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Abstract. Let D be a Dirac type operator on a compact manifold M and
let Σ be a Lipschitz submanifold of codimension one partitioningM into two
Lipschitz domains Ω±. Also, let Hp

±(Σ, D) be the traces on Σ of the (Lp-

style) Hardy spaces associated with D in Ω±. Then (Hp
−(Σ, D),Hp

+(Σ, D)) is

a Fredholm pair of subspaces for Lp(Σ) (in Kato’s sense) whose index is the
same as the index of the Dirac operator D considered on the whole manifold
M.

1. Introduction and statement of results

Let Σ be a rectifiable curve in R2 ≡ C which divides the plane into two domains,
denoted by Ω±. Corresponding to these, introduce the Hardy spaces on Σ,

Hp
±(Σ) := {u|Σ; ∂̄u = 0 in Ω±, N (u) ∈ Lp(Σ)}, 1 < p < ∞,(1.1)

where ∂̄ is the usual Cauchy-Riemann operator and N is the so-called nontangential
maximal operator. More concretely, for x ∈ Σ, N (u)(x) := sup {|u(y)|; y ∈ γ±(x)},
where γ±(x) ⊆ Ω± are suitable nontangential approach regions; cf., e.g., [Ke]. A
classical result in complex and harmonic analysis is the Plemelj-Calderón decom-
position

Lp(Σ) = Hp
−(Σ)⊕Hp

+(Σ), 1 < p < ∞,(1.2)

valid under suitable assumptions on Σ. Among other things, (1.2) is equivalent to
Σ being Ahlfors regular and to the Lp-boundedness of the (principal value) Cauchy
integral operator on Σ. See [Da] and [MeCo] for a more detailed discussion in this
regard.

The decomposition (1.2) can also be interpreted as a transmission problem for ∂̄
and, as such, has intimate connections with the classical Riemann-Hilbert problem
in the plane. See [Mu] for a treatment from the classical point of view of the latter.
Extensions of (1.2) to the higher dimensional setting can be done in the Clifford
algebra setting. In this case, ∂̄ is replaced by a Dirac operator and Σ can be taken
to be a Lipschitz hypersurface in Rm. This has been worked out in [LMcS], [GM],
[Mi].

Let M be a smooth, connected, compact, Riemannian manifold without bound-
ary, and let E ,F → M be two smooth Hermitian vector bundles. We assume
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that all metric structures have coefficients in the Sobolev space H2,r for some
r > m := dimM. Our aim is to investigate the analogue of (1.2) when Σ is a
Lipschitz submanifold of codimension one of M and D : E → F is a first-order, el-
liptic differential operator whose coefficients have a limited amount of smoothness.
Specifically, we assume that

the top coefficients of D belong to H2,r,(1.3)

the coefficients of the zero order part of D belong to H1,r,(1.4)

for some r > m. Under the current assumptions, D∗, the adjoint of D, also satisfies
(1.3)–(1.4).

The major analytical hypothesis we make on the differential operator is that

D and D∗ have the unique continuation property.(1.5)

Recall that D is said to have the unique continuation property if the following
holds: u ∈ H1,2(M, E) and Du = 0 implies that either u ≡ 0 or supp u = M. The
hypothesis (1.5) is natural inasmuch as it is automatically satisfied (for r = ∞) by
Dirac type operators; cf. [Ar], [Co].

Consider now a Lipschitz subdomain Ω of M and set Σ := ∂Ω, Ω+ := Ω,
Ω− := M\ Ω̄. Also, for 1 < p < ∞, introduce the Hardy type spaces

Hp(Ω±, D) := {u : Ω± → E ; Du = 0 in Ω±, N (u) ∈ Lp(Σ)},(1.6)

and

Hp
±(Σ, D) := {u|Σ; u ∈ Hp(Ω±, D)}.(1.7)

Here, the trace u|Σ is considered in the nontangential pointwise sense, i.e. for x ∈ Σ,
u|Σ(x) = lim u(y) as y → x and y ∈ γ±(x). That this makes sense a.e. on Σ will
follow a posteriori from our main result. Preparatory to stating this theorem we
need one more definition. Recall from [Ka] that (A, B) is called a Fredholm pair
for the Banach space X if A, B are closed subspaces of X so that

dim (A ∩B) < ∞, dim (X/(A + B)) < ∞.(1.8)

In this case, one defines Index (A, B) := dim (A ∩B) − dim (X/(A + B)). Finally,
recall the smoothness index r from (1.3)–(1.4).

