Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm
Author:
Peter Weidemaier
Journal:
Electron. Res. Announc. Amer. Math. Soc. 8 (2002), 47-51
MSC (2000):
Primary 35K20, 46E35; Secondary 26D99
DOI:
https://doi.org/10.1090/S1079-6762-02-00104-X
Published electronically:
December 19, 2002
MathSciNet review:
1945779
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We determine the exact regularity of the trace of a function $u \in L_{q} (0,T; W_{p}^{2}(\Omega ))$ $\cap W^{1}_{q} (0,T; {L_{p} (\Omega ))}$ and of the trace of its spatial gradient on $\partial \Omega \times ( 0,T )$ in the regime $p \le q$. While for $p=q$ both the spatial and temporal regularity of the traces can be completely characterized by fractional order Sobolev-Slobodetskii spaces, for $p \neq q$ the Lizorkin-Triebel spaces turn out to be necessary for characterizing the sharp temporal regularity.
- Oleg V. Besov, Valentin P. Il′in, and Sergey M. Nikol′skiĭ, Integral representations of functions and imbedding theorems. Vol. I, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian; Edited by Mitchell H. Taibleson. MR 519341
- Piermarco Cannarsa and Vincenzo Vespri, On maximal $L^p$ regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 1, 165–175 (English, with Italian summary). MR 841623
- Philippe Clément and Jan Prüss, Global existence for a semilinear parabolic Volterra equation, Math. Z. 209 (1992), no. 1, 17–26. MR 1143209, DOI 10.1007/BF02570816
- Thierry Coulhon and Xuan Thinh Duong, Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss, Adv. Differential Equations 5 (2000), no. 1-3, 343–368. MR 1734546
- Pierre Grisvard, Commutativité de deux foncteurs d’interpolation et applications, J. Math. Pures Appl. (9) 45 (1966), 207–290 (French). MR 221310
- Matthias Hieber and Jan Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1647–1669. MR 1469585, DOI 10.1080/03605309708821314
- V. P. Il′in and V. A. Solonnikov, Some properties of differentiable functions of several variables, Trudy Mat. Inst. Steklov. 66 (1962), 205–226 (Russian). MR 0152793
- Hirokazu Iwashita, $L_q$-$L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_q$ spaces, Math. Ann. 285 (1989), no. 2, 265–288. MR 1016094, DOI 10.1007/BF01443518
- N. V. Krylov, The Calderón-Zygmund theorem and its applications to parabolic equations, Algebra i Analiz 13 (2001), no. 4, 1–25 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 4, 509–526. MR 1865493
- Alois Kufner, Oldřich John, and Svatopluk Fučík, Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague, 1977. MR 0482102
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
Soh01 Sohr H., The Navier-Stokes equations, Birkhäuser, Basel, 2001.
- V. A. Solonnikov, A priori estimates for solutions of second-order equations of parabolic type, Trudy Mat. Inst. Steklov. 70 (1964), 133–212 (Russian). MR 0162065
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- Wolf von Wahl, The equation $u^{\prime } +A(t)u=f$ in a Hilbert space and $L^{p}$-estimates for parabolic equations, J. London Math. Soc. (2) 25 (1982), no. 3, 483–497. MR 657505, DOI 10.1112/jlms/s2-25.3.483
- Peter Weidemaier, On the trace theory for functions in Sobolev spaces with mixed $L_p$-norm, Czechoslovak Math. J. 44(119) (1994), no. 1, 7–20. MR 1257932
- Peter Weidemaier, On the sharp initial trace of functions with derivatives in $L_q(0,T;L_p(\Omega ))$, Boll. Un. Mat. Ital. B (7) 9 (1995), no. 2, 321–338 (English, with Italian summary). MR 1333965
- Peter Weidemaier, Existence results in $L_p$-$L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions, Progress in partial differential equations, Vol. 2 (Pont-à-Mousson, 1997) Pitman Res. Notes Math. Ser., vol. 384, Longman, Harlow, 1998, pp. 189–200. MR 1628147
Hab Weidemaier P., Maximal regularity results in Sobolev spaces with mixed $L_p$-norm for linear parabolic equations of second order with inhomogeneous boundary conditions, 1998 (unpublished manuscript).
