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METRIC MINIMIZING SURFACES
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Abstract. Consider a two-dimensional surface in an Alexandrov space of
curvature bounded above by k. Assume that this surface does not admit
contracting deformations (a particular case of such surfaces is formed by area
minimizing surfaces). Then this surface inherits the upper curvature bound,
that is, this surface has also curvature bounded above by k, with respect to
the intrinsic metric induced from its ambient space.

Introduction

Let M be a Riemannian manifold and S a smooth surface in M . One can write
a Gaussian formula for the curvature of S,

KS = KM + KG,

where KS is the curvature of S, KM the curvature of M in the same direction, and
KG the Gaussian curvature in the same direction. Two important corollaries arise.
First, if M has positive curvature and S is a convex hypersurface, then the intrinsic
metric on S has positive curvature. Second, if M has negative curvature and S
is a two-dimensional saddle surface (i.e., the principal curvatures for any normal
direction, do not have the same sign at any point), then the intrinsic metric on S
has negative curvature.

All notions in these corollaries have natural sense in Alexandrov’s geometry
(one can define convex surface, saddle surface (see below) and curvature bounded
below and above for general length-metric space). Therefore one can ask if the
generalization of such results is true for Alexandrov spaces. Both of these problems
are open so far.

Here we give a proof of a special case of the second problem. Roughly speaking,
we prove that upper bound on curvature is inherited by a surface in an Alexandrov
space with curvature ≤ k, if this surface does not admit a contracting deformation
(this is stronger than just being saddle; see below). The proof uses the well-known
idea of approximating our metric by a polyhedral one, but there is one funny point
below, that is the place where we consider an approximation of a metric on a surface
by a metric on a graph (it was a real surprise for me that this worked).

I thank the anonymous referee for invaluable help in making this paper readable,
as well as one of the editors for bringing the thesis of C. Mese to my attention.
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1. Definitions and notation

Let X , Y and Z be compact metric spaces.

1.1. Notation. We will write X − ε ≤ Y or X ≤ Y + ε if there is a mapping
f : X → Y such that |xx′|X ≤ |f(x)f(x′)|Y + ε.

It is easy to see that this is a transitive relation in the following sense:
If X − ε ≤ Y and Y − ε′ ≤ Z then X − ε− ε′ ≤ Z.

1.2. Remark. It is easy to see that in this notation if X is ε-close to Y in the
Gromov-Hausdorff sense (see [GLP]), then X − 2ε ≤ Y and Y − 2ε ≤ X . On the
other hand, from the old folklore lemma which says that if X ≥ Y and Y ≥ X ,
then X is isometric to Y (a careful proof can be found in [P, 1.2]), it is easy to see
that if Xn − εn ≤ Y and Y − εn ≤ Xn and εn → 0, then Xn

GH→ Y . Therefore if
one defines the metric

d′(X, Y ) = min{ε; X − ε ≤ Y and Y − ε ≤ X},
then this new metric will define the same topology on the set of compact metric
spaces as the standard Gromov-Hausdorff metric.

1.3. Now M is a metric space.

Definition. A function f : U ⊂ M → R is called convex if for any geodesic γ ⊂ U
with length-parameter, f ◦ γ is convex.

Definition. We denote by D a closed disk in R2. A continuous mapping s : D →
M is called saddle if for any convex function f on M and any subset U ⊂ D

sup
x∈U

f(x) = sup
x∈∂U

f(x).

Remark. The definition of saddle surfaces in R3 used by Shefel is that a plane
cannot cut a cap from the surface. If one applies the definition given above to
affine functions, it is easily seen that the two definitions are equivalent for the case
M = R3.

Notation. For a mapping s : D → M define a pseudometric on D by |xy| =
|s(x)s(y)|M . Let |xy|s, x, y ∈ D, be the infimum of | ∗ ∗|-length of curves in D
connecting x and y. We will call | ∗ ∗|s the pull-back metric (generally speaking, it
is a pseudometric, i.e. it is possible to have |xy|s = 0 for x 6= y, but we call it a
metric anyway).

Definition. A continuous mapping s : D → M is called metric minimizing if
the pull-back metric is compact and there is no mapping s′ : D → M such that
s′|∂D ≡ s|∂D, |xx′|s′ ≤ |xx′|s for any two points x, x′ ∈ D, and the inequality is
strict for at least one pair.

In some sense it is the weakest “minimal”-like property one could express in
terms of the intrinsic metric of a surface.

