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Abstract. We give a smooth analogue of the classical Schläfli formula,
relating the variation of the volume bounded by a hypersurface moving in
a general Einstein manifold and the integral of the variation of the mean
curvature. We extend it to variations of the metric in a Riemannian Einstein
manifold with boundary, and apply it to Einstein cone-manifolds, to isometric
deformations of Euclidean hypersurfaces, and to the rigidity of Ricci-flat
manifolds with umbilic boundaries.

Résumé. On donne un analogue régulier de la formule classique de
Schläfli, reliant la variation du volume borné par une hypersurface se
déplaçant dans une variété d’Einstein à l’intégrale de la variation de la
courbure moyenne. Puis nous l’étendons aux variations de la métrique à
l’intérieur d’une variété d’Einstein riemannienne à bord. On l’applique aux
cone-variétés d’Einstein, aux déformations isométriques d’hypersurfaces de
En, et à la rigidité des variétés Ricci-plates à bord ombilique.

Let M be a Riemannian (m + 1)-dimensional space-form of constant curvature
K, and (Pt)t∈[0,1] a one-parameter family of polyhedra in M bounding compact
domains, all having the same combinatorics. Call Vt the volume bounded by Pt,
θi,t and Wi,t the dihedral angle and the (m− 1)-volume of the codimension 2 face
i of Pt. The classical Schläfli formula (see [Mil94] or [Vin93]) is∑

i

Wi,t
dθi,t

dt
= mK

dVt

dt
.(1)

This formula has been extended and used on several occasions recently; see for
instance [Hod86], [Bon].

We give a smooth version of this formula, for 1-parameter families of hyper-
surfaces in (Riemannian of Lorentzian) Einstein manifolds. Then we extend it to
variations of an Einstein metric inside a manifold with boundary (a much more
general process in dimension above 3). Finally, we give three applications: to the
variation of the volume of Einstein cone-manifolds, to isometric deformations of
hypersurfaces in the Euclidean space, and to the rigidity of Ricci-flat manifolds
with umbilic boundaries. The reader can find the details in [RS98].

Throughout this paper, M is an Einstein manifold of dimension m + 1 ≥ 3, and
D is its Levi-Civita connection. When dealing with a hypersurface Σ (resp. with
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the boundary ∂M), we call I the induced metric, also called the first fundamental
form, of the corresponding immersion in M . D is the Levi-Civita connection of I,
B the shape operator, and II, III are the second and third fundamental forms of Σ;
B and II are defined with respect to an oriented unit normal vector to Σ (resp. to
the exterior unit normal to ∂M).

The trace H of B is called the “mean curvature” (some definitions differ by a
factor m) and the “higher mean curvatures” Hk, k ≥ 1, are the higher symmetric
functions of the principal curvatures of Σ (resp. ∂M). For instance, H2 = (H2 −
tr(B2))/2. dV, dA are the volume elements in M and on Σ (resp. ∂M) respectively.

We denote by δ the divergence acting on symmetric tensors, and by δ∗ its formal
adjoint. We will often implicitly identify (through the metric) vector fields and
1-forms, as well as quadratic forms and linear morphisms.

1. Deformation of hypersurfaces

Here is an analogue of the Schläfli formula for deformations of (smooth) hyper-
surfaces in a fixed Einstein manifold M , which can be Riemannian or Lorentzian
(the other pseudo-Riemannian cases can be treated in the same way).

Theorem 1. Let Σ be a smooth oriented hypersurface in a (Riemannian) Einstein
(m + 1)-manifold M with scalar curvature S, and v a section of the restriction of
TM to Σ. v defines a deformation of Σ in M , which induces variations V ′, H ′ and
I ′ of the volume bounded by Σ, mean curvature, and induced metric on Σ. Then:

S

m + 1
V ′ =

∫
Σ

(
H ′ +

1
2
〈I ′, II〉

)
dA.(2)

The unit normal used to define H and II should be toward the outside of the
volume bounded by Σ. Actually Σ does not need to bound a finite volume domain
for this formula to hold. Otherwise, V ′ is just the derivative of the (signed) volume
contained between Σ and Σt, for small t. This volume is then oriented by the unit
normal to Σt used to define H and II, which should be toward the exterior.

The proof can be given separately for normal and for tangent deformations of
Σ. For tangent deformations, V ′ = 0, and the relation between I ′ and H ′ comes
from the equation: δII = −dH , which holds because M is Einstein. For normal
deformations, H ′ is obtained using the trace of II ′, which is related to the Laplacian
of the amplitude of the deformation and to the Ricci curvature of M on the normal
to Σ.

