## Kazhdan-Lusztig polynomials and a combinatoric for tilting modules

HTML articles powered by AMS MathViewer

- by Wolfgang Soergel
- Represent. Theory
**1**(1997), 83-114 - DOI: https://doi.org/10.1090/S1088-4165-97-00021-6
- Published electronically: May 5, 1997

Original article: Represent. Theory 1 (1997)

## Abstract:

This article gives a self-contained treatment of the theory of Kazhdan-Lusztig polynomials with special emphasis on affine reflection groups. There are only a few new results but several new proofs. We close with a conjectural character formula for tilting modules, which formed the starting point of these investigations.## References

- H. H. Andersen, J. C. Jantzen, and W. Soergel,
*Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$*, Astérisque**220**(1994), 321 (English, with English and French summaries). MR**1272539** - Henning Haahr Andersen,
*An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups*, Adv. in Math.**60**(1986), no. 2, 125–153. MR**840301**, DOI 10.1016/S0001-8708(86)80008-1 - Henning Haahr Andersen,
*Tensor products of quantized tilting modules*, Comm. Math. Phys.**149**(1992), no. 1, 149–159. MR**1182414**, DOI 10.1007/BF02096627 - Henning Haahr Andersen,
*Filtrations and tilting modules*, Aarhus Preprint No 7, 1996. - Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel,
*Koszul duality patterns in representation theory*, J. Amer. Math. Soc.**9**(1996), no. 2, 473–527. MR**1322847**, DOI 10.1090/S0894-0347-96-00192-0 - Nicolas Bourbaki,
*Éléments de mathématique*, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR**647314** - Vinay V. Deodhar,
*On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials*, J. Algebra**111**(1987), no. 2, 483–506. MR**916182**, DOI 10.1016/0021-8693(87)90232-8 - Vinay V. Deodhar,
*Duality in parabolic set up for questions in Kazhdan-Lusztig theory*, J. Algebra**142**(1991), no. 1, 201–209. MR**1125213**, DOI 10.1016/0021-8693(91)90225-W - Vinay Deodhar,
*A brief survey of Kazhdan-Lusztig theory and related topics*, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 105–124. MR**1278702**, DOI 10.1090/pspum/056.1/1278702 - Stephen Donkin,
*On tilting modules for algebraic groups*, Math. Z.**212**(1993), no. 1, 39–60. MR**1200163**, DOI 10.1007/BF02571640 - J. Matthew Douglass,
*An inversion formula for relative Kazhdan-Lusztig polynomials*, Comm. Algebra**18**(1990), no. 2, 371–387. MR**1047315**, DOI 10.1080/00927879008823919 - James E. Humphreys,
*Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR**1066460**, DOI 10.1017/CBO9780511623646 - Masaharu Kaneda,
*On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups*, J. Reine Angew. Math.**381**(1987), 116–135. MR**918844**, DOI 10.1515/crll.1987.381.116 - Shin-ichi Kato,
*On the Kazhdan-Lusztig polynomials for affine Weyl groups*, Adv. in Math.**55**(1985), no. 2, 103–130. MR**772611**, DOI 10.1016/0001-8708(85)90017-9 - David Kazhdan and George Lusztig,
*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, DOI 10.1007/BF01390031 - George Lusztig,
*Hecke algebras and Jantzen’s generic decomposition patterns*, Adv. in Math.**37**(1980), no. 2, 121–164. MR**591724**, DOI 10.1016/0001-8708(80)90031-6 - George Lusztig,
*Some problems in the representation theory of finite Chevalley groups*, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR**604598**, DOI 10.1090/pspum/037/604598 - George Lusztig,
*Intersection cohomology methods in representation theory*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 155–174. MR**1159211** - Dragan Miličić,
*Localization and representation theory of reductive Lie groups*, Book in preparation.

## Bibliographic Information

**Wolfgang Soergel**- Affiliation: Universität Freiburg, Mathematisches Institut, Eckerstrasse 1, D-79104 Freiburg, Germany
- Email: soergel@mathematik.uni-freiburg.de
- Received by editor(s): February 4, 1997
- Received by editor(s) in revised form: March 17, 1997
- Published electronically: May 5, 1997
- © Copyright 1997 By the author
- Journal: Represent. Theory
**1**(1997), 83-114 - MSC (1991): Primary 05E99, 17B37
- DOI: https://doi.org/10.1090/S1088-4165-97-00021-6
- MathSciNet review: 1444322