Characterization of the range of the Radon transform on homogeneous trees
Authors:
Enrico Casadio Tarabusi, Joel M. Cohen and Flavia Colonna
Journal:
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 11-17
MSC (1991):
Primary 44A12; Secondary 05C05, 43A85
DOI:
https://doi.org/10.1090/S1079-6762-99-00055-4
Published electronically:
February 4, 1999
MathSciNet review:
1667635
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This article contains results on the range of the Radon transform $R$ on the set $\mathcal {H}$ of horocycles of a homogeneous tree $T$. Functions of compact support on $\mathcal {H}$ that satisfy two explicit Radon conditions constitute the image under $R$ of functions of finite support on $T$. Replacing functions on $\mathcal {H}$ by distributions, we extend these results to the non-compact case by adding decay criteria.
- G. Ahumada Bustamante, Analyse harmonique sur l’espace des chemins d’un arbre, Thesis of Doctorat d’État, Univ. of Paris-Sud (Orsay), 1988.
- Carlos A. Berenstein and Enrico Casadio Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), no. 3, 755–764. MR 1389752, DOI https://doi.org/10.1137/S0036139994277348
- Carlos A. Berenstein, Enrico Casadio Tarabusi, Joel M. Cohen, and Massimo A. Picardello, Integral geometry on trees, Amer. J. Math. 113 (1991), no. 3, 441–470. MR 1109347, DOI https://doi.org/10.2307/2374835
- W. Betori, J. Faraut, M. Pagliacci, The horicycles of a tree and the Radon transform, preliminary version of An inversion formula for the Radon transform on trees, Math. Z. 201 (1989), 327–337.
- W. Betori, J. Faraut, and M. Pagliacci, An inversion formula for the Radon transform on trees, Math. Z. 201 (1989), no. 3, 327–337. MR 999731, DOI https://doi.org/10.1007/BF01214899
- Walter Betori and Mauro Pagliacci, The Radon transform on trees, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 1, 267–277 (English, with Italian summary). MR 841630
- E. Casadio Tarabusi, J. M. Cohen, F. Colonna, The range of the horocyclic Radon transform on a homogeneous tree, preprint.
- Enrico Casadio Tarabusi, Joel M. Cohen, and Massimo A. Picardello, The horocyclic Radon transform on nonhomogeneous trees, Israel J. Math. 78 (1992), no. 2-3, 363–380. MR 1194972, DOI https://doi.org/10.1007/BF02808063
- Enrico Casadio Tarabusi, Joel M. Cohen, and Massimo A. Picardello, Range of the X-ray transform on trees, Adv. Math. 109 (1994), no. 2, 153–167. MR 1304750, DOI https://doi.org/10.1006/aima.1994.1084
- Joel M. Cohen and Flavia Colonna, The functional analysis of the X-ray transform on trees, Adv. in Appl. Math. 14 (1993), no. 1, 123–138. MR 1204058, DOI https://doi.org/10.1006/aama.1993.1007
- M. Cowling, S. Meda, A. G. Setti, An overview of harmonic analysis on the group of isometries of a homogeneous tree, preprint.
- Sigurdur Helgason, The Radon transform, Progress in Mathematics, vol. 5, Birkhäuser, Boston, Mass., 1980. MR 573446
- J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 (1917), 262–277; reprinted in S. Helgason, The Radon transform, Progr. Math., vol. 5, Birkhäuser, Boston, 1980, pp. 177–192.
Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 44A12, 05C05, 43A85
Retrieve articles in all journals with MSC (1991): 44A12, 05C05, 43A85
Additional Information
Enrico Casadio Tarabusi
Affiliation:
Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, Piazzale A. Moro 2, 00185 Roma, Italy
Email:
casadio@alpha.science.unitn.it
Joel M. Cohen
Affiliation:
Department of Mathematics, University of Maryland, College Park, MD 20742
Email:
jmc@math.umd.edu
Flavia Colonna
Affiliation:
Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030
Email:
fcolonna@osf1.gmu.edu
Keywords:
Radon transform,
homogeneous trees,
horocycles,
range characterizations,
distributions
Received by editor(s):
October 15, 1998
Published electronically:
February 4, 1999
Additional Notes:
Supported in part by an Alfred P. Sloan Research Fellowship and NSF grant DMS 95-01056.
Communicated by:
Mark Freidlin
Article copyright:
© Copyright 1999
American Mathematical Society