The special Schubert calculus is real

Author:
Frank Sottile

Journal:
Electron. Res. Announc. Amer. Math. Soc. **5** (1999), 35-39

MSC (1991):
Primary 14P99, 14N10, 14M15, 14Q20; Secondary 93B55

DOI:
https://doi.org/10.1090/S1079-6762-99-00058-X

Published electronically:
April 1, 1999

MathSciNet review:
1679451

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Schubert calculus of enumerative geometry is real, for special Schubert conditions. That is, for any such enumerative problem, there exist real conditions for which all the *a priori* complex solutions are real.

- C. I. Byrnes,
*Pole assignment by output feedback*, Three decades of mathematical system theory, Lect. Notes Control Inf. Sci., vol. 135, Springer, Berlin, 1989, pp. 31–78. MR**1025786**, DOI https://doi.org/10.1007/BFb0008458 - P. Dietmaier,
*The Stewart-Gough platform of general geometry can have 40 real postures*, in Advances in Robot Kinematics: Analysis and Control, Kluwer Academic Publishers, 1998, pp. 1–10. - D. Eisenbud and J. Harris,
*Divisors on general curves and cuspidal rational curves*, Invent. Math.**74**(1983), no. 3, 371–418. MR**724011**, DOI https://doi.org/10.1007/BF01394242 - J.-C. Faugère, F. Rouillier, and P. Zimmermann,
*Private communication*. 1998. - William Fulton,
*Introduction to intersection theory in algebraic geometry*, CBMS Regional Conference Series in Mathematics, vol. 54, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1984. MR**735435** - W. Fulton,
*Young Tableaux*, Cambridge University Press, 1997. - Phillip Griffiths and Joseph Harris,
*Principles of algebraic geometry*, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR**507725** - W. V. D. Hodge and D. Pedoe,
*Methods of Algebraic Geometry*, vol. II, Cambridge University Press, 1952. - B. Huber, F. Sottile, and B. Sturmfels,
*Numerical Schubert calculus*. J. Symb. Comp., 26 (1998), pp. 767–788. - Felice Ronga, Alberto Tognoli, and Thierry Vust,
*The number of conics tangent to five given conics: the real case*, Rev. Mat. Univ. Complut. Madrid**10**(1997), no. 2, 391–421. MR**1605670** - Joachim Rosenthal and Frank Sottile,
*Some remarks on real and complex output feedback*, Systems Control Lett.**33**(1998), no. 2, 73–80. MR**1607809**, DOI https://doi.org/10.1016/S0167-6911%2897%2900122-9 - F. Sottile,
*Enumerative geometry for real varieties*, in Algebraic Geometry, Santa Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison, eds., vol. 62, Part 1 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1997, pp. 435–447. - Frank Sottile,
*Enumerative geometry for the real Grassmannian of lines in projective space*, Duke Math. J.**87**(1997), no. 1, 59–85. MR**1440063**, DOI https://doi.org/10.1215/S0012-7094-97-08703-2 - Frank Sottile,
*Real enumerative geometry and effective algebraic equivalence*, J. Pure Appl. Algebra**117/118**(1997), 601–615. Algorithms for algebra (Eindhoven, 1996). MR**1457857**, DOI https://doi.org/10.1016/S0022-4049%2897%2900029-7 - F. Sottile,
*Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro*. MSRI preprint # 1998-066. For an archive of computations and computer algebra scripts, see http://www.math.wisc.edu/~sottile/pages/shapiro/index.html, 1998. - J. Verschelde,
*Numerical evidence of a conjecture in real algebraic geometry*. MSRI preprint # 1998-064, 1998.

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
14P99,
14N10,
14M15,
14Q20,
93B55

Retrieve articles in all journals with MSC (1991): 14P99, 14N10, 14M15, 14Q20, 93B55

Additional Information

**Frank Sottile**

Affiliation:
Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720

Address at time of publication:
Department of Mathematics, University of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706-1388

MR Author ID:
355336

ORCID:
0000-0003-0087-7120

Keywords:
Schubert calculus,
enumerative geometry,
Grassmannian,
pole placement problem

Received by editor(s):
December 20, 1998

Published electronically:
April 1, 1999

Additional Notes:
MSRI preprint # 1998-067.

Research supported by NSF grant DMS-9701755.

Communicated by:
Robert Lazarsfeld

Article copyright:
© Copyright 1999
American Mathematical Society