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Abstract. Is the space of initial data for the Einstein vacuum equations con-
nected? As a partial answer to this question, we prove the following result: Let
M be the space of asymptotically flat metrics of non-negative scalar curvature
on R3 which admit a global foliation outside a point by 2-spheres of positive
mean and Gauss curvatures. Then M is connected.

Introduction

The Einstein vacuum equations of general relativity read:

R̄µν −
1
2
R̄ḡµν = 0,(1)

where R̄µν is the Ricci curvature tensor of a Lorentzian 4-manifold, and R̄ the
scalar curvature. The basic problem for these equations is the Cauchy problem:
given data on a time-slice M , consisting of a Riemannian metric g and a second
fundamental form k on M , find the evolution of space-time according to (1). Not
all the equations in (1) are evolution equations. Using the twice-contracted Gauss
equation and the Codazzi equations of the Riemannian submanifold M , one finds
that the normal-normal and normal-tangential components of (1) are:

R − |k|2 + (tr k)2 = 0,(2)

∇jkij −∇i tr k = 0,(3)

where R is the scalar curvature of M , and k its second fundamental form. These
equations, called the Vacuum Constraint Equations, involve no time derivatives and
hence are to be considered as restrictions on the data g and k; see [14]. We will
only consider asymptotically flat (AF) solutions of these equations, i.e., solutions
satisfying the decay:

gij − δij = O(r−1),

kij = O(r−2),

R ∈ L1(M).
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It is standard to choose the maximal gauge tr k = 0 in (2)–(3), which, as shown
by Bartnik [1], involves no loss of generality. In this case, we get the Maximal
Gauge Vacuum Constraint Equations:

R = |k|2 ,(4)

tr k = 0,(5)

div k = 0.(6)

These form an underdetermined system of elliptic equations on M for g and k.
Much work has been devoted to finding solutions of (4)–(6); see for example [3, 4,

6, 7, 9, 10, 15] and the references therein. However, certain fundamental questions
remain unanswered. For example, it is not known whether the space of AF initial
data on a given 3-manifold M is connected, not even in the case M = R3. Since the
evolution equations trace a continuous path in the phase space of initial data, either
answer to this question would be of considerable significance for the dynamics of
the Einstein equations.

The standard method for solving (4)–(6) has been the conformal method. In this
method the free data is the conformal class of an asymptotically flat Riemannian
metric g, and a trace-free divergence-free symmetric 2-tensor k on M . Since the
trace-free and divergence-free conditions on k are invariant under the transforma-
tion g 7→ φ4g, k 7→ φ−2k, it suffices to find φ so that (4) is satisfied. This will be
so provided that the Lichnerowicz equation is satisfied:

∆φ − 1
8
Rφ+ |k|2 φ−7 = 0.

A solution of this equation can be found if the negative part of the scalar curvature
is small enough in the L3/2 norm; see [9]. In particular, the question above can be
reduced to the following purely geometric problem: is the space of AF metrics of
non-negative scalar curvature on a 3-manifold M connected?

In this paper, we announce, and sketch the proof of a result which gives a partial
answer in the affirmative to the question posed above; details will appear in [13].
We say that a topological 2-sphere S in M is quasiconvex if both the Gauss and the
mean curvature of S are positive [8]. Let M be the space of C2,α

−1 metrics g on R3

with non-negative scalar curvature R ∈ L1 which admit a global coordinate system
whose coordinate spheres are quasiconvex, and which satisfy in this coordinate
system:

gij − δij = O(r−1) as r →∞,
gij − δij = 0 at r = 0.

The C2,α
−1 topology on M is generated by the following system of neighborhoods of

any metric g ∈M:{
g′ ∈M :

2∑
α=0

sup
∣∣(1 + r)m+1∂m(gij − g′ij)

∣∣+ [∂2gij − ∂2g′ij ]α,−3 < ε

}
,

where

[f ]α,−k = sup
r

(
(1 + r)k+α sup

x,y∈Br

|f(x)− f(y)|
|x− y|α

)
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is the weighted Hölder norm with exponent α of f on R3. In fact, in view of the
general covariance of the Einstein Equations, we are only interested in the quotient
of M by the group G of diffeomorphisms of R3.

