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ON SPACES WITH PERIODIC COHOMOLOGY
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Abstract. We define a generalized notion of cohomological periodicity for a
connected CW-complex X, and show that it is equivalent to the existence of
an oriented spherical fibration over X with total space homotopy equivalent to
a finite dimensional complex. As applications we characterize discrete groups
which can act freely and properly on some Rn×Sm, show that every rank two
p-group acts freely on a homotopy product of two spheres and construct exotic
free actions of many simple groups on such spaces.

1. Introduction

A classical result in group cohomology (proved by R. G. Swan [5]) is the fact
that a finite group has periodic cohomology if and only if it acts freely on a finite
complex with the homotopy type of a sphere. Since then there have been numerous
attempts to extend this type of result to other classes of groups, including (1)
infinite groups with periodic cohomology and (2) finite groups with non-periodic
cohomology.

In this note we describe a homotopy-theoretic characterization of cohomological
periodicity, a notion which we now make precise.

Definition 1.1. The cohomology of a CW-complex X is said to be periodic if there
is an integral cohomology class α ∈ H∗(X,Z) and an integer d ≥ 0 such that the
cup product with α gives an isomorphism

α ∪ − : Hm
loc(X,B)→ H

m+|α|
loc (X,B)

for every local coefficient system B and every integer m ≥ d.

Our main result is the following

Theorem 1.2. Let X denote a connected CW-complex. The cohomology of X is
periodic if and only if there is an orientable spherical fibration E → X such that
the total space E is homotopy equivalent to a finite dimensional CW-complex.

Our result has a number of consequences, which we now list.

Theorem 1.3. A discrete group Γ acts freely and properly on Rn × Sm for some
m,n > 0 if and only if Γ is a countable group with periodic cohomology.
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This represents the definitive extension and verification of a question first raised
by Wall [7] for groups of finite virtual cohomological dimension (and settled in that
special case in [1]).

Specializing to finite groups we show

Theorem 1.4. Let X denote a finite dimensional G–CW complex, G a finite
group, such that every abelian subgroup of the isotropy subgroups is cyclic. Then
for some large integer N > 0 there exists a finite dimensional G–CW complex Y
with a free G-action such that Y ' SN ×X. If X is finitely dominated and simply
connected, then Y can be taken to be a finite complex.

For finite groups with non-periodic cohomology a key problem has been to con-
struct free actions on products of spheres. In fact given any finite group G, if we
define its rank r(G) as the dimension of its largest elementary abelian subgroup,
then it has been conjectured that Swan’s theorem admits the following generaliza-
tion: if k is the smallest integer such that a finite group G will act freely on a finite
complex Y ' Sn1 × · · · × Snk , then k = r(G). We obtain a complete answer for the
rank two situation in the case of finite p-groups, representing the first substantial
result beyond spherical space forms:

Theorem 1.5. Let G denote a finite p-group. Then G acts freely on a finite com-
plex Y ' Sn × Sm if and only if G does not contain a subgroup isomorphic to
Z/p× Z/p× Z/p.

Constructing interesting free actions of non-abelian finite simple groups is a
particularly difficult problem. Note that they all contain a copy of Z/2 × Z/2,
hence cannot act freely on a single sphere. Using the classification of finite simple
groups [2], character theory and local methods in homotopy theory we prove

Theorem 1.6. Let G denote a rank two simple group different from PSL3(Fp), p
an odd prime. Then G acts freely on a finite complex Y ' Sn × Sm. Furthermore
any such action must be exotic, i.e. it cannot be a product action.

In the following section we outline the proof of our main theorem and its conse-
quences.1 Complete details will appear elsewhere.

2. Proof of the main theorem

The proof follows from a series of lemmas which we now describe. We begin by
recalling some basic notions. Cohomology will be assumed with trivial Z coefficients
unless specified otherwise. A spherical fibration is a Serre fibration E → X such
that the fiber is homotopy equivalent to a sphere Sn−1. If the spherical fibration is
oriented, its Euler class is the cohomology class in Hn(X) that is the trangression
in the Serre spectral sequence of the fundamental class of the fiber.