Theorem 1.1. Let the vector bundles E ,F → M, and the differential operator
D : E → F satisfy the above hypotheses. Then, for any Lipschitz submanifold Σ of
codimension one in M (arising as the boundary of a Lipschitz subdomain of M),
the Hardy spaces

(Hp
−(Σ, D),Hp

+(Σ, D)
)

are a Fredholm pair for Lp(Σ, E) and

Index
(Hp

−(Σ, D),Hp
+(Σ, D)

)
= Index

(
D : H1,p(M, E) → Lp(M,F)

)
(1.9)

for each 1 < p < ∞. Moreover, for the same range of p’s,
Lp(Σ, E) = Hp

−(Σ, D)⊕Hp
+(Σ, D)

⇔ D : H1,p(M, E) → Lp(M,F) is an isomorphism.
(1.10)

Thus, in the present context, the analogue of (1.2) is valid only modulo finite
dimensional linear spaces. Note that while Hp

±(Σ, D) live on (the lower dimensional
manifold) Σ, they originate from complementary “semi-global” data on M.

While Theorem 1.1 can be naturally seen as a statement about a transmission
boundary problem for D across the interface Σ, there are also clear connections
with more classical aspects of index theory. In fact, a version of Theorem 1.1
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corresponding to p = 2 in the smooth case has been first conjectured by B. Bojarski
in mid 1970’s (cf. [Bo]) in an effort to produce a surgery type proof of the celebrated
Atyah-Singer index theorem. Subsequently, Bojarski’s conjecture has been proved
by B. Booß-Bavnbek and K. Wojciechowski in mid 1980’s ([BBW1]). Other recent
extensions (involving the spectral flow and the Maslov index) can be found in [Ni];
see also the broader account in [BBW2].

The primary interest in Theorem 1.1 stems from the low regularity assumptions
we make on the metrics, the coefficients of D and the interface Σ. As is well known in
PDE, the character of the problem at hand changes once irregularities are allowed.
Among other things, the approach in [BBW1], [BBW2] makes substantial use of
the symbolical calculus for pseudodifferential operators and, hence, does not readily
extend to the nonsmooth case we consider here. Our solution, mimicking complex-
variable type arguments, uses harmonic analysis tools such as Calderón-Zygmund
theory for singular integral operators and nontangential function estimates. Some
of the basic steps are sketched below.
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2. Outline of proof

In this section we indicate the main steps involved in the proof of Theorem 1.1;
the missing details will appear elsewhere.

Step I. Fix V ∈ C∞(M), a scalar-valued, positive, non-identically zero function
with Ω̄∩supp V = ∅ and consider the second-order, formally self-adjoint differential
operator L̃ := D∗D + V . Then, invoking (1.5), it follows that L̃ : H1,2(M, E) →
H−1,2(M, E) is invertible. Consider Ẽ ∈ D′(M×M, E ⊗E) the Schwartz kernel of
L̃−1 and set

Γ̃(x, y) := (Idx ⊗ D̄y)Ẽ(x, y), Γ̃ ∈ D′(M×M, E ⊗ F),(2.1)

where D̄u := [Duc]c and [...]c denotes complex conjugation. Next, for arbitrary
sections f : ∂Ω → E we introduce the Cauchy type operator

C̃f(x) :=
∫

∂Ω

〈Γ̃(x, y), iσ(D; ν(y))f(y)〉y dS(y), for x ∈ Ω.(2.2)

Here dS stands for the surface measure on ∂Ω, ν ∈ T ∗M is the outward unit
conormal defined a.e. on Σ = ∂Ω, and we denote by σ(P ; ξ) the principal symbol of
an operator P at ξ ∈ T ∗M. Two properties exhibited by this operator and which
are of importance for us are as follows. First, for each 1 < p < ∞,

‖N (C̃f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω,E),(2.3)

uniformly for f ∈ Lp(∂Ω, E). Second,

there exists C̃f |∂Ω (nontangentially) pointwise a.e.(2.4)

for any f ∈ Lp(∂Ω, E), 1 < p < ∞. These are seen by extending the main results
on the Euclidean Cauchy operator on Lipschitz curves in [CMcM] to the present
context (cf. [Mi2]).
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Several notable consequences at the level of Hardy spaces follow more or less
directly from these. To begin with, (2.4), integrations by parts and a weak-star
argument yield the Cauchy reproducing formula

u = C̃(u|∂Ω) in Ω, ∀u ∈ Hp(Ω, D).(2.5)

The existence of the nontangential boundary trace u|∂Ω is a byproduct of the proof
of (2.5).

