Mating quadratic maps with Kleinian groups via quasiconformal surgery
Authors:
S. R. Bullett and W. J. Harvey
Journal:
Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 21-30
MSC (2000):
Primary 37F05; Secondary 30D05, 30F40, 37F30
DOI:
https://doi.org/10.1090/S1079-6762-00-00076-7
Published electronically:
March 28, 2000
MathSciNet review:
1751536
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Let $q:\hat {\mathbb C} \to \hat {\mathbb C}$ be any quadratic polynomial and $r:C_2*C_3 \to PSL(2,{\mathbb C})$ be any faithful discrete representation of the free product of finite cyclic groups $C_2$ and $C_3$ (of orders $2$ and $3$) having connected regular set. We show how the actions of $q$ and $r$ can be combined, using quasiconformal surgery, to construct a $2:2$ holomorphic correspondence $z \to w$, defined by an algebraic relation $p(z,w)=0$.
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Shaun Bullett and Christopher Penrose, Mating quadratic maps with the modular group, Invent. Math. 115 (1994), no. 3, 483–511. MR 1262941, DOI 10.1007/BF01231770
- Shaun Bullett and Christopher Penrose, Perturbing circle-packing Kleinian groups as correspondences, Nonlinearity 12 (1999), no. 3, 635–672. MR 1690198, DOI 10.1088/0951-7715/12/3/313
bcomb S. Bullett, A combination theorem for covering correspondences and an application to mating polynomial maps with Kleinian groups, QMW preprint 1999.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- W. J. Harvey, Spaces of discrete groups, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975) Academic Press, London, 1977, pp. 295–348. MR 0498974
- Bernard Maskit, On Klein’s combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499–509. MR 192047, DOI 10.1090/S0002-9947-1965-0192047-1
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Lei Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 589–620. MR 1182664, DOI 10.1017/S0143385700006957
ab L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Annals of Math. 72 (1960), 385–404.
ahl L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand 1966.
bpmat S. Bullett and C. Penrose, Mating quadratic maps with the modular group, Inventiones Mathematicae 115 (1994), 483–511.
bpkl S. Bullett and C. Penrose, Perturbing circle-packing Kleinian groups as correspondences, Nonlinearity 12 (1999), 635–672.
bcomb S. Bullett, A combination theorem for covering correspondences and an application to mating polynomial maps with Kleinian groups, QMW preprint 1999.
ch W. Chow, On compact complex analytic varieties, Am. J. Math. 71 (1949), 893–914.
dh A. Douady and J. Hubbard, Itération des polynômes quadratiques complexes, C.R. Acad. Sci. Paris 294 (1982), 123–126.
dhpoly A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, Ann. scient. Éc. Norm. Sup. 18 (1985), 287–343.
wjh W. J. Harvey, Spaces of discrete groups, in Discrete groups and automorphic functions (edited by W. J. Harvey), Academic Press 1977, pp. 295–347.
mas B. Maskit, On Klein’s combination theorem, Trans. AMS 120 (1965), 499–509.
gaga J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1–42.
tl Lei Tan, Matings of quadratic polynomials, Erg. Th. and Dynam. Syst. 12 (1992), 589–620.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
37F05,
30D05,
30F40,
37F30
Retrieve articles in all journals
with MSC (2000):
37F05,
30D05,
30F40,
37F30
Additional Information
S. R. Bullett
Affiliation:
School of Mathematical Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom
Email:
s.r.bullett@qmw.ac.uk
W. J. Harvey
Affiliation:
Department of Mathematics, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
Email:
bill.harvey@kcl.ac.uk
Keywords:
Holomorphic dynamics,
quadratic maps,
Kleinian groups,
quasiconformal surgery,
holomorphic correspondences
Received by editor(s):
December 22, 1999
Published electronically:
March 28, 2000
Communicated by:
Svetlana Katok
Article copyright:
© Copyright 2000
American Mathematical Society