Main Theorem. The quotient of M/G is path connected in the quotient topology
induced by C2,α

−1 on M.

Of course, this raises the following question: when does an AF metric g of non-
negative scalar curvature belong to M? Clearly, a necessary condition is that g
possesses no compact minimal surfaces. However we do not even know whether the
absence of compact minimal surfaces suffices to guarantee the existence of a global
foliation with positive mean curvature.

To prove our Main Theorem, we generalize a method introduced by Bartnik [2]
to construct quasispherical metrics of prescribed scalar curvature. A metric is
quasispherical if it can be foliated by round spheres, spheres of constant curvature.
Bartnik observed that prescribing scalar curvature for this type of metric could
be viewed as a parabolic equation on the sphere for one of the metric coefficients,
u = |∇r|−1, where r is the foliating function, provided that the mean curvature was
also positive. We combine this with the Poincaré Uniformization as in [8] to get a
general method to prescribe scalar curvature for metrics in M. As an application,
we prove the Main Theorem.

Denote by r the foliating function normalized so that the area of the spheres
is 4πr2, and by γ the induced metric on the spheres. Any smooth enough metric
g ∈M can be written as:

g = u2dr2 + e2vγ̄AB(β̂Adr + rdθA)(β̂Bdr + rdθB),(7)

where (θ1, θ2) are local coordinates on S2, γ̄AB is a fixed (independent of r) round
metric of area 4π, and β̂ = β̂A∂A is the shift vector. Here, and throughout, we use
the summation convention: repeated indices are summed over their range, 0, 1, 2, 3
for Greek indices, 1, 2, 3 for lower case Latin indices, and 1, 2 for upper case Latin
indices. Let χ be the second fundamental form, H = trγ χ be the mean curvature
of the spheres, and Π = Lβ̂γ be the deformation tensor of β̂ on the spheres; then
it can be checked that

χ̄ = ruχ = ((1 + rvr)γ −Π/2) ,(8)

H̄ = ruH =
(
2 + 2rvr − e−2v divγ̄ β

)
,(9)

where β = e2vβ̂. It is important to note that both |χ̄|2γ and H̄ can be calculated
in terms of only β, v, r, and the round metric γ̄ on S2. Let N be the outer unit
normal to the foliation spheres, let N̄ = ruN = r∂r − β̂, let ∆/γ be the Laplacian
on the spheres with respect to γ, and let

κ = r−2e−2v(1−∆/v)(10)

be the Gauss curvature of the spheres. Then the equation for the scalar curvature
R of g can be written as

H̄∂N̄u = r2u2∆/γu+ Āu− B̄u3,(11)
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where

Ā = ∂N̄ H̄ − H̄ +
1
2
|χ̄|2γ +

1
2
H̄2,

B̄ = r2(κ− 1
2
R) = e−2v(1−∆/v)− 1

2
r2R.

Noting that the Laplacian with respect to γ̄ is ∆/ = r2e2v∆/γ , we obtain, provided
that H > 0, the following Bernoulli-type parabolic equation for u on the unit
sphere:

r∂ru− β · ∇/u = Γu2∆/u+Au−Bu3,(12)

where ∇/u is the tangential component of the gradient of u , Γ = e−2v/H̄, A = Ā/H̄
and B = B̄/H̄. It follows from the comment following equations (8)–(9) that the
coefficients Γ, A and B can be calculated in terms of only β, v, r, the round metric
γ̄ on S2, and R. The quasispherical case can be recovered by setting v = 0, and
κ = 1, see [2].