We denote the kth Postnikov section of the p-sphere by PkSp; recall that the
induced map Hp(PkSp)→ Hp(Sp) of integral cohomology groups is an isomorphism
if k ≥ p.
Lemma 2.1. Let X be a connected CW-complex. For every integral cohomology
class α ∈ H∗(X) of positive degree and every integer k ≥ 0 there is an integer q ≥ 1

1In a recent preprint [3], Mislin and Talleli have used different methods to prove a result similar
to 1.3 for a large class of discrete groups, namely those which are hierarchically decomposable,
with a bound on the orders of their finite subgroups.
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and a fibration sequence Pk+q|α|−1Sq|α|−1 → E → X such that a generator of the
integral cohomology group Hq|α|−1(Pk+q|α|−1Sq|α|−1) trangresses to αq ∈ Hq|α|(X)
in the Serre spectral sequence of the fibration.

Lemma 2.2. Let Pk+|α|−1S|α|−1 → E → X be a fibration sequence such that a
generator of H |α|−1(Pk+|α|−1S|α|−1) trangressses to α ∈ H∗(X) in the Serre spectral
sequence. If k ≥ d−2 and the map α∪− : Hm(X)→ Hm+|α|(X) is an isomorphism
in integral cohomology for m ≥ d, then there is an orientable spherical fibration E →
X with Euler class α. If in addition the map α∪− : Hm

loc(X,B)→ H
m+|α|
loc (X,B) is

an isomorphism for every local coefficient system B and every integer m ≥ d, then
E is homotopy equivalent to a CW-complex of dimension less than d+ |α|.
Lemma 2.3. Let E → X be an orientable spherical fibration, where X is a CW-
complex with k-skeleton X(k). For every integer k ≥ 0 there is an integer q such
that the fibration Ek → X(k) in the cartesian square

Ek −−−−→ ∗qXEy y
X(k) −−−−→ X

is a product fibration, where ∗qXE denotes the q-fold iterated fibered join of the
bundle E → X.

The fiber join of a fiber bundle F → E → X with itself produces a new fiber
bundle over X with fiber the join F ∗ F . In particular a spherical fibration over X
will again yield a spherical fibration overX . To prove the three lemmas above we use
induction combined with a systematic application of fiber joins. Roughly stated the
process of fiber joins has the effect of multiplying certain relevant obstructions by
an integer; on the other hand these obstructions lie in homotopy groups of spheres
which have finite exponent. Hence by taking suitable fiber joins to begin with,
we can ensure the vanishing of the obstruction and hence complete our inductive
arguments. One sees that a proper notion of periodicity must contemplate twisted
coefficients, as otherwise we cannot ensure finite dimensionality of the total space
E. Note that for X = BG, G finite, it is well known that periodicity with trivial
coefficients implies our more general notion of periodicity. This should be considered
an ‘accidental’ occurrence, as our approach makes explicit how the full notion of
periodicity is required.

We now have

Theorem 2.4. Let X denote a connected CW-complex. The cohomology of X is
periodic if and only if there is an orientable spherical fibration E → X such that
the total space E is homotopy equivalent to a finite dimensional CW-complex.

Proof. If E → X is an oriented spherical fibration and the total space is homotopy
equivalent to a finite dimensional complex, then the Gysin sequence with local
coefficients shows that X has periodic cohomology.

Conversely, assume that X has periodic cohomology. Let α ∈ H∗(X) be an
integral cohomology class and d ≥ 0 be an integer such that α ∪ − : Hm(X) →
Hm+|α|(X) is an isomorphism for m ≥ d. By Lemma 2.1, there is an integer q ≥ 1
and a fibration sequence

Pd+q|α|−1Sq|α|−1 → E → X
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such that a generator of Hq|α|−1(Pd+q|α|−1Sq|α|−1) trangresses to αq ∈ Hq|α|(X)
in the Serre spectral sequence of the fibration. By Lemma 2.2, since d ≥ d − 2,
there is an orientable spherical fibration with Euler class αq, and the total space
has the homotopy type of a finite dimensional complex thanks to our generalized
periodicity assumption.

Let Γ denote a discrete group; its classifying space has the homotopy type of a
CW-complex, whence we obtain

Corollary 2.5. For a discrete group Γ, BΓ has periodic cohomology if and only if
Γ acts freely on a finite dimensional complex homotopy equivalent to a sphere.

