Vanishing of the entropy pseudonorm for certain integrable systems
Authors:
Boris S. Kruglikov and Vladimir S. Matveev
Journal:
Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 19-28
MSC (2000):
Primary 37C85, 37J35, 37B40; Secondary 70H07, 37A35
DOI:
https://doi.org/10.1090/S1079-6762-06-00156-9
Published electronically:
March 2, 2006
MathSciNet review:
2200951
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We introduce the notion of entropy pseudonorm for an action of $\mathbb {R}^n$ and prove that it vanishes for the group actions associated with a large class of integrable Hamiltonian systems.
- V. I. Arnol′d, Matematicheskie metody klassicheskoĭ mekhaniki, 3rd ed., “Nauka”, Moscow, 1989 (Russian). MR 1037020
- S. Benenti, Inertia tensors and Stäckel systems in the Euclidean spaces, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), no. 4, 315–341 (1993). Differential geometry (Turin, 1992). MR 1261446
- S. Benenti, An outline of the geometrical theory of the separation of variables in the Hamilton-Jacobi and Schrödinger equations, SPT 2002: Symmetry and perturbation theory (Cala Gonone), World Sci. Publ., River Edge, NJ, 2002, pp. 10–17. MR 1976651, DOI 10.1142/9789812795403_{0}002
- Sergio Benenti, Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems, Acta Appl. Math. 87 (2005), no. 1-3, 33–91. MR 2151124, DOI 10.1007/s10440-005-1138-9
- A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems, Chapman & Hall/CRC, Boca Raton, FL, 2004. Geometry, topology, classification; Translated from the 1999 Russian original. MR 2036760, DOI 10.1201/9780203643426
- Alexey V. Bolsinov and Vladimir S. Matveev, Geometrical interpretation of Benenti systems, J. Geom. Phys. 44 (2003), no. 4, 489–506. MR 1943174, DOI 10.1016/S0393-0440(02)00054-2
- Alexey V. Bolsinov and Iskander A. Taimanov, Integrable geodesic flows with positive topological entropy, Invent. Math. 140 (2000), no. 3, 639–650. MR 1760753, DOI 10.1007/s002220000066
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- L. T. Butler and G. P. Paternain, Collective geodesic flows, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 1, 265–308 (English, with English and French summaries). MR 1973073
- Leo T. Butler, Toda lattices and positive-entropy integrable systems, Invent. Math. 158 (2004), no. 3, 515–549. MR 2104793, DOI 10.1007/s00222-004-0380-5
- M. Crampin, W. Sarlet, and G. Thompson, Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors, J. Phys. A 33 (2000), no. 48, 8755–8770. MR 1801467, DOI 10.1088/0305-4470/33/48/313
- L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4–35. MR 1036125, DOI 10.1007/BF02566590
- J. P. Conze, Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 11–30 (French). MR 335754, DOI 10.1007/BF00533332
- Victor Guillemin and Shlomo Sternberg, On collective complete integrability according to the method of Thimm, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 219–230. MR 742224, DOI 10.1017/S0143385700001930
- K. H. Hofmann and L. N. Stojanov, Topological entropy of group and semigroup actions, Adv. Math. 115 (1995), no. 1, 54–98. MR 1351326, DOI 10.1006/aima.1995.1050
- Hu Yi Hu, Some ergodic properties of commuting diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 1, 73–100. MR 1213080, DOI 10.1017/S0143385700007215
- A. Ibort, F. Magri, and G. Marmo, Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000), no. 3-4, 210–228. MR 1747040, DOI 10.1016/S0393-0440(99)00051-0
- Hidekazu Ito, Action-angle coordinates at singularities for analytic integrable systems, Math. Z. 206 (1991), no. 3, 363–407. MR 1095762, DOI 10.1007/BF02571351
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- B. Kruglikov, Examples of integrable sub-Riemannian geodesic flows, J. Dynam. Control Systems 8 (2002), no. 3, 323–340. MR 1914446, DOI 10.1023/A:1016378304071
KM B. S. Kruglikov, V. S. Matveev, Strictly nonproportional geodesically equivalent metrics have $h_\textrm {top}(g)=0$, Ergod. Th. & Dynam. Sys. 26 (2006), 219–245.
