Metric minimizing surfaces
Author:
Anton Petrunin
Journal:
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 47-54
MSC (1991):
Primary 53C21
DOI:
https://doi.org/10.1090/S1079-6762-99-00059-1
Published electronically:
April 8, 1999
MathSciNet review:
1679453
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Consider a two-dimensional surface in an Alexandrov space of curvature bounded above by $k$. Assume that this surface does not admit contracting deformations (a particular case of such surfaces is formed by area minimizing surfaces). Then this surface inherits the upper curvature bound, that is, this surface has also curvature bounded above by $k$, with respect to the intrinsic metric induced from its ambient space.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- C. Mese, The curvature of minimal surfaces in singular spaces, to appear in Comm. Anal. Geom.
- Igor Nikolaev, The tangent cone of an Aleksandrov space of curvature $\leq K$, Manuscripta Math. 86 (1995), no. 2, 137–147. MR 1317739, DOI 10.1007/BF02567983
- A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), no. 1, 123–148. MR 1601854, DOI 10.1007/s000390050050
- Ju. G. Rešetnjak, Non-expansive maps in a space of curvature no greater than $K$, Sibirsk. Mat. Ž. 9 (1968), 918–927 (Russian). MR 0244922
- V. A. Šarafutdinov, Radius of injectivity of a complete open manifold of nonnegative curvature, Dokl. Akad. Nauk SSSR 231 (1976), no. 1, 46–48 (Russian). MR 0451172
- S. Z. Šefel′, On saddle surfaces bounded by a rectifiable curve, Dokl. Akad. Nauk SSSR 162 (1965), 294–296 (Russian). MR 0179700
- S. Z. Šefel′, On the intrinsic geometry of saddle surfaces, Sibirsk. Mat. Ž. 5 (1964), 1382–1396 (Russian). MR 0175046
- A.D. Aleksandrov, Ruled surfaces in metric spaces, Vestnik LGU Ser. Mat., Mech., Astr. 1957, vyp. 1, 5-26. (Russian)
- M. Gromov, Structures métriques pour les variétés riemanniennes, J. Lafontaine and P. Pansu, eds., CEDIC, Paris, 1981.
- C. Mese, The curvature of minimal surfaces in singular spaces, to appear in Comm. Anal. Geom.
- I. Nikolaev, The tangent cone of an Aleksandrov space of curvature $\leq K$, Manuscr. Math. 86 (1995), No. 2, 137-147.
- A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), No. 1, 123-148.
- Yu.G. Reshetniak, Non-expansive maps in a space of curvature no greater than $K$, Sibirskii Mat. Zh. 9 (1968), 918-928; English transl., Siberian Math. J. 9 (1968), 683-689.
- V.A. Sharafutdinov, The radius of injectivity of a complete open manifold of nonnegative curvature, Doklady Akad. Nauk SSSR 231 (1976), No. 1, 46-48.
- S.Z. Shefel(Šefel${}’$), On saddle surfaces bounded by a rectifiable curve, Doklady Akad. Nauk SSSR 162 (1965), 294-296; English transl. in Soviet Math. Dokl. 6 (1965).
- S.Z. Shefel, On intrinsic geometry of saddle surfaces, Sibirsk. Mat. Zh. 5 (1964), 1382-1396. (Russian)
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
53C21
Retrieve articles in all journals
with MSC (1991):
53C21
Additional Information
Anton Petrunin
Affiliation:
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 22-26, D-04103 Leipzig, Germany
MR Author ID:
335143
ORCID:
0000-0003-3053-5172
Email:
petrunin@mailhost.mis.mpg.de
Received by editor(s):
September 14, 1998
Published electronically:
April 8, 1999
Additional Notes:
The main part of this note was prepared when the author had a postdoctoral fellowship at MSRI (Berkeley).
Communicated by:
Dmitri Burago
Article copyright:
© Copyright 1999
American Mathematical Society