If a countable discrete group Γ acts freely on a finite dimensional complex Y
homotopy equivalent to a sphere, then it acts freely and properly on Rn × Sm for
some m,n > 0. Indeed Y/Γ has countable homotopy groups, hence is homotopic
to a countable complex which in turn is homotopic to an open submanifold V in
some Euclidean space; applying the h-cobordism theorem we can infer that for
sufficiently large q we have a diffeomorphism Ṽ ×Rq ∼= Rn× Sm for some m,n ≥ 0
(see [1]). Hence we obtain

Theorem 2.6. A discrete group Γ acts freely and properly on Rn × Sm for some
m,n > 0 if and only if Γ is countable and has periodic cohomology.

By a result of Wall [6], a finitely dominated CW-complex X is homotopy equiv-
alent to a finite CW-complex if and only if its finiteness obstruction vanishes; the
finiteness obstruction is an element in K̃0(Zπ1(X)).

Theorem 2.7. Let X be a connected CW-complex of finite type such that the re-
duced projective class group K̃0(Zπ1(X)) is a torsion group. The cohomology of X
is periodic if and only if there is a spherical fibration E → X such that the total
space E is homotopy equivalent to a finite complex.

Corollary 2.8. Let Γ denote a discrete group such that BΓ is of finite type and
K̃0(ZΓ) is torsion. Then BΓ has periodic cohomology if and only if it acts freely
and co-compactly on a CW-complex Y homotopy equivalent to a sphere.

Again these results rely on the fact that fiber joins multiply obstructions by
an integer—the hypothesis of finite exponent is used to dispose of the finiteness
obstruction by successive fiber joins. This argument was used by Swan, based on
the fact that K̃0(ZG) is a finite abelian group for any finite group G.

3. Finite group actions

Let G denote a finite group; to begin we will be interested in actions of G on
spaces such that the isotropy subgroups have periodic cohomology. The key fact is
given by

Proposition 3.1. Let X denote a finite dimensional G–CW complex, where G is
a finite group. Then the cohomology of X ×G EG is periodic if and only if all the
isotropy subgroups have periodic cohomology.

This allows us to describe important specific situations where the results from
the previous section will apply. In particular, the following theorem is a direct
consequence of Theorem 2.4 and Lemma 2.3:
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Theorem 3.2. Let X denote a finite dimensional G–CW complex (G a finite
group) such that all of its isotropy subgroups have periodic cohomology. Then
there exists a finite dimensional CW-complex Y with a free G-action such that
Y ' SN ×X. If X is simply connected and finitely dominated, then we can assume
that Y is a finite complex.

One can show that given any finite p-group P and an element x of order p in its
center, there exists a complex representation V for G such that the subgroup 〈x〉
acts freely on the associated sphere S(V ). In particular if P is a rank two p-group,
such a sphere will have periodic isotropy and so we can use the result above to
construct a free action on a product of two spheres up to homotopy, from which we
infer 1.5.

Turning finally to the case of simple groups our strategy is again to construct
an action on a sphere such that the isotropy is periodic. Unfortunately this cannot
always be done, hence instead we construct a homotopy action such that the asso-
ciated Borel construction has periodic cohomology. This can be done one prime at
a time (using methods from local homotopy theory) and furthermore we can use
local decompositions of the classifying spaces for the groups involved. Making use
of the classification of finite simple groups (i.e. a case by case analysis) we show

Theorem 3.3. Let G denote a rank two finite simple group other than PSL3(Fp),
p an odd prime. Then G acts freely on a finite complex Y ' Sn×Sm. Furthermore
any such action must be exotic, i.e. it cannot be a product action.

The last statement follows from the observation that any rank two simple group
contains a copy of the alternating group A4 and the fact that by a result due to
Oliver [4] this group must act exotically.

We conclude with examples illustrating the theorem above.

Examples 3.4. Both the alternating group A5 and the linear group SL3(F2) have
complex representations of dimension three such that the action on the associated
sphere has isotropy with periodic cohomology. Hence both of these groups will act
freely on finite complexes of the form SN×S5. On the other hand, for G = M11, the
first Mathieu group, we must use homotopy representations at the primes p = 2, 3
to construct an action on S383 giving rise to a Borel construction with periodic
cohomology. Hence M11 acts freely on a finite complex Y ' SN × S383.
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