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KAZHDAN-LUSZTIG POLYNOMIALS AND A COMBINATORIC
FOR TILTING MODULES

WOLFGANG SOERGEL

ABSTRACT. This article gives a self-contained treatment of the theory of
Kazhdan-Lusztig polynomials with special emphasis on affine reflection groups.
There are only a few new results but several new proofs. We close with a con-
jectural character formula for tilting modules, which formed the starting point
of these investigations.

1. INTRODUCTION

While trying to write down conjectural character formulas for tilting modules,
I dived into the literature on Kazhdan-Lusztig polynomials, notably the works
of Kazhdan-Lusztig [KL79], Lusztig [Lus80a], Andersen [And86], Kato [Kat85],
Kaneda [Kan87] and Deodhar [Deo87, Deo91]. It seemed reasonable to me, to make
a synopsis of all these sources, to make them more easily accessible. That is done
in the first sections of this manuscript. The only new result there is Theorem 5.1.
However, many proofs and also the presentation as a whole (which fully develops
the point of view adopted in [Mil] and [Lus91]) are new. In particular the so-called
R-polynomials don’t appear at all in my presentation of the theory. In the last
section I finally reach my goal and give conjectural character formulas for tilting
modules. After that follows a graphically presented sample computation and an
index of notation. For a presentation of the basics of this article including the
results of the following section one might consult [Hum90]. For the third section
compare also [Deo94].

I thank Henning Haahr Andersen, who showed me his notes with related ideas,
and Corinne Blondel, Michele Couillens, Caroline Gruson, Jens Carsten Jantzen,
Friedrich Knop and George Lusztig for their helpful remarks on preliminary ver-
sions.

2. THE ORDINARY KAZHDAN-LUSZTIG POLYNOMIALS

Let (W, S) be a Coxeter system, [ : W — N the corresponding length function
and < the Bruhat order on W. In particular z < y means « < y, * # y. Let
L = Z[v,v™ '] be the ring of Laurent polynomials with integer coefficients in one
variable v. On the free £L-module with basis indexed by W,

H=HW,S) =P LT,
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there is exactly one structure of associative L-algebra such that T,T, = T, if
I(z) +1(y) = l(zy) and T? = v~ 2T, + (v=2 —1)T} for all s € S, see [Bousl], IV, §2,
Exercise 23. This associative algebra H is called the Hecke algebra corresponding
to (W, S).

It can also be given as the associative algebra over £ with generators {H;}ses
(for Hy = vTy), the quadratic relations H2 = 1 + (v~! — v)H, and the so-called
braid relations HsH; ... Hs = H;Hs ... H; resp. HiH:H,... H, = HiH;H; ... H;
if st...s =1ts...t resp. sts...t =tst...s for s,t € S. All H, are invertible, more
precisely, one checks that H;! = Hg + (v —v71).

From now on we work with H, = v/*)T}. Certainly we have H,H, = Hy, if
I(xz) + l(y) = l(xy). Hence with the Hy all H, are units in H. There is exactly one
ring homomorphism d : H — H, H — H such that 7 = v=! and H, = (H,1)"".
Certainly d is an involution. We call H € H self-dual if H = H.

Theorem 2.1 ([KL79]). For all x € W there exists a unique self-dual element
H, € H such that H, € Hy + 3 vZ[v]H,.

Remark 2.2. In [KL79] this H, is called C’. Furthermore Kazhdan and Lusztig
use the variable ¢ = v=2 and the £-basis consisting of the T}.

Proof. As we know already we have Hy, = H;' = H, + (v —v™') for all s € S.
In particular Cs = Hg + v is self-dual, C, = C,. (The expert reader should be
cautioned that our Cj is called C’ in [KL79], and in this source Cs means another
element of the Hecke algebra. Once the theorem is established, we could as well
write Cs = H,.)
The multiplication from the right of Cs on H is given by the formulas
Ho— {Hz T wH,  ifxs>
H,. +v 'H, ifxs<uz.

