On Bojarski’s index formula for nonsmooth interfaces
Author:
Marius Mitrea
Journal:
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 40-46
MSC (1991):
Primary 58G10, 42B20; Secondary 34L40, 30D55
DOI:
https://doi.org/10.1090/S1079-6762-99-00060-8
Published electronically:
April 6, 1999
MathSciNet review:
1679452
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Let $D$ be a Dirac type operator on a compact manifold ${\mathcal {M}}$ and let $\Sigma$ be a Lipschitz submanifold of codimension one partitioning ${\mathcal {M}}$ into two Lipschitz domains $\Omega _{\pm }$. Also, let ${\mathcal {H}}^{p}_{\pm }(\Sigma ,D)$ be the traces on $\Sigma$ of the ($L^{p}$-style) Hardy spaces associated with $D$ in $\Omega _{\pm }$. Then $({\mathcal {H}}^{p}_{-}(\Sigma ,D),{\mathcal {H}}^{p}_{+}(\Sigma ,D))$ is a Fredholm pair of subspaces for $L^{p}(\Sigma )$ (in Kato’s sense) whose index is the same as the index of the Dirac operator $D$ considered on the whole manifold ${\mathcal {M}}$.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- B. Boyarski, An abstract problem of linear conjugation and Fredholm pairs of subspaces, Differential and integral equations. Boundary value problems (Russian), Tbilis. Gos. Univ., Tbilisi, 1979, pp. 45–60 (Russian). MR 589182
- Bernhelm Booss and Krzysztof Wojciechowski, Desuspension of splitting elliptic symbols. II, Ann. Global Anal. Geom. 4 (1986), no. 3, 349–400. MR 910550, DOI 10.1007/BF00128052
- Bernhelm Booß-Bavnbek and Krzysztof P. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233386, DOI 10.1007/978-1-4612-0337-7
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157–189 (French). MR 744071, DOI 10.24033/asens.1469
- John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. MR 1130821, DOI 10.1017/CBO9780511611582
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Carlos E. Kenig, Weighted $H^{p}$ spaces on Lipschitz domains, Amer. J. Math. 102 (1980), no. 1, 129–163. MR 556889, DOI 10.2307/2374173
- Chun Li, Alan McIntosh, and Stephen Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), no. 3, 455–481. MR 1157291, DOI 10.1090/S0894-0347-1992-1157291-5
- Yves Meyer and R. R. Coifman, Ondelettes et opérateurs. III, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1991 (French). Opérateurs multilinéaires. [Multilinear operators]. MR 1160989
- Marius Mitrea, Clifford wavelets, singular integrals, and Hardy spaces, Lecture Notes in Mathematics, vol. 1575, Springer-Verlag, Berlin, 1994. MR 1295843, DOI 10.1007/BFb0073556
- M. Mitrea, Generalized Dirac operators on nonsmooth manifolds and Maxwell’s equations, in prepartion (1998).
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Liviu I. Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math. J. 80 (1995), no. 2, 485–533. MR 1369400, DOI 10.1215/S0012-7094-95-08018-1
- Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1121019, DOI 10.1007/978-1-4612-0431-2
- N. Aronszajn, A unique continuation theorem for solutions of elliptic differential equations or inequalities of second order, Journ. de Math. 36 (1957), 235–249.
- B. Bojarski, The abstract linear conjugation problem and Fredholm pairs of subspaces, In Memoriam I. N. Vekua, Tbilisi University, Tbilisi, 1979, 45–60.
- B. Booß-Bavnbek and K. P. Wojciechowski, Desuspension of splitting elliptic symbols II, Ann. Global. Anal. Geom. 4 (1986), 349–400.
- B. Booß-Bavnbek and K. P. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston-Basel-Berlin, 1993.
- R. Coifman, A. McIntosh and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes Lipschitziennes, Ann. of Math. 116 (1982), 361–387.
- H. O. Cordes, Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 11 (1956), 239–258.
- G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. E.N.S. 17 (1984), 157–189.
- J. Gilbert and M. A. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics, Vol. 26, 1991.
- T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1976.
- C. E. Kenig, Weighted $H^{p}$ spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129–163.
- C. Li, A. McIntosh and S. Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), 455–481.
- Y. Meyer and R. R. Coifman, Ondelettes et opérateurs, Vol. III, Hermann, editeurs des sciences et des arts, Paris, 1990.
- M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathematics No. 1575, Springer-Verlag, Berlin, New York, 1994.
- M. Mitrea, Generalized Dirac operators on nonsmooth manifolds and Maxwell’s equations, in prepartion (1998).
- N. I. Mushelišvili, Singular Integral Equations, English translation of the 1946 edition: Noordhoff, Groningen, 1953.
- L. Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math. J. 80 (1995), 485-533.
- M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
58G10,
42B20,
34L40,
30D55
Retrieve articles in all journals
with MSC (1991):
58G10,
42B20,
34L40,
30D55
Additional Information
Marius Mitrea
Affiliation:
Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211
MR Author ID:
341602
ORCID:
0000-0002-5195-5953
Email:
marius@math.missouri.edu
Received by editor(s):
December 2, 1998
Published electronically:
April 6, 1999
Additional Notes:
Partially supported by NSF
Communicated by:
Stuart Antman
Article copyright:
© Copyright 1999
American Mathematical Society