Going further, (2.3) and (2.5) imply the following Lp-version of the maximum
principle:

‖u‖Lp(∂Ω,E) ≈ ‖N (u)‖Lp(∂Ω), uniformly for u ∈ Hp(Ω, D).(2.6)

As a corollary, Hp
±(Σ, D) are closed subspaces of Lp(Σ, E) for any 1 < p < ∞.

Step II. Consider two positive, scalar-valued functions V± ∈ C∞(M), non-identi-
cally zero and such that Ω̄±∩supp V± = ∅. Also, set L± := DD∗+V±. Once again,
from (1.5) it follows that L± : H1,2(M,F) → H−1,2(M,F) are invertible, and we
denote by E± ∈ D′(M×M,F ⊗ F) the Schwartz kernels of L−1

± . Also, introduce
Γ±(x, y) := (D∗

x ⊗ Idy)E±(x, y), Γ± ∈ D′(M×M, E ⊗ F) and the Cauchy type
operators acting on arbitrary sections f : ∂Ω → E by

C±f(x) :=
∫

∂Ω

〈Γ±(x, y), iσ(D; ν(y))f(y)〉y dS(y), for x /∈ ∂Ω,(2.7)

and

C±f(x) := p.v.
∫

∂Ω

〈Γ±(x, y), iσ(D)(y, ν(y))f(y)〉y dS(y), for x ∈ ∂Ω.(2.8)

Here “p.v.” indicates that the integral is taken in the principal value sense, i.e.
by removing geodesic balls (with respect to some smooth background Riemannian
metric).

There are several properties of these operators which are going to be of impor-
tance for us in the sequel. First, C± : Lp(∂Ω, E) → Hp(Ω±, D) are bounded for
each 1 < p < ∞, i.e.

DC±f = 0 in Ω± and ‖N (C±f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω,E), ∀f ∈ Lp(∂Ω, E).(2.9)

Second, for all f ∈ Lp(∂Ω, E),

C+f |∂Ω± = (± 1
2I + C+)f, C−f |∂Ω± = (± 1

2I + C−)f a.e. on Σ,(2.10)

and, third,

C± are bounded on Lp(Σ, E), 1 < p < ∞.(2.11)

One immediate conclusion is that

Im
(± 1

2I + C±; Lp(Σ, E)
) ⊆ Hp

±(Σ, D), 1 < p < ∞.(2.12)

Going further, a key observation is that the main singularity in Γ±(x, y) is inde-
pendent of V±. In particular, if m := dimM, then

Γ+(x, y)− Γ−(x, y) = O(|x − y|−(m−1−ε))

for some ε > 0. Hence, the integral operator K := C+ − C− is compact from
Lp(Σ, E) into itself, 1 < p < ∞. Now, since I + K = (1

2I + C+) − (− 1
2I + C−), it

follows from (2.12) that

Im (I + K; Lp(Σ, E)) ⊆ Hp
+(Σ, D) +Hp

−(Σ, D).(2.13)
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Consequently, since I + K is Fredholm, it follows that Hp
+(Σ, D) + Hp

−(Σ, D) is
closed and has finite codimension in Lp(Σ, E).

Step III. We shall now need the fact that

D : H1,p(M, E) → Lp(M,F)(2.14)

is a Fredholm operator for 1 < p < ∞. Furthermore, for 1 < p < ∞,

u ∈ Lp(M, E) and Du = 0 =⇒ u ∈ H1,p ∩ Cα for some α > 0.(2.15)

These are proved by implementing a symbol decomposition to the effect that D =
D# + Db + B with

D# ∈ OPC∞S1
1,δ, Db ∈ OPC1S1−δ

1,δ , B ∈ L∞(M, Hom(E ,F)),(2.16)

for some 0 < δ < 1. Now (2.14)–(2.15) follow from the existence of a parametrix for
D# and mapping properties for pseudodifferential operators whose symbols have a
limited amount of smoothness. See, e.g., [Ta] for references and a general discussion
of such issues.

Now, if f ∈ Hp
−(Σ, D) ∩Hp

+(Σ, D), then there exist (unique, by (2.6)) functions
u± ∈ Hp(Ω±, D) so that u+|Σ = f = u−|Σ. Set u := u− in Ω− and u := u+ in
Ω+, u ∈ Lp(M, E) so that u ∈ Ker

(
D : H1,p(M, E) → Lp(M,F)

)
. Consequently,

the (just defined) assignment f 7→ u is linear, well defined and, by (2.6), one-to-
one from Hp

−(Σ, D)∩Hp
+(Σ, D) into Ker

(
D : H1,p(M, E) → Lp(M,F)

)
. Invoking

(2.15), it is clear that this is also onto. Hence,

dim
(Hp

−(Σ, D) ∩Hp
+(Σ, D)

)
= dim Ker

(
D : H1,p(M, E) → Lp(M,F)

)
< ∞.