We now start proving the existence. To this end we show by induction on the
Bruhat order the stronger

Claim 2.3. For all x € W there exists a self-dual H, € H such that H, € H, +
Zy<z vZ[v]|H,.

Certainly we can start our induction with H, = H. = 1. Now let z € W be
given and suppose we know the existence of H, for all y < z. If  # e we find
s € § such that zs < x and by our induction hypothesis we have

H,Ci=H,+» hyH,
y<x
for suitable h, € Z[v]. We form
ﬂw = ﬂwscs - Z hy(o)ﬂzﬁ
y<x
and our induction works. Hence there exists I, as in the claim. The unicity of the
H_, follows immediately from
Claim 2.4. For H €  vZ[v|H, self-duality H = H implies H = 0.

Certainly H, € H, + >
H, € H, +5

y<z LH, for H, as in the preceding claim, whence
LH, for all z € W. If we write H = ) hyH, and choose z

y<z
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maximal such that h, # 0, then H = H implies h, = h, contradicting h, € vZ[v].
This proves the claim and the theorem. O

Definition 2.5. For x,y € W we define hy , € £ by the equality
H, =) hy.H,
y

Remark 2.6. The h, , are given in terms of the polynomials P, , from [KL79] as
hy. = v"@ =MW P, . These equations are to be understood in £ = Z[v,v~'] > Zq],
with ¢ = v~2 as before. By induction one may check directly that v!®={®)p,  is
even a polynomial in ¢ with constant term 1.

The original definition of the Kazhdan-Lusztig polynomials in [KL79] was along
the lines of another characterization we give in the sequel. Let us look once more
at Theorem 2.1. Up to the signs there is no reason to prefer v over v~! there.

Theorem 2.7 ([KL79]). For all x € W there exists a unique self-dual H,e¢H
such that H, € Hy + 3, v 1Zv"tH,.

Proof. Let us look at the two involutive anti-automorphisms a and i of H given as

a()=wv, a(H,)= (=D H 1 resp.
i(v) =v, i(Hy)=Hy.

They commute and both of them commute with our involution d : H — H. Their
composite dia : H — H satisfies dia(H,) = (—1)"¥) H, and dia(v) = v~".

So we are allowed and forced to take H, = (—1)"*)dia(H ) and get in addition
to the existence of H, the formula

—x

H = Zy(_l)l(w)ﬂ(y)ﬁy@]{y' 0

Remark 2.8. Instead of dia we could as well use the automorphism b : H — H
given by b(H,) = H,, b(v) = —v~!. It commutes with d, and we are allowed and
forced to take Em = b(H,). By the way b commutes with ¢ and a, and these four
pairwise commuting involutions d, b, i and a define a faithful action of (Z/2Z)* on
H.

Let us finish this section with an explicit formula for finite W.

Proposition 2.9 ([KL79]). Let W be finite, w € W the longest element, and r =
l(w) its length. Then we have H,, =", cyy v W H,.

Proof. Let R denote the right hand side. Our formulas for the action of Cs show
that

{HeH|HCs=w+v " )H VseS}=LR.
Hence we have R € LR and then immediately R = R, thus R = H,,. O

The expert reader will miss here the inversion formulas [KL79] for finite Coxeter
groups. We treat them in the next section in greater generality (see 3.10).
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3. THE PARABOLIC CASE

Let Sy C S be a subset, Wy = (Sy) C W the subgroup it generates, W/ C W the
set of minimal length representatives for the right cosets Wy \W. So multiplication
gives a bijection Wy x W 5 W. Let Hy = H(Wy,Sy) C H be the Hecke algebra
of Wy,Sy). One sees that the quadratic relation in the Hecke algebra can also
be written (Hs + v)(Hs —v™1) = 0. If we fix u € {—v,v™!}, the prescription
H; — u Vs € §¢ defines a surjection of L-algebras

oy Hp - L.

In this way £ becomes an H;-bimodule, which we denote £(u). We induce to
obtain two right H-modules

M = M = L™ @, H,

N = N = L(-v) @, H.