The proof of the Main Theorem is based on the study of equation (12). The
deformation to a flat metric is accomplished in several steps. First, the metric is
smoothed out with the scalar curvature R truncated to be compactly supported.
Next, we deform the metric to one satisfying 2κ > R. Then, we deform to a metric
with compactly supported β and v. Finally, we deform to a flat metric. The last
three steps are all based on the following strategy. The deformation gλ is defined
explicitly on a ball Br0 . In the exterior of Br0 we consider βλ, vλ, and Rλ as free
data, and solve equation (12) on [r0,∞)× S2 for uλ with initial conditions uλ|Sr0 .
In order for this to be feasible, and for the resulting metric gλ to yield a continuous
path, we must ensure that βλ, vλ, and Rλ are continuous in the appropriate spaces,
that H̄λ is positive, and that Rλ is non-negative. In addition, one must verify
conditions that guarantee the global existence of the solution uλ, its appropriate
decay as r→∞, and continuity with respect to λ. The regularity of uλ across Sr0
is obtained by solving equation (12) on [r′, r0 + ε) × S2, 0 < r′ < r0, with initial
data uλ|Sr′ and by using the uniqueness and regularity of solutions.

The plan of the paper is as follows. In the next section, we derive equation (11).
In Section 2, we collect the analytical results we need on existence, uniqueness,
asymptotic behavior, and continuous dependence on parameters of solutions of (12).
Then in Section 3, we sketch the proof of the Main Theorem by deforming any
metric in M to the Euclidean metric.

1. The scalar curvature of a 3-manifold foliated by spheres

In this section, we derive equation (11). First, note that ∇r = u−1N , and
consequently u−1 = N i∇ir. It follows that

∇NN = −u−1∇/u,(13)

where ∇/u is the tangential part of ∇u. Furthermore, using N j∇iNj = 0, we get

∇i∇ju−1 = Nk∇i∇j∇kr + (∇j∇kr)(∇iNk)

= Nk∇i∇k∇jr +∇j(u−1Nk)(∇iNk)

= Nk∇k∇i∇jr + u−1RjlikN
kN l + u−1(∇jNk)(∇iNk),
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which after tracing with respect to g leads to

∆u−1 = ∇N∆r + u−1 Ric(N,N) + u−1 |∇N |2 ,(14)

where Ric is the Ricci tensor of g. We now need to calculate the first and third
terms on the right hand side of (14). Since the tangential part of ∇N is the second
fundamental form χ, and the normal part is given by (13), it is easy to see that:

|∇N |2 = |χ|2γ + u−2|∇/u|2γ .

Next, using equation (13) again, we find:

∇N∆r = NkN i∇k∇iu−1 + (∇NN i)(∇iu−1) +∇N (u−1∇iNi)
= ∇2u−1(N,N) + u−3|∇/u|2γ +∇N (u−1H).

Substituting the last two equations into (14) gives

∆u−1 = ∇2u−1(N,N) + 2u−3|∇/u|2γ + u−1 Ric(N,N) +∇N (u−1H) + u−1|χ|2γ ,

where ∇2u−1 denotes the Hessian of the function u−1. On the other hand:

∆u−1 = ∇2u−1(N,N) +H∇Nu−1 + ∆/γu−1.

Combining the last two equations we obtain:

∆/γu = 2u−1|∇/u|2 − u2∆/u−1 = −uRic(N,N)− u∇NH − u|χ|2.

Substituting Ric(N,N) = 1
2 (H2 − |χ|2 +R−R/) from the Gauss equation, and the

definitions H̄ = ruH , χ̄ = ruχ, and N̄ = ruN from the introduction, we get (11).

2. Bernoulli-type parabolic PDEs on S2

In this section we collect the analytical results we need to prove the Main The-
orem: (conditions for) global existence, uniqueness, asymptotic behavior and con-
tinuous dependence on parameters for solutions of (12). All these rely on a simple
pointwise a priori bound whose proof we present here. Many of the results presented
in this section are adapted from [2]. In order to ensure the uniform parabolicity
of (12) we assume throughout this section that Γ = e−2v/H̄ is bounded above and
below by positive constants.

First, we define parabolic Banach spaces to be used in our study of (12). Let
0 < r0 < r1 ≤ ∞, I = [r0, r1] ⊂ R+, and let AI = I × S2. Given a function f on
AI , define:

[f ]α;I = sup
(r1,θ1),(r2,θ2)∈AI

dist(θ1,θ2)<π

[
|f(r2, θ2)− f(r1, θ1)|

|1− r2/r1|α/2 + dist(θ2, θ1)α

]
,

‖f‖0;I = sup
AI

|f |, ‖f‖0,α;I = ‖f‖0;I + [f ]α;I .