(2.17)

At this point, the first part in Theorem 1.1 follows. There remain (1.9) and (1.10),
which require refining further the analysis carried out so far. This makes the object
of the next couple of steps.

Step IV. Let [...]◦ stand for the annihilator of [...] under the pairing (u, v) =∫
Σ〈u, vc〉 dS. We shall prove that the mapping

Φ : Hp
±(Σ, D∗) → [Hq

±(Σ, D)
]◦

, Φ(u) := iσ(D∗; ν)u, 1/p + 1/q = 1,(2.18)

is an isomorphism for any 1 < p < ∞. Note that, in particular, this entails the
orthogonal decompositions

L2(Σ, E) = H2
±(Σ, D)⊕ iσ(D∗; ν)H2

±(Σ, D∗).(2.19)

Indeed, Φ is well defined as an integration by parts shows and is one-to-one because
of the ellipticity of D. There remains the fact that Φ is also onto.

We approach this problem as follows. The first observation is that there is no
loss of generality in assuming that E = F and D = D∗, the adjoint of D. This is
seen by “symmetrizing” the operator D, i.e. by working with

D :=
(

0 D
D∗ 0

)
on F ⊕ E ,(2.20)

since the original claim can be ultimately recovered from the corresponding one for
D. Next, we produce an invertible perturbation D̃ of D. More specifically, there
exists a symmetric, smoothing operator P ∈ L−∞ supported away from Ω̄ so that
D̃ := D − P is invertible, say, from H1,2(M, E) into L2(M, E). This is done using
elementary linear algebra and (1.5).
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Denote by Θ(x, y) the Schwartz kernel of D̃−1 and introduce the corresponding
Cauchy integral operators

CDf(x) :=
∫

∂Ω

〈Θ(x, y), iσ(D; ν)(y)f(y)〉y dS(y), x ∈ Ω,(2.21)

CDf(x) := p.v.
∫

∂Ω

〈Θ(x, y), iσ(D; ν)(y)f(y)〉y dS(y), x ∈ ∂Ω.(2.22)

The point is that CD satisfies conditions similar to (2.9), (2.10) and (2.11). As a
consequence, we have

Im
(

1
2I + CD; Lp(Σ, E)

)
= Hp

+(Σ, D) = Ker
(− 1

2I + CD; Lp(Σ, E)
)
,(2.23)

for any 1 < p < ∞. One final property we want to single out is that the adjoint of
CD acting on Lp(Σ, E) is

(CD)∗ = −iσ(D∗; ν)CD∗ [iσ(D∗; ν)]−1 on Lq(Σ, E), 1/p + 1/q = 1.(2.24)

Here CD∗ is the singular integral operator constructed analogously to CD but with
D∗ replacing D. In particular, (2.24) remains valid with D replaced by D∗. Thus,
from (2.24) and the second equality in (2.23), we have

Ker
(

1
2I + (CD)∗; Lp(Σ, E)

)
= Ker

(
1
2I − iσ(D∗; ν)CD∗ [iσ(D∗; ν)]−1; Lp(Σ, E)

)
= iσ(D∗; ν)Ker

(
1
2I − CD∗ ; Lp(Σ, E)

)
= iσ(D∗; ν)Hp

+(Σ, D∗).

(2.25)

Returning to the study of Φ in (2.18), we may write

Im Φ = iσ(D∗; ν)Hp
+(Σ, D∗) = Ker

(
(1
2I + CD)∗; Lp(Σ, E)

)
=

[
Im

(
1
2I + CD; Lq(Σ, E)

)]◦ =
[Hq

+(Σ, E)
]◦

.
(2.26)

Hence Φ in (2.18) is onto also.

Step V. Here are the last details in the proof of (1.9)–(1.10). We only need to
combine (2.15), (2.17) and the fact that the mapping (2.18) is an isomorphism in
order to write

dim Ker (D∗; Lq(M,F)) = dim Ker (D∗; H1,q(M,F))

= dim
(Hq

−(Σ, D∗) ∩Hq
+(Σ, D∗)

)
= dim

(Hp
−(Σ, D)◦ ∩Hp

+(Σ, D)◦
)

= dim
(Hp

−(Σ, D) +Hp
+(Σ, D)

)◦
,

(2.27)

where 1/p + 1/q = 1. From this, the fact that Hp
−(Σ, D) +Hp

+(Σ, D) is closed in
Lp(Σ, E) and (2.17), the index formula (1.9) follows.

Finally, (1.10) is seen from (2.17) and (2.27). This completes the proof of the
theorem.
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