The “classical” Schläfli formula (1) for polyhedra in space-forms follows from
Theorem 1. Namely, one can apply Theorem 1 to the set of points at distance r on
the outside of a convex polyhedron and let r → 0.

In the Lorentzian case, the only difference is that now g(n, n) = −1, so the
volume variation has a minus sign in the formula. Applying the Lorentzian formula
to the set of points at distance ε from a polyhedron in Sn

1 , one obtains the Schläfli
formula for de Sitter polyhedra as in [SP97].

2. Einstein manifolds with boundary

Here (M, ∂M) is a compact manifold with boundary with an Einstein metric g of
scalar curvature S. We will prove the same formula as in the previous section, but
in a much more general setting: instead of moving a hypersurface in an Einstein
manifold, we will be changing the metric (among Einstein metrics of a given scalar
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curvature) inside this manifold with boundary. Although the two operations are
equivalent in dimension at most 3, moving the inside metric is much more general
in higher dimensions. On the other hand, our proof only works for Riemannian
Einstein manifolds. It is not obvious whether it can be extended to the pseudo-
Riemannian setting.

If g is an Einstein metric, we say that a 2-tensor h is an “Einstein variation” of
g if the associated variation of the metric induces a variation of the Ricci tensor
which is proportional to h, so that g + εh remains, to the first order, an Einstein
manifold with constant scalar curvature.

Theorem 2. Let h be a smooth Einstein variation of g. Then:
S

m + 1
V ′ =

∫
∂M

H ′ +
1
2
〈h|∂M , II〉dA.(3)

As always when studying deformations of Riemannian metrics, the proof needs
put some kind of restriction to remove the geometrically trivial deformations, which
only correspond to the action of vector fields on the metric. We prevent those
deformations in the same way as e.g. in [GL91], [DeT81] or [Biq97], that is, we only
consider metric variations h such that 2δh + d tr h = 0. The following proposition,
which is proved by a fairly simple variational argument, shows that we do not forget
any metric variation when doing this.

Proposition 1. Let h′ be a smooth variation of g. Suppose that either S ≤ 0,
or M is strictly convex. There exists another smooth variation h of g such that
2δh + d tr(h) = 0 and h = h′ + δ∗v0, where v0 is a vector field vanishing on ∂M .

The variation h of g obtained in Proposition 1 satisfies (because the metric
remains Einstein) a simple, elliptic equation. Taking its trace shows that the trace
of h also satisfies an elliptic equation which, when integrated over M , expresses V ′

as some integral over ∂M . A careful examination of this boundary term leads to
Theorem 2.

3. Applications

A first application can be found by looking at “singular objects”, just as to
go from the smooth Theorem 1 to the classical Schläfli formula. There are no
polyhedra in general Einstein manifolds, but we can check what happens when we
deform Einstein manifolds with cone singularities. It should be pointed out that
some of the most interesting modern uses of the classical Schläfli formula concern
hyperbolic 3-dimensional cone-manifolds.

Let M be a compact (m + 1)-manifold, and N a compact codimension 2 sub-
manifold of M . Suppose (gt) is a 1-parameter family of Einstein metrics with fixed
scalar curvature S ≤ 0 on M \N , with a conical singularity on N in the sense that,
in normal coordinates around N , gt has an expansion like

gt = ht + dr2 + r2dθ2 + o(r2),

where ht is the metric induced on N by gt, and θ ∈ R/αtZ for some αt ∈ R. Call
Vt the volume of (M \N, gt), and Wt the volume of (N, ht). Then

Corollary 1. Vt varies as: S
m+1

dVt

dt = Wt
dαt

dt .

Note. The same result holds when N has several connected components, each with
a different value of αt. N could also be replaced by a stratified submanifold.
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Example. Take m + 1 = 3 in the previous example. We find the Schläfli formula
for the variation of the volume of a hyperbolic cone-manifold [Hod86].

When the Wi,t are constant, the left-hand side of (1) is a polyhedral analogue
of the variation of the mean curvature integral of a hypersurface. When K = 0,
the right-hand side is 0. This shows that the “mean curvature” of a 1-parameter
family of Euclidean polyhedra with constant induced metric is constant. This was
used in [AR97] to prove, using geometric measure theory methods, the following

Theorem 3. In Rm+1, the integral of the mean curvature remains constant in an
isometric deformation of a hypersurface.

