On the connectedness of the space of initial data for the Einstein equations
Authors:
Brian Smith and Gilbert Weinstein
Journal:
Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 52-63
MSC (2000):
Primary 83C05; Secondary 58G11
DOI:
https://doi.org/10.1090/S1079-6762-00-00081-0
Published electronically:
July 19, 2000
MathSciNet review:
1777856
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Is the space of initial data for the Einstein vacuum equations connected? As a partial answer to this question, we prove the following result: Let $\mathcal {M}$ be the space of asymptotically flat metrics of non-negative scalar curvature on $\mathbb {R}^3$ which admit a global foliation outside a point by $2$-spheres of positive mean and Gauss curvatures. Then $\mathcal {M}$ is connected.
- Robert Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys. 94 (1984), no. 2, 155–175. MR 761792
- Robert Bartnik, Quasi-spherical metrics and prescribed scalar curvature, J. Differential Geom. 37 (1993), no. 1, 31–71. MR 1198599
- Murray Cantor, A necessary and sufficient condition for York data to specify an asymptotically flat spacetime, J. Math. Phys. 20 (1979), no. 8, 1741–1744. MR 543911, DOI https://doi.org/10.1063/1.524259
- Murray Cantor and Dieter Brill, The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compositio Math. 43 (1981), no. 3, 317–330. MR 632432
- Alice Chaljub-Simon and Yvonne Choquet-Bruhat, Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini, Ann. Fac. Sci. Toulouse Math. (5) 1 (1979), no. 1, 9–25 (French, with English summary). MR 533596
- Yvonne Choquet-Bruhat, Global solutions of the constraints equations on open and closed manifolds, Gen. Relativity Gravitation 5 (1974), no. 1, 49–60. MR 406309, DOI https://doi.org/10.1007/bf00758074 choquet00 Y. Choquet-Bruhat, J. Isenberg, and J. W. York, Jr, Einstein constraints on asymptotically Euclidean manifolds, Phys. Rev. D. 61 (2000), article # 084034.
- Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
- D. Christodoulou and N. Ó Murchadha, The boost problem in general relativity, Comm. Math. Phys. 80 (1981), no. 2, 271–300. MR 623161
- Arthur E. Fischer, Jerrold E. Marsden, and Vincent Moncrief, The structure of the space of solutions of Einstein’s equations. I. One Killing field, Ann. Inst. H. Poincaré Sect. A (N.S.) 33 (1980), no. 2, 147–194. MR 605194
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI https://doi.org/10.1090/S0273-0979-1987-15514-5 smithweinstein B. Smith and G. Weinstein, Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature, in preparation.
- Robert M. Wald, General relativity, University of Chicago Press, Chicago, IL, 1984. MR 757180
- James W. York Jr., Gravitational degrees of freedom and the initial-value problem, Phys. Rev. Lett. 26 (1971), 1656–1658. MR 290765, DOI https://doi.org/10.1103/PhysRevLett.26.1656
Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (2000): 83C05, 58G11
Retrieve articles in all journals with MSC (2000): 83C05, 58G11
Additional Information
Brian Smith
Affiliation:
University of Alabama at Birmingham, Birmingham, AL 35205
Email:
smith@math.uab.edu
Gilbert Weinstein
Affiliation:
University of Alabama at Birmingham, Birmingham, AL 35205
MR Author ID:
293250
Email:
weinstei@math.uab.edu
Received by editor(s):
May 27, 1999
Published electronically:
July 19, 2000
Additional Notes:
This research was supported in part by NSF grant DMS 9704760.
Communicated by:
Richard Schoen
Article copyright:
© Copyright 2000
American Mathematical Society