LC T. Levi-Civita, Sulle trasformazioni delle equazioni dinamiche, Ann. di Mat., serie $2^a$, 24 (1896), 255–300.
- Hans Lundmark and Stefan Rauch-Wojciechowski, Driven Newton equations and separable time-dependent potentials, J. Math. Phys. 43 (2002), no. 12, 6166–6194. MR 1939638, DOI 10.1063/1.1514833
- V. S. Matveev and P. Ĭ. Topalov, Trajectory equivalence and corresponding integrals, Regul. Chaotic Dyn. 3 (1998), no. 2, 30–45 (English, with English and Russian summaries). MR 1693470, DOI 10.1070/rd1998v003n02ABEH000069
- Vladimir S. Matveev, Hyperbolic manifolds are geodesically rigid, Invent. Math. 151 (2003), no. 3, 579–609. MR 1961339, DOI 10.1007/s00222-002-0263-6
- Vladimir S. Matveev, Three-dimensional manifolds having metrics with the same geodesics, Topology 42 (2003), no. 6, 1371–1395. MR 1981360, DOI 10.1016/S0040-9383(03)00004-1
- Vladimir S. Matveev, Projectively equivalent metrics on the torus, Differential Geom. Appl. 20 (2004), no. 3, 251–265. MR 2053913, DOI 10.1016/j.difgeo.2003.10.009
- Gabriel P. Paternain, On the topology of manifolds with completely integrable geodesic flows, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 109–121. MR 1162403, DOI 10.1017/S0143385700006623
- Gabriel P. Paternain, On the topology of manifolds with completely integrable geodesic flows. II, J. Geom. Phys. 13 (1994), no. 3, 289–298. MR 1269245, DOI 10.1016/0393-0440(94)90036-1
- Gabriel P. Paternain, Geodesic flows, Progress in Mathematics, vol. 180, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1712465, DOI 10.1007/978-1-4612-1600-1
PP G. P. Paternain, J. Petean, Zero entropy and bounded topology, preprint: ArXiv.org/math.DG/0406051; to appear in Comment. Math. Helv.
- Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237, DOI 10.7208/chicago/9780226662237.001.0001
- I. A. Taĭmanov, Topology of Riemannian manifolds with integrable geodesic flows, Trudy Mat. Inst. Steklov. 205 (1994), no. Novye Rezul′t. v Teor. Topol. Klassif. Integr. Sistem, 150–163 (Russian); English transl., Proc. Steklov Inst. Math. 4(205) (1995), 139–150. MR 1428676
A V. I. Arnold, Mathematical methods of classical mechanics, Nauka, Moscow; English transl., Graduate Texts in Mathematics, Springer, 1989.
B1 S. Benenti, Inertia tensors and Stäckel systems in the Euclidean spaces, Differential geometry (Turin, 1992). Rend. Sem. Mat. Univ. Politec. Torino 50 (1993), no. 4, 315–341.
B2 S. Benenti, An outline of the geometrical theory of the separation of variables in the Hamilton-Jacobi and Schrödinger equations, SPT 2002: Symmetry and perturbation theory (Cala Gonone), 10–17, World Sci. Publishing, River Edge, NJ, 2002.
B3 S. Benenti, Special Symmetric Two-tensors, Equivalent Dynamical Systems, Cofactor and Bi-Cofactor Systems, Acta Applicandae Mathematicae 87 (2005), no. 1-3, 33–91.
BF A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman & Hall, 2004.
BM A. V. Bolsinov, V. S. Matveev, Geometrical interpretation of Benenti’s systems, Journ. Geom. Phys. 44 (2003), 489–506.
BT A. V. Bolsinov, I. A. Taimanov, Integrable geodesic flows with positive topological entropy, Invent. Math. 140 (2000), 639–650.
Bo R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. A.M.S. 153 (1971), 401–414.
BP L. T. Butler, G. P. Paternain, Collective geodesic flows, Ann. Inst. Fourier (Grenoble) 53 (2003) no. 1, 265–308.