2. Results and proofs

2.1. Conjecture. (Probably due to Shefel.) Let M be an Alexandrov space with
curvature ≤ 0. Then any saddle mapping s : D → M gives a pull-back metric on
D with curvature ≤ 0.
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This conjecture was proved by S. Shefel ([She1] and [She2]) in two special cases:
first for M = R2, and second for M = R3 (the last one with the additional assump-
tion that s describe a surface which is locally a graph of a function). Aleksandrov
[A] proved that the upper bound on curvature is inherited by ruled surfaces in an
Alexandrov space with curvature ≤ k. C. Mese in her thesis proved this conjecture
for minimal surfaces in Alexandrov spaces (see [M]).

Now look what I can do:

2.2. Theorem. Let M be a locally compact Alexandrov space with curvature ≤ k or
a complete Alexandrov space with curvature ≤ k ≤ 0. Then any metric minimizing
mapping s : D → M gives a pull-back metric on D with curvature ≤ k.

Let us prove first that this is really a special case of the Conjecture.

2.3. Proposition. Any metric minimizing mapping in an Alexandrov space with
curvature ≤ k is a saddle mapping.

Remark. The author does not know a counterexample to the conjecture that any
saddle mapping in an Alexandrov space with curvature ≤ k and rectifiable s◦∂D is
metric minimizing. Therefore one can consider this Theorem as a way to approach
the Conjecture.

Proof of the Proposition. Let M be an Alexandrov space with curvature ≤ k and
s : D → M be metric minimizing. Assume there is a convex function f such that
f ◦ s admits a strict local maximum at C, C is compact and |C∂D|s > 0.

Direct application of Sharafutdinov retraction [Sha] for level surfaces of f in a
neighborhood of s(C) (this is an abstraction of deformation along gradient curves
in the smooth case) gives us a | ∗ ∗|s-nonexpanding deformation of s in an arbitrary
small neighborhood of C. ♠
Remark. The condition that our space be an Alexandrov space with curvature
≤ 0 is not necessary. In order to apply Sharafutdinov retraction it is enough that
our space have the first variation formula, i.e. one can define angle between two
geodesics which start from the same point such that the standard first variation
formula holds for distance functions.

2.4. Proof of the Theorem. Sections 2.4–2.8 will deal with the locally compact
case; in Section 2.9 the necessary extra work is done for complete negatively curved
Alexandrov spaces.

For the convenience of the reader I will consider only the case k = 0. The general
case requires only technical modifications.

Without loss of generality one can assume that ∂D is rectifiable in the pull-back
metric and Im(s) is inside some R0-domain (see [N]).

Let us construct a “formal” triangulation Γ in (D, | ∗ ∗|s) whose 1-skeleton with
intrinsic metric is ε-GH-close to (D, | ∗ ∗|s) and no side of any triangle is longer
than ε. “Formal” means that the sides in the triangulation can have overlapping
segments. Therefore triangles could be degenerate like the one shown in Figure 1.

Let us denote by Γ0, Γ1 the 0- and 1-skeleton of Γ.

2.5. Construction of Γ. (If you do believe in this, skip to 2.6.)
Let us consider a finite ν-net {ai} in (D, | ∗ ∗|s). Consider the minimal closed

curve γ ⊂ (D, | ∗ ∗|s) which surrounds all ai’s, and let us denote by Conv{ai} the
set of points surrounded by γ.
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First let us subdivide Conv{ai} into polyhedra with small diameters and perime-
ters. The steps of this subdivision are illustrated in Figure 2, in which subfigure I
shows the division into Ci with a net of 5 points.

For every ai consider the set

Ci = {x ∈ Conv{ai}; |xai| ≤ |xaj |}.
We can add to {ai} finitely many points on ∂ Conv{ai} to meet the following
property: if Cj ∩ ∂ Conv{ai} 6= ∅, then aj ∈ ∂ Conv{ai}.

Let us consider a fundamental domain in the universal covering C̃i of Ci,

Di = {x ∈ C̃i; |xãi| ≤ |xγ(ãi)| for any γ ∈ π1(Ci)}.
Mapping Di back to D, we obtain a map on Conv{ai} such that every “country” is
a disk. On every segment-border or point-border between countries choose a point
(“customs point”), including borders with the same country. (See II in Figure 2.)
Connect every “customs point” by a minimal geodesic with the “capital” (ai) of
every adjacent country (if it is a border between a country and itself, one has to
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consider two or more connections depending on how many pieces of this country
meet at this customs point). (See III in Figure 2.) Therefore we have cut Conv{ai}
into hexagons and quadrangles with perimeter ≤ 6ν and diameter ≤ 5ν. (The num-
ber of vertices of a polygon is even because, when we are going along its perimeter,
“capitals” and “customs points” will alternate. It is easy to see that the number
of capitals in one polygon is at most 3, since otherwise there must be some other
customs inside the polygon; therefore the total number of vertices is ≤ 6.)

