Skip to Main Content
Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Cluster homology: An overview of the construction and results


Authors: Octav Cornea and François Lalonde
Journal: Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 1-12
MSC (2000): Primary 53D12; Secondary 53D40
DOI: https://doi.org/10.1090/S1079-6762-06-00154-5
Published electronically: February 10, 2006
MathSciNet review: 2200949
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We associate, to a Lagrangian submanifold $L$ of a symplectic manifold, a new homology, called the cluster homology of $L$, which is invariant up to ambient symplectic diffeomorphisms. We discuss various applications concerning analytical, topological, and dynamical properties of Lagrangian submanifolds. We also deduce a new universal Floer homology, defined without obstruction, for pairs of Lagrangian submanifolds.


References [Enhancements On Off] (What's this?)

  • Peter Albers, On the extrinsic topology of Lagrangian submanifolds, Int. Math. Res. Not. 38 (2005), 2341–2371. MR 2180810, DOI 10.1155/IMRN.2005.2341
  • BaCo2 J.-F. Barraud, O. Cornea, Homotopical Dynamics in Symplectic Topology, Morse theoretic methods in nonlinear analysis and in symplectic topology, pp. 109–148, Springer-Verlag, 2006. Bou F. Bourgeois, A Morse-Bott approach to contact homology, PhD thesis, Stanford University 2002. CL O. Cornea, F. Lalonde, Cluster homology, arXiv:math.SG/0508345 August 2005. FOOO K. Fukaya, Y-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory—anomaly and obstruction, Preprint. Fu K. Fukaya, Application of Floer homology of Lagrangian submanifolds to symplectic topology, To appear in the NATO-ASI 2004 volume, Kluwer, 2005.
  • Daniel Gatien and François Lalonde, Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics, Duke Math. J. 102 (2000), no. 3, 485–511. MR 1756107, DOI 10.1215/S0012-7094-00-10236-0
  • M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
  • HoWiZe H. Hofer, K. Wysocki, E. Zehnder, Polyfolds and Fredholm theory, Preprint 2005.
  • Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629, DOI 10.1090/coll/052
  • Yong-Geun Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 201–267. MR 1432465
  • Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, DOI 10.1002/cpa.3160460702
  • S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 171–200. MR 1432464
  • Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874, DOI 10.1016/0040-9383(93)90052-W
  • Matthias Schwarz, A quantum cup-length estimate for symplectic fixed points, Invent. Math. 133 (1998), no. 2, 353–397. MR 1632778, DOI 10.1007/s002220050248

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (2000): 53D12, 53D40

Retrieve articles in all journals with MSC (2000): 53D12, 53D40


Additional Information

Octav Cornea
Affiliation: Université de Montréal, Département de Mathématiques et de Statistique, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada
MR Author ID: 346358
Email: cornea@dms.umontreal.ca

François Lalonde
Affiliation: Université de Montréal, Département de Mathématiques et de Statistique, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada
Email: lalonde@dms.umontreal.ca

Keywords: Lagrangian submanifolds, bubbling
Received by editor(s): August 31, 2005
Published electronically: February 10, 2006
Additional Notes: The authors were supported in part by individual NSERC Discovery Grants and by team FQRNT grants.
Communicated by: Leonid Polterovich
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.