Here dist(·, ·) denotes the geodesic distance on S2. If f(r, ·) is a tensor field on
S2, then f(r2, θ2) is understood to mean the parallel translate of f(r2, θ2) back to
θ1 along the unique geodesic from θ1 to θ2. With these conventions, we can now
define:

‖f‖k,α;I =
∑

i+2j≤k

∥∥∇/ i(r∂r)jf∥∥0;I
+

∑
i+2j=k

[∇/ i(r∂r)jf ]α;I ,
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where ∇/ if is to be interpreted as the i-th covariant derivative of f in the standard
metric on S2. Now define Hk,α

I to be the space of functions f on AI for which
‖f‖k,α;I is defined and finite. Equipped with the norm ‖·‖k,α;I , the space Hk,α

I is
a Banach space. Following Bartnik in [2], we also use the notation:

f∗(r) = sup
θ∈S2

f(r, θ), f∗(r) = inf
θ∈S2

f(r, θ).

2.1. Conditions for global existence and uniqueness. Our first observation
is that equation (12) is uniformly parabolic with r as the ‘time’ variable. Therefore,
given any initial data u(r0, θ) = u0(θ), it is standard to obtain the existence of a
unique solution on a short time interval [r0, r0 + ε) for some ε > 0. Furthermore,
it is well known that, for some choices of coefficients and initial data, a classical
solution can blow up in finite time. Thus, our main objective here is to derive
conditions which guarantee the existence of a global positive solution on the time
interval [r0,∞].

The principal ingredient in this and future subsections is a simple a priori bound
on solutions of (12). To derive this bound, we use the familiar substitution w = u−2

well-known from the elementary method used to solve the corresponding Bernoulli
ordinary differential equation. If u > 0 satisfies (12) on [r0, r1], then w satisfies

r∂rw − β · ∇/u = 2(−Γu−1∆/u−Aw + B).(15)

Since this equation is only used to derive pointwise a priori bounds, and since u has
a maximum where w has a minimum and vice versa, there is no need to transform
the gradient and Laplacian terms. For example, it follows from (15) that

r∂rw∗ + 2A∗w∗ ≥ 2B∗,(16)

which upon integration yields the lower bound:

rw∗ ≥
[
r0w∗(r0) +

∫ r

r0

2B∗ exp

(∫ r′

r0

(2A∗ − 1)
dt

t

)
dr′

]
exp

(∫ r

r0

(1− 2A∗)
dt

t

)
.

(17)

Similarly, one obtains the upper bound:

rw∗ ≤
[
r0w

∗(r0) +
∫ r

r0

2B∗exp

(∫ r′

r0

(2A∗ − 1)
dt

t

)
dr′

]
exp

(∫ r

r0

(1− 2A∗)
dt

t

)
.

(18)

In particular it follows immediately that w is bounded above, and hence u ≥ c > 0,
where c depends on r1. Suppose furthermore that

K =
1
r0

(
sup

r0<r<∞

(
−
∫ r

r0

2B∗ exp
(∫ s

r0

(2A∗ − 1)
dt

t

)
ds

))−1/2

> 0.(19)

If the initial data u0 < K, then w is bounded below, and hence u < ∞. We note
that if B ≥ 0 then K = ∞, which gives u < ∞ for any positive initial data. The
above considerations lead to the following result:

Theorem 1. Let I = [r0,∞), suppose β,Γ, A,B ∈ Cα(I×S2), and suppose that the
constant K defined in (19) is positive. Then, for any positive function u0 ∈ C(S2)
satisfying supS2 u0 < K, the equation (12) has a unique positive global classical
solution u on I × S2 with initial data u(r0, θ) = u0(θ).
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Now, suppose that the coefficients in (12) satisfy

‖β‖2,α;I′ + ‖Γ‖2,α;I′ + ‖A‖2,α;I′ + ‖B‖2,α;I′ ≤ C,

for some C > 0, and that u is a solution which is bounded above and below,
C−1 ≤ u ≤ C on AI , where I ⊂ I ′. Then standard parabolic Schauder theory gives

‖u‖4,α;I ≤ C′,(20)

where C′ depends on C and the length of I. Using the scaling properties of the
Hk,α
I -norms and of equation (12) we can also derive (20) for Iλ = [λr0, λr1] with

C′ independent of λ provided Iλ ⊂ I ′. Furthermore, if in addition |2A− 1| < C/r
on [r0,∞) × S2 and u(r0, θ) < K, we may use the bounds (17) and (18) to obtain
uniform infimum and supremum bounds on every subinterval of [r0,∞). Thus, we
obtain the following result.

