Skip to Main Content
Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

A note on the construction of nonseparable wavelet bases and multiwavelet matrix filters of $L^2(\mathbb {R}^n)$, where $n\geq 2$


Author: Abderrazek Karoui
Journal: Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 32-39
MSC (2000): Primary 39B42, 42C05; Secondary 42C15
DOI: https://doi.org/10.1090/S1079-6762-03-00109-4
Published electronically: April 4, 2003
MathSciNet review: 1988870
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we announce a general method for the construction of nonseparable orthogonal wavelet bases of $L^2(\mathbb {R}^n),$ where $n\geq 2.$ Hence, we prove the existence of such type of wavelet bases for any integer $n\geq 2.$ Moreover, we show that this construction method can be extended to the construction of $n$-D multiwavelet matrix filters.


References [Enhancements On Off] (What's this?)

  • Antoine Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for $L^2(\textbf {R}^2)$ of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), no. 1, 37–58. MR 1681636, DOI 10.4171/RMI/249
  • lai W. He and M. Jun Lai, Construction of bivariate nonseparable compactly supported orthonormal multiwavelets with arbitrary high regularity, Preprint.
  • Hui Ji, Sherman D. Riemenschneider, and Zuowei Shen, Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets, Stud. Appl. Math. 102 (1999), no. 2, 173–204. MR 1668532, DOI 10.1111/1467-9590.00108
  • Abderrazek Karoui and Rémi Vaillancourt, Nonseparable biorthogonal wavelet bases of $L^2(\textbf {R}^n)$, Spline functions and the theory of wavelets (Montreal, PQ, 1996) CRM Proc. Lecture Notes, vol. 18, Amer. Math. Soc., Providence, RI, 1999, pp. 135–151. MR 1676241, DOI 10.1090/crmp/018/13
  • Abderrazek Karoui, A technique for the construction of compactly supported biorthogonal wavelets of $L^2(\textbf {R}^n),\ n\geq 2$, J. Math. Anal. Appl. 249 (2000), no. 2, 367–392. MR 1781230, DOI 10.1006/jmaa.2000.6867
  • karoui2 A. Karoui, A general construction of nonseparable multivariate orthonormal wavelet bases and multidimensional multiwavelet matrix filters, Preprint.
  • W. Lawton, S. L. Lee, and Zuowei Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal. 28 (1997), no. 4, 999–1014. MR 1453317, DOI 10.1137/S003614109528815X
  • Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
  • Zuowei Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998), no. 1, 235–250. MR 1617183, DOI 10.1137/S0036141096302688

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (2000): 39B42, 42C05, 42C15

Retrieve articles in all journals with MSC (2000): 39B42, 42C05, 42C15


Additional Information

Abderrazek Karoui
Affiliation: Université du 7 Novembre à Carthage, Institut Supérieur des Sciences Appliquées et de la Technologie de Mateur, 7030, Tunisia
Email: abkaroui@yahoo.com

Keywords: Multidimensional wavelet bases, multiwavelet bases, refinement equation, stability
Received by editor(s): December 14, 2001
Published electronically: April 4, 2003
Communicated by: Guido Weiss
Article copyright: © Copyright 2003 American Mathematical Society