Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln
HTML articles powered by AMS MathViewer
- by Wolfgang Soergel
- Represent. Theory 1 (1997), 37-68
- DOI: https://doi.org/10.1090/S1088-4165-97-00006-X
- Published electronically: March 7, 1997
English translation: Represent. Theory 1 (1997)
Abstract:
This article gives a selfcontained treatment of the theory of Kazhdan-Lusztig polynomials with special emphasis on affine reflection groups. There are only a few new results but several new proofs. We close with a conjectural character formula for tilting modules, which formed the starting point of these investigations.References
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- Henning Haahr Andersen, An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 60 (1986), no. 2, 125–153. MR 840301, DOI 10.1016/S0001-8708(86)80008-1
- Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159. MR 1182414, DOI 10.1007/BF02096627
- Henning Haahr Andersen, Filtrations and tilting modules, Aarhus Preprint No 7, 1996.
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Vinay V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), no. 1, 201–209. MR 1125213, DOI 10.1016/0021-8693(91)90225-W
- Vinay Deodhar, A brief survey of Kazhdan-Lusztig theory and related topics, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 105–124. MR 1278702, DOI 10.1090/pspum/056.1/1278702
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI 10.1007/BF02571640
- J. Matthew Douglass, An inversion formula for relative Kazhdan-Lusztig polynomials, Comm. Algebra 18 (1990), no. 2, 371–387. MR 1047315, DOI 10.1080/00927879008823919
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Masaharu Kaneda, On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups, J. Reine Angew. Math. 381 (1987), 116–135. MR 918844, DOI 10.1515/crll.1987.381.116
- Shin-ichi Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), no. 2, 103–130. MR 772611, DOI 10.1016/0001-8708(85)90017-9
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- George Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164. MR 591724, DOI 10.1016/0001-8708(80)90031-6
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR 604598, DOI 10.1090/pspum/037/604598
- George Lusztig, Intersection cohomology methods in representation theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 155–174. MR 1159211
- Dragan Miličić, Localization and representation theory of reductive Lie groups, Book in preparation.
Bibliographic Information
- Wolfgang Soergel
- Affiliation: Universität Freiburg, Mathematisches Institut, Eckerstrasse 1, D-79104 Freiburg, Germany
- Email: soergel@mathematik.uni-freiburg.de
- Received by editor(s): September 25, 1996
- Received by editor(s) in revised form: January 2, 1997
- Published electronically: March 7, 1997
- © Copyright 1997 By the author
- Journal: Represent. Theory 1 (1997), 37-68
- MSC (1991): Primary 05E99, 17B37
- DOI: https://doi.org/10.1090/S1088-4165-97-00006-X
- MathSciNet review: 1445511