Theorem 2. Let I = [r0,∞), and suppose that there is a constant C > 0 such that
β,Γ, A,B ∈ H2,α

I satisfy

‖β‖2,α;I , ‖Γ‖2,α;I , ‖B‖2,α;I , ‖r(2A− 1)‖2,α;I ≤ C,
C−1 ≤ Γ ≤ C,

and u0 ∈ C4,α(S2) satisfies 0 < u0 ≤ K − C−1. Then there is a unique positive
solution u ∈ H4,α

I of (12) with initial condition u(r0, θ) = u0(θ). Furthermore, we
have

‖u‖4,α;I ≤ C
′,

where C′ depends only on C.

Our final result concerning global existence is a simple consequence of the max-
imum principle.

Theorem 3. Let I = [r0,∞), and suppose that u > 0 is a classical solution of
equation (12) on I × S2 with coefficients β,Γ, A,B ∈ H2,α

I and with initial data
u0 ∈ C4,α(S2). Let B̃ ∈ H2,α

I satisfy B̃ ≥ B. Then the equation

r∂ru− β · ∇/u = Γu2∆/u+Au− B̃u3

has a unique solution ũ ∈ H4,α
I with the same initial data ũ(r0, θ) = u0(θ). Fur-

thermore, we have 0 < ũ ≤ u.

Proof. It suffices to prove a supremum a priori bound for ũ on any interval [r0, r1)
where the solution ũ > 0 exists. Subtracting the equation for u from the equation
for ũ, we get an equation for v = ũ− u:

r∂rv − β · ∇/v = Γũ2∆/v + Ãv − (B̃ −B)ũ3,(21)

where Ã = A+ Γ(ũ+u)∆/u−B(ũ2 + ũu+ ũ2). Since (B̃−B)ũ3 > 0, the maximum
principle applies to give v ≤ 0. It follows that ũ ≤ u on [r0, r1).

For the remainder of Section 2 we set I = [r0,∞).
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2.2. Asymptotic behavior. To study the asymptotic behavior of solutions of
equation (12) we define:

m =
r

2
(1− u−2).

If u is a global solution of equation (12) on I × S2, then m satisfies

r∂rm− β · ∇/m = rΓ
∆/u
u
− (2A− 1)m+ r(A −B).(22)

We note that if r |2A− 1| ≤ C, and

|A−B|∗ ∈ L1(I),(23)

then using the maximum principle, it follows that |m| is bounded. Applying
Schauder theory to equation (22) we then obtain:

Theorem 4. Let I = [r0,∞), let β,Γ, A,B ∈ H2,α
I , suppose that (23) is satisfied,

and let u ∈ H2,α
I be a positive solution of equation (12). Suppose that there is a

constant C > 0 such that

‖u‖2,α;I , ‖r(2A− 1)‖2,α;I , ‖B‖2,α;I , ‖|A−B|∗‖L1(I) ≤ C,
C−1 ≤ Γ ≤ C.

Then m = r(1 − u−2)/2 satisfies

‖m‖4,α;I < C′,(24)

where C′ depends only on C.

