Local rigidity of actions of higher rank abelian groups and KAM method
Authors:
Danijela Damjanović and Anatole Katok
Journal:
Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 142-154
MSC (2000):
Primary 37C85, 37C15, 58C15
DOI:
https://doi.org/10.1090/S1079-6762-04-00139-8
Published electronically:
December 10, 2004
MathSciNet review:
2119035
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We develop a new method for proving local differentiable rigidity for actions of higher rank abelian groups. Unlike earlier methods it does not require previous knowledge of structural stability and instead uses a version of the KAM (Kolmogorov-Arnold-Moser) iterative scheme. As an application we show $\mathcal {C}^\infty$ local rigidity for $\mathbb {Z}^k\ (k\ge 2)$ partially hyperbolic actions by toral automorphisms. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions by automorphisms on any torus $\mathbb {T}^N$ for any even $N\ge 6$.
DK D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions of $\mathbb {Z}^k$ and $\mathbb {R}^k,\,\,k\ge 2$. I. KAM method and actions on the torus, Preprint, 2004, http://www.math.psu.edu/katok_a/papers.html
EKL M. Einseidler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions in Littlewood’s conjecture, Ann. Math., to appear.
FisherMargulis D. Fisher and G.A. Margulis, Local rigidity for affine actions of higher rank Lie groups and their lattices, Preprint, 2004.
- M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998), no. 1-2, 149–163. MR 1618331, DOI 10.4310/MRL.1998.v5.n2.a2
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- Steven Hurder, Affine Anosov actions, Michigan Math. J. 40 (1993), no. 3, 561–575. MR 1236179, DOI 10.1307/mmj/1029004838
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Anatole Katok and Svetlana Katok, Higher cohomology for abelian groups of toral automorphisms, Ergodic Theory Dynam. Systems 15 (1995), no. 3, 569–592. MR 1336707, DOI 10.1017/S0143385700008531
- Anatole Katok, Svetlana Katok, and Klaus Schmidt, Rigidity of measurable structure for ${\Bbb Z}^d$-actions by automorphisms of a torus, Comment. Math. Helv. 77 (2002), no. 4, 718–745. MR 1949111, DOI 10.1007/PL00012439
- A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, DOI 10.1007/BF02776025
- A. Katok and J. Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions, Israel J. Math. 93 (1996), 253–280. MR 1380646, DOI 10.1007/BF02761106
- Anatole Katok and Ralf J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131–156. MR 1307298, DOI 10.1007/BF02698888
- A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Lett. 1 (1994), no. 2, 193–202. MR 1266758, DOI 10.4310/MRL.1994.v1.n2.a7
- A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 292–319; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 287–314. MR 1632177
- Yitzhak Katznelson, Ergodic automorphisms of $T^{n}$ are Bernoulli shifts, Israel J. Math. 10 (1971), 186–195. MR 294602, DOI 10.1007/BF02771569
- Vladimir F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 24, Springer-Verlag, Berlin, 1993. With an addendum by A. I. Shnirel′man. MR 1239173, DOI 10.1007/978-3-642-76247-5
- Rafael de la Llave, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175–292. MR 1858536, DOI 10.1090/pspum/069/1858536
- Ricardo Mañé, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161–210. MR 932138
- Gregory A. Margulis and Nantian Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 121–164. MR 1826664, DOI 10.1017/S0143385701001109
- Jürgen Moser, On commuting circle mappings and simultaneous Diophantine approximations, Math. Z. 205 (1990), no. 1, 105–121. MR 1069487, DOI 10.1007/BF02571227
- J. W. Robbin, A structural stability theorem, Ann. of Math. (2) 94 (1971), 447–493. MR 287580, DOI 10.2307/1970766
- A. N. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, J. Math. Sci. (New York) 95 (1999), no. 5, 2576–2582. Dynamical systems. 7. MR 1712745, DOI 10.1007/BF02169057
RH F. Rodrigues Hertz, Stable ergodicity of certain linear automorphisms of the torus, Ann. Math. (2004), to appear.