Bu L. T. Butler, Toda lattices and positive-entropy integrable systems, Invent. Math. 158 (2004), no. 3, 515–549.
CST M. Crampin, W. Sarlet, G. Thompson, Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors, J. Phys. A 33 (2000), no. 48, 8755–8770.
E L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals. Elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4–35.
C J. P. Conze, Entropie d’un groupe abelien de transformations, Z. Wahrsch. 25 (1972), 11–30.
GS V. Guillemin, S. Sternberg, On collective complete integrability according to the method of Thimm, Ergod. Th. & Dynam. Sys. 3 (1983), no. 2, 219–230.
HS K. H. Hofmann, L. N. Stojanov, Topological entropy of group and semigroup actions, Adv. Math. 115 (1995), no. 1, 54–98.
H Y. Hu, Some ergodic properties of commuting diffeomorphisms, Ergod. Th. & Dynam. Sys. 13 (1993), 73–100.
IMM A. Ibort, F. Magri, G. Marmo, Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000), no. 3-4, 210–228.
I H. Ito, Action-angle coordinates at singularities for analytic integrable systems, Math. Z. 206 (1991), 363–407.
KH A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl. 54, Cambridge University Press, Cambridge, 1995.
K B. Kruglikov, Examples of integrable sub-Riemannian geodesic flows, Jour. Dynam. Contr. Syst. 8 (2002), no. 3, 323–340.
KM B. S. Kruglikov, V. S. Matveev, Strictly nonproportional geodesically equivalent metrics have $h_\textrm {top}(g)=0$, Ergod. Th. & Dynam. Sys. 26 (2006), 219–245.
LC T. Levi-Civita, Sulle trasformazioni delle equazioni dinamiche, Ann. di Mat., serie $2^a$, 24 (1896), 255–300.
LR H. Lundmark, S. Rauch-Wojciechowski, Driven Newton equations and separable time-dependent potentials, J. Math. Phys. 43 (2002), no. 12, 6166–6194.
MT V. Matveev, P. Topalov, Trajectory equivalence and corresponding integrals, Regular and Chaotic Dynamics 3 (1998), no. 2, 30–45.
M1 V. S. Matveev, Hyperbolic manifolds are geodesically rigid, Invent. Math. 151 (2003), 579–609.
M2 V. S. Matveev, Three-dimensional manifolds having metrics with the same geodesics, Topology 42 (2003), no. 6, 1371–1395.
M3 V. S. Matveev, Projectively equivalent metrics on the torus, Diff. Geom. Appl. 20 (2004), 251–265.
P1 G. Paternain, On the topology of manifolds with completely integrable geodesic flows. I, Ergod. Th. & Dynam. Sys. 12 (1992), 109–121.
P2 G. Paternain, On the topology of manifolds with completely integrable geodesic flows. II, Journ. Geom. Phys. 123 (1994), 289–298.
P3 G. Paternain, Geodesic flows, Birkhäuser, 1999.
PP G. P. Paternain, J. Petean, Zero entropy and bounded topology, preprint: ArXiv.org/math.DG/0406051; to appear in Comment. Math. Helv.
Pe Y. Pesin, Dimension theory in dynamical systems, Chicago Lect. in Math. Ser., The University of Chicago Press, 1997.
T I. A. Taimanov, Topology of Riemannian manifolds with integrable geodesic flows, Proc. Steklov Inst. Math. 205 (1995), 139–150.
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (2000):
37C85,
37J35,
37B40,
70H07,
37A35
Retrieve articles in all journals
with MSC (2000):
37C85,
37J35,
37B40,
70H07,
37A35
Additional Information
Boris S. Kruglikov
Affiliation:
Institute of Mathematics and Statistics, University of Tromsø, Tromsø90-37, Norway
Email:
kruglikov@math.uit.no
Vladimir S. Matveev
Affiliation:
Mathematisches Institut der Albert-Ludwigs-Universität, Eckerstraße-1, Freiburg 79104, Germany
MR Author ID:
609466
Email:
matveev@email.mathematik.uni-freiburg.de
Received by editor(s):
October 4, 2005
Published electronically:
March 2, 2006
Communicated by:
Boris Hasselblatt
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.