In both these modules the M, = 1® H, resp. N, = 1® H, with z € W/ form an
L-basis. The action of Cs for s € S is given in these bases as:

Mys +vM, if s € WS, x5 >
M,Cs = Mys +v 1M, if s € WS, zs <

(v+v )M, if s ¢ W/,

Nys + VN, if zs € WF, zs > x;
N,Cs = Ngs +v7 1N, if zs € W/, zs < m;

0 if zs ¢ W/,

To see this, one has to use the fact that z € W/, xs & W/ implies xs = rx for
some r € Sy. (In particular xs < x implies zs € W7.) Indeed for arbitrary z € W
and r,s € S the relations rz > x and ras < zs together imply rzs = x.

For all s € Sy one easily checks

_ (v+v71) ifu=0v"1;
pu(Cs) = {O if u = —o.

Since the C; for s € Sy generate H as an L-algebra, we have ., (H) = ¢, (H) VH €
H¢. Hence the prescription a ® H +— @ ® H defines a homomorphism of additive
groups

M- M, M—M

such that M, = M, and MH = M H for all M € M, H € H. Analogous results
hold for N.

We call an additive map F' between two right £- resp. H-modules “L-skew-
linear” resp. “H-skew-linear” iff F(MH) = F(M)H for all M and all H € L resp.
H € H. If a module is given a fixed skew-linear involution, we call the elements
stable under this involution “self-dual”. For example N € N is self-dual iff N = N.

Theorem 3.1 ([Deo87]). 1. For all x € W/ there exists a unique self-dual
M, € M such that M, € My +_, vZ[v]M,.
2. For all x € WY there exists a unique self-dual N, € N such that N, €
Nz + 32, VZ[V]Ny.
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Proof. We show (1), the proof of (2) is identical. To show the existence of M, we
proceed by induction to the length of x and show more precisely that we can find
M, of the form

M, =M, +Y my.M,

y<z

Certainly we can start our induction with M, = M,. Now suppose M, is already
constructed for all y € WY, y < z, and let s € S be given such that zs < z,
xs € WS. Then we have

Mrscs = Mw + Z szz

z<x

for suitable m, € Z[v]. By induction possible M, for z < z are known already. We
form

Mr = Mrscs - Z mZ(O)Mz

and find in this way a possibl_eM .- The existence of these M, implies, as in the
proof of Theorem 2.1, first M, € M, + Ey<w LM, and then the unicity of the
M |

==

Remark 3.2. 1. Let us define m, , € Z[v] by
M, = Z My o My.
y

In particular we have my, = 1, and my, # 0 = y < z. Again we con-
sider the variable ¢ = v=2 € L. By induction we deduce easily that even
o'W =@y, . € Z[q]. The same holds for the n, , defined by

N, =) ny.N,.
Y

The vl(y)_l(m)my,m resp. vl(y)_l(w)ny,x are Deodhar’s [Deo87] parabolic poly-
nomials P;{U for Deodhar’s cases u = —1 resp. u = q, if 7 = y~ Wy,
o =z "Wy, and W; = Wy. The comparison with Deodhar’s definition how-
ever will succeed only with the help of Theorem 3.5.

2. Possible interpretations of these parabolic polynomials in a representation
theoretic context are summarized in Theorem 3.11.4 of [BGS96]. Up to a
transformation v = ¢ and with Wg = W; the polynomials (P?(t)),,, are pre-
cisely the my , here, and the (Pg(t))s,y coincide up to a change of parameters
with our n, ,, compare 3.10.

3. The proof gives an inductive description of the M ,. By induction on the
length of = we deduce, that for all y < x the leading term of m,, , is VM) =),
This statement has no analogue for the IV, since N,C, = 0 for certain y and
s.

4. To simplify the task of calculating the n, , one may use the well-known for-
mula N,Cs = (v+ v~ )N, for all + € W/, s € S such that #s < x. This
is proved by induction on z, where one has to use that C? = (v + v~ 1)Cj
and n,(0) # 0 = zs < z in the preceding proof. In particular we have
Nys,zc = Uy 5 if y,T € Wf, s € § are such that ys < y, zs < z.
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In the same way one proves that M, Cs = (v + v~ )M, for all z € W/,
s € S such that s < z or s € W/ and deduces Mysz = UMy o for all
y,x € W/, s € S such that ys < y, xs < z.
5. For §f = () we certainly have M =N =H, M, =N, =H,, my, =ny, =
hy.«-

For an abelian group E with involution d let E+ C E be the subgroup of self-dual
elements ET = {e € E | de = e}.