It is easy to see that the “customs points” can be chosen so that the constructed
hexagons and quadrangles cover all of Conv{ai}.

Now let us remove the borders and connect each pair of the ai’s by a minimal
geodesic; we can easily do it to meet the rule: every two geodesics have either empty
intersection, or one-point intersection or one-segment intersection (including the
already constructed geodesics between capitals and customs points). This insures
that we obtain a finite graph. (See IV in Figure 2.)

We obtain a partition of Conv{ai} into polyhedra of perimeter ≤ 6ν and diameter
≤ 5ν. Indeed, every polygon of our graph is a result of finitely many cuts of a
hexagon or quadrangle along a geodesic, and the perimeter as well as the diameter
do not increase at any such step.

Now let us subdivide every polygon into triangles with the same vertices. (See
V in Figure 2.)

We obtain a triangulation of Conv{ai} in (D, | ∗ ∗|s). It is easy to show that the
1-skeleton of this triangulation is 8ν-close to (D, | ∗ ∗|s) in the sense of the d′ metric
(see 1.2).

Indeed, by mapping each point to a closest ai we have (D, |∗∗|s)−2ν ≤ Γ1. Now
the distance between any point of Γ1 (in its length-metric) and a closest element
of {ai} is less than 4ν (for 3ν/2 we can get from any point to the perimeter of
a polyhedron, for another 3ν/2 we can traverse the perimeter of the hexagon or
quadrangle, and after another ν we get a point from the ν-net). Therefore by
mapping every point of Γ1 to a closest (in the intrinsic metric of Γ1) point from
the ν-net we obtain that Γ1 − 8ν ≤ (D, | ∗ ∗|s). Therefore we obtain the needed
triangulation Γ for sufficiently small ν = ν(D, | ∗ ∗|s, ε) (see 1.2). ♠

2.6. One can naturally define the boundary of Γ (∂Γ).
Let us consider the image s(Γ0) ⊂ M and connect vertices which are connected

in Γ by geodesics in M . Call the new graph Γ̇. It is easy to see that Γ̇ ≤ Γ1.
Now let us consider a graph Γ̈ with the same combinatorial type, which minimizes

the total length of edges in the set of graphs such that every edge is less than or
equal to the corresponding edge of Γ̇, and with the same boundary as Γ̇.

Applying Arzelà-Ascoli arguments we conclude that such a graph exists. Obvi-
ously we have Γ̈ ≤ Γ̇.

2.7. Now let us consider a polyhedral metric on the triangulation, with edge
lengths given by those in Γ̈. Simply consider for any triangle in Γ̈ (which represent
a triangle in the triangulation) a model triangle in R2 and glue a triangulation
from them. Let it be C(Γ̈). It is easy to see that C(Γ̈)− 2ε ≤ Γ̈ because from the
construction every side of every triangle is not more than ε.

It is easy to construct a nonexpanding mapping of m : C(Γ̈) → M (by [R]) such
that m|Γ̈ =id. We can consider the pull-back metric on C(Γ̈).
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Therefore,

(C(Γ̈), | ∗ ∗|m)− 2ε ≤ C(Γ̈)− 2ε ≤ Γ̈ ≤ Γ̇ ≤ Γ1 ≤ (D, | ∗ ∗|s) + 2ε.

Hence

(C(Γ̈), | ∗ ∗|m) ≤ C(Γ̈) ≤ (D, | ∗ ∗|s) + 4ε.

As ε → 0 (again applying Arzelà-Ascoli arguments) we obtain a nonexpanding
mapping (D, | ∗ ∗|s) → M with the same boundary values as s. From the metric
minimizing property of s, this new mapping has exactly the same pull-back metric,
i.e.,

lim
ε→0

(C(Γ̈), | ∗ ∗|m) = (D, | ∗ ∗|s).
From the inequality above,

lim
ε→0

C(Γ̈) = (D, | ∗ ∗|s).
Therefore, the following Proposition finishes the proof.