We will also need the bound (24) in some cases where the condition (23) cannot
be verified. To this end, we state a comparison result that establishes a bound on
m. Let ui, i = 1, 2, satisfy

r∂rui − β · ∇/ui = Γu2
i∆/ui +Aui −Biu3

i .(25)

Setting mi = r(1− u−2
i )/2, i = 1, 2, and m̃ = m2 −m1, we obtain, in view of (22),

r∂rm̃− β̃ · ∇/m̃ = Γu2
2∆/m̃+ (2Ã− 1)m̃+ r(B1 −B2),

where

β̃ = β + 3Γu4
2∇/(m1 +m2),

Ã = A− Γu2
1u

2
2

(
r−1∆/m1 + 3r−2(u2

1 + u2
2)
∣∣∇/m1

∣∣2).
If we also assume that m1, ∇/m1, ∆/m1, u1, and u2 are bounded, then r|2Ã − 1| is
bounded, and provided that also |B1 − B2|∗ ∈ L1(I), we may apply the previous
argument to derive a bound on |m̃|, and consequently also on |m2|. This leads to
the following theorem.

Theorem 5. Let I = [r0,∞), let β,Γ, A,B1, B2 ∈ H2,α
I and suppose that ui > 0,

i = 1, 2, are bounded classical solutions of equation (25) on I×S2. Let B = B1−B2,
and suppose also that |B|∗ ∈ L1(I), that m1 is bounded, and that there is a constant
C > 0 such that

‖u1‖2,α;I , ‖u2‖2,α;I , ‖m1‖2,α;I , ‖r(2A− 1)‖2,α;I , ‖B‖2,α;I , ‖|B|∗‖L1(I) ≤ C,
C−1 ≤ Γ ≤ C.
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Then m̃ = r(1 − ũ−2)/2 satisfies

‖m̃‖4,α;I ≤ C′,
where C′ depends only on C.

2.3. Continuous dependence on parameters.

Theorem 6. Let I = [r0,∞), and suppose that uλ ∈ Hk+2,α
I , a ≤ λ ≤ b, is a family

of solutions of (12) with βλ,Γλ, Aλ, Bλ satisfying r(2Aλ − 1), r(2Bλ − 1), βλ,Γλ ∈
C0([a, b], Hk,α

I ) and with the initial data uλ(r0) ∈ C0
(
[a, b], Ck+2,α(S2)

)
. Suppose

also that one of the following conditions is satisfied:
1. |Aλ −Bλ|∗ ∈ C0

(
[a, b], L1(I)

)
;

2. A continuous family of solutions m′λ ∈ C0
(
[a, b], Hk+2,α

I

)
of (22) exist.

Then uλ,mλ ∈ C0
(
[a, b], Hk,α

I

)
.

3. Deformation of metrics in M

We are now in a position to sketch the proof of the Main Theorem. Recall that
any metric g ∈M can be written as in (7). We define a nested sequence of subsets
M = M0 ⊃ · · · ⊃M4:

M1 = {g ∈M0 : r(1 − u) ∈ H4,α
[r0,∞); rβ, rv ∈ H

8,α
[r0,∞), ∀r0 > 0, suppR is compact},

M2 = {g ∈M1 : 2κ−R > 0},
M3 = {g ∈M2 : β, v are compactly supported},
M4 = {g ∈M3 : g is flat}.
Let us say that Mi is connected to Mi+1 if for each g ∈Mi there is a path Γ in Mi,
continuous in the topology of C2,α

−1 , with Γ(0) = g and Γ(1) ∈Mi+1. We will show
that Mi is connected to Mi+1 for each i = 0, . . . , 3. The Main Theorem follows by
joining these paths.

Lemma 7. M0 is connected to M1.

Proof. Let g = g0 ∈ M0. It is not difficult, using a truncation followed by a
standard smoothing, to construct a deformation gλ, continuous in C2,α

−1 , from g0 to
a smooth metric g1 which is flat outside a large enough ball, with scalar curvature
Rλ ∈ L1, and such that gλ − g0 is small in C2,α

−1/2 for all λ. Since gλ is close to g,
the coordinate spheres are still quasiconvex in gλ, and the negative part R−λ of the
scalar curvature of gλ is small in L3/2. It follows that the operator −8∆gλ +Rλ is
injective [4], and hence also a bijection; see [5, 12]. We can now choose a smooth
positive function of compact support Sλ which is close to Rλ in Cα−5/2, and solve
the equation