- Peter Weidemaier and Gord Sinnamon, Perturbed weighted Hardy inequalities, J. Math. Anal. Appl. 234 (1999), no. 1, 287–292. MR 1694825, DOI 10.1006/jmaa.1999.6368
PWe12Weidemaier P., Vector-valued Lizorkin-Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems, submitted.
BeIN78 Besov O. V., Il’in V. P., Nikol’skii S. M., Integral representations of functions and imbedding theorems, vol. 1, Wiley, New York, 1978.
CaV86 Cannarsa P., Vespri V., On maximal $L^p$ regularity for the abstract Cauchy problem, Boll. Unione Mat. Ital. (6) 9–B (1986), 165–175.
ClP92 Clément Ph., Prüss J., Global existence for a semilinear parabolic Volterra equation, Math. Z. 209 (1992), 17–26.
CoD00 Coulhon Th., Duong X. T., Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss, Advances Differential Equations, 5 (2000), 343–368.
Gri66 Grisvard P., Commutativité de deux foncteurs d’interpolation et applications, II, J. Math. Pures Appl. 45 (1966), 207–290.
HiP97 Hieber M., Prüss J., Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations 22 (1997), 1647–1669.
IlS62 Il’in V. P., Solonnikov V. A., On some properties of differentiable functions of several variables, Transl. AMS 81 (1969), 67–90 (Trudy Mat. Inst. Steklov 66 (1962), 205–226).
Iwa89 Iwashita H., $L_q-L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L_q$ spaces, Math. Ann. 285 (1989), 265–288.
Kry02 Krylov N. V., On the Calderón-Zygmund theorem with applications to parabolic equations, St. Petersburg Math. J. 13 (2002), 509–526 (Algebra i Analiz 13 (2001), 1–25).
KuJF77 Kufner A., John O., Fučik S., Function spaces, Noordhoff Int. Publ., Leyden, 1977.
LaSU68 Ladyzhenskaya O. A., Solonnikov V. A., Ural’tseva N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monogr. 23 Amer. Math. Soc., Providence, RI, 1968.
Soh01 Sohr H., The Navier-Stokes equations, Birkhäuser, Basel, 2001.
Sol64 Solonnikov V. A., A priori estimates for second order parabolic equations, Transl. AMS 65 (1967), 51–137 (Trudy Mat. Inst. Steklov 70 (1964), 133–212).
Tri83 Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983.
vWa82 von Wahl W., The equation $u’+A(t)u = f$ in a Hilbert space and $L^p$-estimates for parabolic equations, J. London Math. Soc. 25 (1982), 483–497.
Wei94 Weidemaier P., On the trace theory for functions in Sobolev spaces with mixed $L_p$-norm, Czechoslovak Math. J. 44 (1994), 7–20.
Wei95 Weidemaier P., On the sharp initial trace of functions with derivatives in $L_q(0, T; L_p(\omega ))$, Boll. Unione Mat. Ital. 9-B (1995), 321–338.
Wei98 Weidemaier P., Existence results in $L_p-L_q$-spaces for second order parabolic equations with inhomogeneous boundary conditions, In: Amann H. et al., Progress in Partial Differential Equations, Proc. Pont-à-Mousson 1997, Pitman Research Notes in Mathematics 384, Longman, Harlow, UK, 1998, pp. 189–200.
Hab Weidemaier P., Maximal regularity results in Sobolev spaces with mixed $L_p$-norm for linear parabolic equations of second order with inhomogeneous boundary conditions, 1998 (unpublished manuscript).
WeS99 Weidemaier P., Sinnamon G., Perturbed weighted Hardy inequalities, Journal Math. Anal. Appl. 234 (1999), 287–292.
PWe12Weidemaier P., Vector-valued Lizorkin-Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems, submitted.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
35K20,
46E35,
26D99
Retrieve articles in all journals
with MSC (2000):
35K20,
46E35,
26D99
Additional Information
Peter Weidemaier
Affiliation:
Fraunhofer-Institut Kurzzeitdynamik, Eckerstr. 4, D-79104 Freiburg, Germany
Email:
weide@emi.fhg.de
Keywords:
Maximal regularity,
inhomogeneous boundary conditions,
trace theory,
mixed norm,
Lizorkin-Triebel spaces
Received by editor(s):
October 16, 2002
Published electronically:
December 19, 2002
Communicated by:
Michael E. Taylor
Article copyright:
© Copyright 2002
American Mathematical Society