A note on the construction of nonseparable wavelet bases and multiwavelet matrix filters of $L^2(\mathbb {R}^n)$, where $n\geq 2$
Author:
Abderrazek Karoui
Journal:
Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 32-39
MSC (2000):
Primary 39B42, 42C05; Secondary 42C15
DOI:
https://doi.org/10.1090/S1079-6762-03-00109-4
Published electronically:
April 4, 2003
MathSciNet review:
1988870
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this note, we announce a general method for the construction of nonseparable orthogonal wavelet bases of $L^2(\mathbb {R}^n),$ where $n\geq 2.$ Hence, we prove the existence of such type of wavelet bases for any integer $n\geq 2.$ Moreover, we show that this construction method can be extended to the construction of $n$-D multiwavelet matrix filters.
- Antoine Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for $L^2(\textbf {R}^2)$ of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), no. 1, 37–58. MR 1681636, DOI 10.4171/RMI/249
lai W. He and M. Jun Lai, Construction of bivariate nonseparable compactly supported orthonormal multiwavelets with arbitrary high regularity, Preprint.
- Hui Ji, Sherman D. Riemenschneider, and Zuowei Shen, Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets, Stud. Appl. Math. 102 (1999), no. 2, 173–204. MR 1668532, DOI 10.1111/1467-9590.00108
- Abderrazek Karoui and Rémi Vaillancourt, Nonseparable biorthogonal wavelet bases of $L^2(\textbf {R}^n)$, Spline functions and the theory of wavelets (Montreal, PQ, 1996) CRM Proc. Lecture Notes, vol. 18, Amer. Math. Soc., Providence, RI, 1999, pp. 135–151. MR 1676241, DOI 10.1090/crmp/018/13
- Abderrazek Karoui, A technique for the construction of compactly supported biorthogonal wavelets of $L^2(\textbf {R}^n),\ n\geq 2$, J. Math. Anal. Appl. 249 (2000), no. 2, 367–392. MR 1781230, DOI 10.1006/jmaa.2000.6867
karoui2 A. Karoui, A general construction of nonseparable multivariate orthonormal wavelet bases and multidimensional multiwavelet matrix filters, Preprint.
- W. Lawton, S. L. Lee, and Zuowei Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal. 28 (1997), no. 4, 999–1014. MR 1453317, DOI 10.1137/S003614109528815X
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Zuowei Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998), no. 1, 235–250. MR 1617183, DOI 10.1137/S0036141096302688
Ayache A. Ayache, Construction of nonseparable dyadic compactly supported orthonormal wavelet bases for $L^2(\mathbb {R}^2)$ of arbitrarily high regularity, Rev. Math. Iberoamericana 15 (1999), 37–58.
lai W. He and M. Jun Lai, Construction of bivariate nonseparable compactly supported orthonormal multiwavelets with arbitrary high regularity, Preprint.
shen1 H. Ji, S. D. Riemenschneider and Z. Shen, Multivariate compactly supported refinable functions, duals and biorthogonal wavelets, Studies in Applied Mathematics 102 (1999), 173–204.
kv A. Karoui and R. Vaillancourt, Nonseparable biorthogonal wavelet bases of $L^2(\mathbb {R}^n)$, CRM Proceedings and Lecture Notes, Vol. 18, pp. 135–151, American Math. Society, Providence, RI, 1999.
karoui A. Karoui, A Technique for the construction of compactly supported biorthogonal wavelets of $L^2(\mathbb {R}^n), n\geq 2,$ J. Math. Anal. Appl. 249 (2000), 367–392.
karoui2 A. Karoui, A general construction of nonseparable multivariate orthonormal wavelet bases and multidimensional multiwavelet matrix filters, Preprint.
law W. Lawton, S.L. Lee and Z. Shen, Stability and orthonormality of multivariate refinable functions, SIAM. J. Math. Anal. 28 (1997), 999–1014.
ym Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Vol. 37, Cambridge University Press, Cambridge, 1992.
shen2 Z. Shen, Refinable function vectors, SIAM. J. Math. Anal. 29 (1998), 235–250.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
39B42,
42C05,
42C15
Retrieve articles in all journals
with MSC (2000):
39B42,
42C05,
42C15
Additional Information
Abderrazek Karoui
Affiliation:
Université du 7 Novembre à Carthage, Institut Supérieur des Sciences Appliquées et de la Technologie de Mateur, 7030, Tunisia
Email:
abkaroui@yahoo.com
Keywords:
Multidimensional wavelet bases,
multiwavelet bases,
refinement equation,
stability
Received by editor(s):
December 14, 2001
Published electronically:
April 4, 2003
Communicated by:
Guido Weiss
Article copyright:
© Copyright 2003
American Mathematical Society