- William A. Veech, Periodic points and invariant pseudomeasures for toral endomorphisms, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 449–473. MR 863205, DOI 10.1017/S0143385700003606
DK D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions of $\mathbb {Z}^k$ and $\mathbb {R}^k,\,\,k\ge 2$. I. KAM method and actions on the torus, Preprint, 2004, http://www.math.psu.edu/katok_a/papers.html
EKL M. Einseidler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions in Littlewood’s conjecture, Ann. Math., to appear.
FisherMargulis D. Fisher and G.A. Margulis, Local rigidity for affine actions of higher rank Lie groups and their lattices, Preprint, 2004.
GK M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998), no. 1-2, 149–163.
HPS M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics 583, Springer-Verlag, Berlin, 1977.
Hurder S. Hurder, Affine Anosov actions, Michigan Math. J. 40 (1993), no. 3, 561–575.
KH A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications 54, Cambridge University Press, 1995.
KK A. Katok and S. Katok, Higher cohomology for abelian groups of toral automorphisms, Ergod. Th. Dynam. Sys. 15 (1995), 569–592.
KKS A. Katok, S. Katok, and K. Schmidt, Rigidity of measurable structure for $\mathbb {Z}^d$ actions by automorphisms of a torus, Comm. Math. Helv. 77 (2002), 718–745.
KatokLewis A. Katok and J. Lewis, Local rigidity of certain groups of toral automorphisms, Israel J. Math. 75 (1991), 203–241.
KL A. Katok and J. Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving action, Israel J. Math. 93 (1996), 253–280.
KSfirst A. Katok and R. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publ. Math. I.H.E.S., 79 (1994), 131–156.
KSpartial A. Katok and R. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Lett. 1 (1994), no. 2, 193–202.
KS A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math. 216 (1997), 287–314.
Katz Y. Katznelson, Ergodic automorphisms on $\mathbb {T}^n$ are Bernoulli shifts, Israel J. Math. 10 (1971), 186–195.
L V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Springer-Verlag, Berlin, 1993.
dll R. de la Llave, Tutorial on KAM theory. Smooth ergodic theory and its applications, Proc. Sympos. Pure Math. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175–292.
Mane R. Mañè, A proof of the $\mathcal {C}^1$ stability conjecture, Publ. Math. I.H.E.S. 66 (1988), 161–210.
MargulisQian G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergod. Th. Dynam. Sys. 21 (2001), 121–164.
Moser J. Moser, On commuting circle mappings and simultaneous Diophantine approximations, Math. Z. 205 (1990), 105–121.
robbin J. Robbin, A structural stability theorem, Ann. Math. 94 (1971), 447–493.
Starkov A. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, Dynamical systems, 7, J. Math. Sci. (New York) 95 (1999), no. 5, 2576–2582.
RH F. Rodrigues Hertz, Stable ergodicity of certain linear automorphisms of the torus, Ann. Math. (2004), to appear.
Veech W. Veech, Periodic points and invariant pseudomeasures, Ergod. Th. Dynam. Sys. 6 (1986), 449–473.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
37C85,
37C15,
58C15
Retrieve articles in all journals
with MSC (2000):
37C85,
37C15,
58C15
Additional Information
Danijela Damjanović
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
Address at time of publication:
Erwin Schroedinger Institute, Boltzmanngasse 9, A-1090 Vienna, Austria
Email:
damjanov@math.psu.edu
Anatole Katok
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
MR Author ID:
99105
Email:
katok_a@math.psu.edu
Keywords:
Local rigidity,
group actions,
KAM method,
torus
Received by editor(s):
September 19, 2004
Published electronically:
December 10, 2004
Additional Notes:
Anatole Katok was partially supported by NSF grant DMS 0071339
Communicated by:
Gregory Margulis
Article copyright:
© Copyright 2004
Danijela Damjanovic and Anatole Katok
The copyright for this article reverts to public domain 28 years after publication.