 1998

Additional Notes:
Supported in part by an Alfred P. Sloan Research Fellowship and NSF grant DMS 95-01056

Communicated by:
Efim Zelmanov

Article copyright:
© Copyright 1998
American Mathematical Society