(−8∆ +Rλ)ψλ = Rλ − Sλ.
It follows from the above that ψλ is small in C2,α

−1/2. Taking φλ = 1 + ψλ, we
see that the metrics φ4

λgλ have positive scalar curvature, quasiconvex coordinate
spheres, and form a continuous path from g0 to a smooth metric g̃1 = φ4

1g1. Since
R1 − S1 is of compact support, and g1 is flat outside a compact set, it follows that
g̃1 ∈ Ck,α−1 for all k. On each coordinate sphere equipped with the metric γ induced
by g̃1, it is possible, using the techniques of [8, Chapter 2], to find a uniformization
factor r2e2v, with bounds as required in M1, so that γ̄ = r−2e−2vγ is a round metric
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with surface area 4πr2. We conclude that the continuous path φ4
λgλ joins g ∈ M0

to a metric g̃1 ∈M1.

It is important to note that since the round metric γ̄ on the coordinate spheres
will in general vary with r, it is most likely necessary to change the background flat
metric when writing g̃1 as in (7). Nevertheless, these two flat metrics are asymptotic
as r→∞; see [13] for details.

As outlined in the Introduction, the deformation is obtained in the next three
steps by deforming gλ explicitly inside a ball Br0 , while solving (12) outside Br0
with the deformation of βλ, vλ and Rλ defined so that κλ, H̄λ > 0, Rλ ≥ 0, and so
that theorems from Section 2 guarantee global existence, asymptotic behavior as
r→∞, and continuity of uλ in H4,α

[r0,∞). Note that in order to ensure continuity at
the end point of the deformation, it is necessary to have a H̄λ uniformly bounded
below by a positive constant. Now, if gλ is a path in Mi, i = 1, 2, 3, such that
for some 0 < r′ < r0, gλ|Br0 is continuous in C2, and r(1 − uλ), rβλ, and rvλ are
continuous in H4,α

[r′,∞), then gλ is continuous in C2,α
−1 .

Lemma 8. M1 is connected to M2.

Proof. Let g ∈M1, choose r1 such that 2κ−R > 0 for r < r1, and r0 with r0 < r1.
For each λ ∈ [0, 1], define gλ = g inside Br0 , βλ = β, and vλ = v everywhere.
We have κλ, H̄λ > 0. Let ϕ(r) be a smooth cut-off function on [0,∞), satisfying
0 ≤ ϕ ≤ 1, ϕ = 1 on [0, r0], and ϕ = 0 on [r1,∞). Define ϕλ(r) = (1 − λ) + λϕ(r)
and define Rλ = ϕλR. Then Rλ is monotonically decreasing in λ, Rλ = R on Br0 ,
and supp(R1) ⊂ Br1 . Thus, Theorems 3 and 5 can be used to solve equation (12)
on [r0,∞) × S2 for uλ ∈ H4,α. The continuity of uλ and mλ with respect to λ is
obtained from Theorem 6. Clearly, g1 ∈M2 and the lemma follows.

Lemma 9. M2 is connected to M3.

Proof. Let g ∈ M2, and put Rλ = R. For λ ∈ [1,∞) define β̃λ =
(
φλ
)∗
β, ṽλ =(

φλ
)∗
v, where φλ(r, θ) = (λr, θ). Note that rβ̃λ and rṽλ are continuous in H6,α

I

since rβ̃λ and rṽλ are uniformly bounded in H8,α
I . Now, let βλ = ϕβ + (1 − ϕ)β̃λ,

and define vλ by e2vλ = ϕe2v + (1 − ϕ)e2ṽλ , where ϕ(r) is a cut-off function as in
the proof of the previous lemma. It follows from (9) that

e2vλH̄λ = ϕe2vH̄ + (1− ϕ)e2ṽλH̃λ + (e2v − e2ṽλ)rϕ′,

where H̃λ =
(
φλ
)∗
H̄. Thus, since v and ṽλ tend to zero as r → ∞, it follows that

if r0 and r1/r0 are large enough, then H̄λ > 0 for r > r0. Furthermore, in view
of (10), the Gauss curvature κλ is given by