Proposition 3.3. 1. HT CH is the subalgebra generated over LT =Z[(v+v~1)]
by the Cs with s € S.
2. MT = M,H* and the M, form an LT -basis of M.
3. Nt = NH* and the N, form an LT -basis of N't.

Proof. For this proof only let HT C H be the subalgebra generated over LT =
Z[(v+v~Y)] by the Cs, s € S. If we show (2) or (3) for this HT, then (1) follows.

We show (2), the proof of (3) being identical. First note that by the inductive
construction of the M, all M lie in M,H*. On the other hand the M, form an
L-basis of M, and M =Y m,M, is self-dual iff all m,, are. O

The my. ., Ny, are related to the ordinary Kazhdan-Lusztig polynomials as fol-
lows.
Proposition 3.4 ([Deo87]). Let z,y € W/.
1. If Wy is finite and wy € Wy is its longest element, we have my o = by w;a-
2. For Sy arbitrary we have ny , = Zzewf (—v)l(z)hzy,x.

Proof. (1) Consider the £-linear embedding

L) — Hs

1 = .
It commutes with the dualities, and by the proof of Proposition 2.9 it is even
compatible with the right ¢ action. Therefore we get by induction an embedding

(:M—=H

of right H-modules, which is compatible with the dualities as well. We put r =
l(wy). By Proposition 2.9 we have

(M) = v H,
z€EWy
and thus we get ((M,) = H,, ,.
y,x € W, 2 € Wy.
(2) Consider the obvious surjection
§H—-»N=L(—v)ox, H

with {(H) = 1 ® H. It commutes with the dualities, and one may check, that
E(H,y) = (—v)!®IN, for all z € Wy, x € W/. Thus we get

N, ifze W/
§H,) = :
0 otherwise,

This even implies my , = v’”_l(z)hzy,wfz for all

and the proposition follows. O
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In the definition of N, M, we may ask, whether v couldn’t be replaced by v~1.
The answer is given by the following

Theorem 3.5 ([Deo91]). 1. Forallz € wi there is a unique self-dual N,eN
such that N, € Ny + 32, v 1ZwTYNy. This N, can be given by the formula

Eﬂﬁ = Z(_l)l(z)+l(y)my7wNy'
Yy
2. For all x € W/ there is a unique self-dual MI € M such that Mz e M, +
>y v 1Zw=YM,. This M, can be given by the formula
M, = Z(_l)l(w)-‘rl(y)ﬁy,mMy-
Yy
Proof. We start with the relation ¢_, = ¢,-1 o ia, in other words the following
diagram commutes:
Hy —  L(—v)

ia | I
Hy — E(U_l).

We can thus define an £-skew-linear bijection ¢ : N” — M by the formula ¢(c® H) =
¢ ® dia(H), and clearly ¢(N) = ¢(N) VYN € N. Certainly we have ¢(N,) =
(—=1)"®) M,. Thus we are allowed and forced to put M, = (—1)!@@(N,) and
N, = (-1)'@¢71(AL,). 0

Next we discuss inversion formulas. For this we consider the £-modules
M* = Homg(M,L)
N* = Hom, (N, E)

and define on them an L-skew-linear involution F' + F by the formula F(M) =
F(M). Furthermore we define M} € M* by M}(M,) = &, and put M® =
(—1)"®@ 0¥, Analogously we define N € N* by N*(N,) = §,, and put N* =
(—1)"®)N*. Why I prefer to work with the M? resp. N® will become clear later.
Right now it rather complicates all formulas.