2.8. Proposition. C(Γ̈) has nonpositive curvature.

Proof. Indeed, assume the contrary; then there is a vertex in C(Γ̈) with sum of
angles < 2π. Let us consider the space of directions Ωp(M) at this point. It follows
from [N, Theorem 1] that it is a CAT(1) space, and from the comparison inequality
we obtain that the directions of the edges at p form a broken geodesic with total
length l < 2π. By using Reshetniak’s theorem (see [R] or [N, Corollary 2]) we
obtain that there is a convex domain in C ⊂ S2 with perimeter l admitting a
nonexpanding mapping r : C → Ωp(M) such that Im ∂C is our broken geodesic.
Therefore, there is a direction ω ∈ Ωp(M) which has angle < π/2 with the direction
of every edge at p (it is the image of the “center” of C). By moving p along a curve
in a direction close to ω we reduce every edge of Γ̈, a contradiction. ♠
2.9. What to do when M is only complete, but k ≤ 0. For spaces which are
not locally compact the very same proof works, but we cannot apply Arzelà-Ascoli
arguments. There are two places where we did it: the first is the existence of Γ̈
(2.6), and the second is the existence of the limit Γ̈ as ε → 0 (2.7).

The existence of Γ̈ can be proved in the following way:
Let pi(Γ̇) be a sequence of graphs with the same boundary as Γ̇, such that the

total length of edges of pi(Γ̇) goes to infimum. Passing to a subsequence if necessary
one can insure that the length of each edge converges as i →∞. Assume it is not a
Cauchy sequence. Then there are two subsequences, pni(Γ̇) and pmi(Γ̇) such that
for some ε > 0,

max
x∈Γ0

|pni(x)pmi(x)| > ε.

Let us take qi(x), x ∈ Γ0, to be the midpoint of pni(x)pmi(x). Then for any two
points x, y ∈ Γ̇0 the Bruhat-Tits inequality gives

2|qi(x)qi(y)| ≤ |pni(x)pni(y)|+ |pmi(x)pmi(y)|
and for some edge the difference between the right and left sides of the inequality
is greater than some positive number which does not depend on i.
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Indeed, let d(x) = |pni(x)pmi(x)|. Then since the length of each edge converges,
the last statement is a trivial corollary of the following inequality for x, y ∈ Γ̇0:

2|qi(x)qi(y)|2 +
1
2
|d(x) − d(y)|2 ≤ |pni(x)pni(y)|2 + |pmi(x)pmi (y)|2.

This inequality (as well as the one above) is obvious for a plane quadrangle, and from
triangle comparison it is true for Alexandrov spaces with nonpositive curvature, a
contradiction. ♠

The fact that limε→0(C(Γ̈), | ∗ ∗|m) = (D, | ∗ ∗|s), needed in 2.7, can be obtained
in a similar way:

First note that for each Γ̈ = Γ̈(ε) one can construct a mapping fε : D → M such
that:

(i) |fε(x)fε(y)| ≤ |xy|s + ε;
(ii) fε|∂D ≡ s|∂D.
(One simply needs to take fε|∂D ≡ s|∂D and then send each point in D\∂D to

the vertex of Γ̈ corresponding to the closest point ai of the ν-net; see 2.5.)
Now, for ε → 0, consider the set of all possible GH-limits of D with the extrin-

sic pseudometric induced from fε (i.e., |xy| = |fε(x)fε(y)|; here fε has the above
properties).

Obviously each such limit X ≤ (D, | ∗ ∗|s). Consider a minimal element X0 in
this set, and take a sequence fεn (εn → 0) which corresponds to X0. Then the same
arguments as above show that fεn is a Cauchy sequence. Therefore as a limit we
have a mapping f : D → M such that |f(x)f(y)| ≤ |xy|s, but from the definition
of pull-back metric we then have |xy|f ≤ |xy|s, and from the metric minimizing
property we have |xy|f = |xy|s. Since for appropriately chosen X0 we can assume

(D, | ∗ ∗|f ) ≤ lim
ε→0

(C(Γ̈), | ∗ ∗|m) ≤ (D, | ∗ ∗|s),
we have

lim
ε→0

(C(Γ̈), | ∗ ∗|m) = (D, | ∗ ∗|s). ♠
2.10. Final remark. It is really strange that the sign of k comes in the game in
such a place. If one tried to repeat 2.9 for k > 0, then some positive term would
appear in the Bruhat-Tits inequality, which is very small but which will poison
all the fun. Direct application of the above proof would still give convergence if
our surface were in addition hodograph minimizing, in the sense of the following
definition:

Definition. A metric minimizing mapping s : D → M is called hodograph min-
imizing if in addition there is no mapping s′ : D → M , such that s′|∂D ≡ s|∂D,
|xx′|s′ ≤ |xx′|s for any two points x, x′ ∈ ∂D, and if the inequality is strict for at
least one pair.
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