r2e2vλκλ = 1−∆/vλ = r2(ϕe2vκ+ (1 − ϕ)e2ṽλ κ̃λ) +
∣∣∇/v∣∣2

− 2e−2vλ(ϕe2v
∣∣∇/v∣∣2 + (1− ϕ)e2ṽλ

∣∣∇/ ṽλ∣∣2),

where κ̃λ =
(
φλ
)∗
κ. Hence, since also

∣∣∇/v∣∣ and
∣∣∇/ ṽλ∣∣ tend to zero as r → ∞, we

see that if r0 is large enough, then κλ > 0 for r > r0. By choosing r0 large enough,
we can also ensure that R = 0 outside Br0 . As in the proof of the previous lemma,
we define gλ = g inside Br0 , and solve equation (12) for uλ outside Br0 . The
existence of uλ for all r ≥ r0 is now guaranteed by Theorem 1. Note that outside
Br1 , βλ = β̃λ, vλ = ṽλ, hence we have a uniformly bounded solution λ−1

(
φλ
)∗
m

of equation (22), and therefore Theorem 5 applies to give the asymptotic behavior
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of uλ for r → ∞. It is easy to see that the path gλ can be extended continuously
to [1,∞], and since βλ and vλ tend to zero as λ → ∞ for r > r1, it follows that
g∞ ∈M3.

Lemma 10. M3 is connected to M4.

Proof. Let g ∈ M3, choose r0 > 0 so that R, β, and v are supported in Br0 , and
let ϕ(r) be a cut-off function as above. For λ ∈ [1,∞), define βλ = ϕ

(
φ1/λ

)∗
β,

and ṽλ =
(
φ1/λ

)∗
v. Let r0 < r1 < r2, and let ζ(r) be a smooth function satisfying

0 ≤ ζ ≤ 1, ζ = 1 on [0, r1], ζ = 0 on [r2,∞). Let H̃λ =
(
φ1/λ

)∗
H̄, and note that

inf H̃λ = inf H̄ > 0, hence h = inf H̃λ is independent of λ. Let f(r) be a smooth
non-negative function supported on [r0, r2], satisfying on [r0, r1] the inequality:

f > −r−a−1(ϕh+ rϕ′),

where a = max{−(2 + 2r∂r ṽλ), 0}. Let ξ(r) = ra
∫ r
r0
f(s) ds, ψ = ξ + ϕ, and

vλ = ζ(ṽλ + 1
2 logψ). Since ξ ≥ 0, it now follows from (9) that we have for

r0 < r < r1:

ψH̄λ = ξ(2 + 2r∂r ṽλ) + rξ′ + ϕH̃λ + rϕ′ > −aξ + rξ′ − ra+1f = 0.

Furthermore, since βλ = 0 in Br2 \ Br1 , we can also choose ζ so as to ensure that
H̄λ > 0 there, provided that r2/r1 is large enough. Since the deformation of v
is radial, it is clear that κλ > 0. Define gλ = λ2

(
φ1/λ

)∗
g in Br0 , and as before,

solve for uλ in (12) on [r0,∞) × S2 with initial data uλ|Sr0 . Global existence
and asymptotic behavior as r → ∞ is obtained from Theorems 1 and 4. The
path gλ can be extended continuously to [1,∞], and since βλ, vλ, and Rλ tend
to zero as λ → ∞, it follows that uλ tends to 1. Consequently g∞ is flat, and
the continuous path gλ joins g1 to a flat metric g∞ ∈ M4. However, note that
g1 6= g, since clearly v1 6= v. In order to complete the proof of the lemma, we now
define a continuous path gλ, λ ∈ [0, 1], between g and g1. Define gλ = g in Br0 ,
βλ = β, Rλ = R, and vλ = ζ

(
v + (1/2) log(1 − λ + λψ)

)
. Then from (9) we get

e2vλH̄λ = (1 − λ)e2v0H̄0 + λe2v1H̄1 > 0 in [r0, r1], and as before H̄λ > 0 also in
[r1, r2] provided r2/r1 is large enough. Clearly, as before, we have κλ > 0. Thus,
we can solve for uλ in (12) as above.

Note that due to the uniformization step in Lemma 7, the final flat metric g∞
in Lemma 10 may be different from the background flat metric originally given in
M0.
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