This theorem follows immediately from our Theorem 1.
On the other hand, the integral mean curvature is not determined by the metric

on ∂M : this is already visible in R3. Namely, some metrics on S2 admit two
isometric embeddings in R3: the classical example is that a (topological) sphere in
R3 which is tangent to a plane along a circle can be “flipped” so as to obtain another
embedding with the same induced metric [Spi75]. Those two embeddings do not in
general have the same integral mean curvature—and thus we have a complicated
way of seeing that the two flipped surfaces cannot be bent one into the other.

Formula (3) is even simpler for variations which vanish on ∂M :

Theorem 4. If h is a smooth Einstein variation of g which does not change the
induced metric on ∂M , then ∫

∂M

H ′dV =
S

m + 1
V ′.

In particular, for S = 0, this implies that the integral of the mean curvature of
the boundary is constant under an Einstein variation which does not change the
induced metric on ∂M ; this is a direct generalization of Theorem 3.

The analogue of Theorem 3 is also true, but in a pointwise sense, for the higher
mean curvatures:

Theorem 5. In Rm+1, the integral of Hk (k ≥ 2) remains constant in an isometric
deformation of a hypersurface.

This comes from the following (probably classical) description of the possible
isometric deformations of a hypersurface for m + 1 ≥ 4:

Remark 1. Let (Σt)t∈[0,1] be a 1-parameter family of hypersurfaces in a space-form,
such that the induced metric It is constant to the first order at t = 0. Then, at
each point, one of the following is true:

• II0 = 0;
• rk(II0) ≤ 2, and II ′0 vanishes on the kernel of II0;
• II ′0 = 0;

where IIt is the second fundamental form of Σt, and II ′t its variation.

Theorem 5 clearly follows, because H ′
k is zero for k ≥ 3 in each case, and the

Gauss formula gives the proof for k = 2.
Denote by Σε

t the parallel surface at distance ε from Σt. It is well known (see,
e.g., Santalo’s book [San76]) that the area of Σε is a polynomial in ε where the
coefficent of εk is (essentially) the k-th mean curvature of Σ. The two Theorems 3
and 5 can then be combined as stating that:
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Theorem 6. The area of Σε
t stays constant when Σt is a bending of Σ0.

Finally, we use the Schläfli formula above to prove a rigidity result for Ricci-
flat manifolds with umbilic boundary; it is a generalization of the classical result
(see [Spi75]) that the round sphere is rigid in R3, that is, it cannot be deformed
smoothly without changing its induced metric.

Lemma 1. Suppose (M, ∂M) is a compact (m + 1)-manifold with boundary, and
(ht)t∈[0,1] is a nontrivial 1-parameter family of Ricci-flat metrics on M inducing
the same metric on ∂M , and such that ∂M is umbilic and convex (or concave)
for h0. Then ∂M has at least two connected components, and (ht) corresponds to
the displacement of some connected component(s) of ∂M under the flow of some
Killing field(s) of M .

This kind of rigidity result could be used in the future to prove that, given a Ricci-
flat manifold M with umbilic boundary and induced metric g0 on the boundary,
any metric close to g0 on ∂M can be realized as induced on ∂M by some Ricci-flat
metric on M . In this setting, rigidity corresponds to the local injectivity of an
operator sending the metrics on M to the metrics on ∂M . In dimension 3, this
would be a part of the classical result (see [Nir53]) that metrics with curvature
K > 0 on S2 can be realized as induced by immersions into R3. This circle of ideas
is illustrated in [Sch98].

The first point is to understand what an umbilic hypersurface in an Einstein
manifold is. By definition, if N is a Riemannian manifold and S is a hypersur-
face, then S is umbilic if, at each point s ∈ S, II is proportional to I, with a
proportionality constant λ(s) depending on s. Now

Remark 2. If N is Einstein, then λ is constant on each connected component of S.

The next step is an inequality concerning the integral of the mean curvature
squared.

Proposition 2. Let (M, g) be an Einstein manifold with boundary, with scalar
curvature S. Call S the scalar curvature of (∂M, g|∂M ). Then the mean curvature
H = tr(II) of ∂M satisfies

S

m− 1
− S

m + 1
≤ H2

m

with equality if and only if ∂M is umbilic.

Proposition 2 and Theorem 4 lead to the proof of Lemma 1. The key point
is that by Proposition 2, H2 is pointwise minimal when the boundary is umbilic,
while Theorem 4 shows that the integral of H is constant. The boundary therefore
has to remain umbilic in an Einstein variation which vanishes on the boundary.
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