We write the elements of M* as formal linear combinations F = > m*M*
with m? = (=1)!*)F(M,) € L. The oo sign above the sum should remind us that
formal infinite sums are allowed. The elements of N* are written in the same way.
Now we have M* € M* + 32 LM?* and similarly for N, since the matrices of

z>x

the dualities on M and M* (resp. N' and N*) are transposed up to signs.

Theorem 3.6. 1. For all x € WY there exists a unique self-dual M* € M*
such that M* € M® + > vZ[v]M*=.
2. For all x € W/ there exists a unique self-dual N* € N* such that N* €
N + 3" wZ[v]N=.

Proof. We show (1), the proof of (2) is identical. For the unicity we have to show
that F' = 0 is the only self-dual element of > vZ[v]MZ?. But let F' = > " m*M?=.
If F # 0, we find y minimal such that m¥ # 0. Then m¥ = m? and this contradicts
mY € vZ|v].

To prove existence, we just define M* € M* by the formula

Mw(My) = (_1)l(m)5w,y
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and only have to check our properties. Certainly this M® is self-dual. If we put
M® =357 m*>*M?, then clearly

Z(_l)l(z)—&—l(m)mz,zmz)y — 6z,y-

z

However the matrix m , is lower triangular with ones on the diagonal and entries
from vZ[v] outside the diagonal, whence the same holds for its inverse and we get
m®® € vZ[v] if z # x and m** =1 (and even m** £ 0= z > x). |

In the same way we introduce the n*® € Z[v] by N* = 3" n**N* and get the
inversion formulas

Z(_l)l(z)+l(w)nz,wnz)y _ 6w7y~

z
In case Sy = 0 we write H*, HY, H®, H”, h®" instead of M*, M}, M*, M?*, m**.
Thus the h** with H* = >_°° h** H* are the renormalized inverse Kazhdan-Lusztig
polynomials,

Z(_l)l(z)—&-l(m)hz,zhz,y _ 6m,y-

z

As in Proposition 3.4 the parabolic inverse polynomials m*¥, n®¥ can be expressed
in terms of the ordinary inverse polynomials h*¥. More precisely, we have

Proposition 3.7. 1. If Wy is finite, wy € Wy its longest element and r = l(wy)
its length, then for all x,y € W/ we have

myT = Z (_U)T—l(z)hzy,wfz.
zEWy

2. For arbitrary Sy we have n¥* = h¥%* for all x,y € W/.

Proof. (1) We transpose the map ¢ considered in the proof of 3.4 (1) and get
¢ HY— M
The formula for ¢(M,) implies ¢*(H?**) = (—v)"""*)(=1)"M® for all z € W/,
z € Wy. Since also ((M,) = H,,,, we get
(=1)"M* ift =wy;
0 otherwise,

CH") = {

again for all z €W/, teW;. If we apply ¢* to the equation H"/* =" h#¥:ws® =y
where the sum runs over z € Wy, y € W/, we get

Mm _ Z Z (_U)r—l(z)hzy;wmey
Yy z€Wy
and this proves our claim. By the way we could also apply ¢* to H® with t # wy
to get Zzewf(—v)_l(z)hzy’m =0 for all x,y € W,
(2) We transpose the map ¢ from the proof of 3.4 (2) and get
&N = H"
The formula for £(H,,) implies
€* (Nm) — Z ,Ul(z)sz

zEWy
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and from the formula for £(H ,,) we get £*(N®) = H”. When we apply &* to the
equation N = 377 n¥* NV we get

ﬂw _ i Z ,Ul(z)ny,msz

Yy ZGWf

and deduce even v!(*)n¥® = h*¥:® for all x,y € W/ and 2z € Wy. O

To formulate the next theorem, I have to introduce a convention. Let ¢ : A — A’
be a ring homomorphism, M an A-module and M’ an A’-module. A homo-
morphism of additive groups ¥ : M — M’ is called “p-linear” iff ¢(rm) =
o(r)yY(m) Vr € A, m € M. Thus for our involution d : H — H with d(H) = H a
d-linear map is the same thing as an H-skew-linear one.

Certainly M* is a left H-module via (HF)(M) = F(MH) VH € H,F €
M* M € M. Recall the involutions d, a, and da = d o a on H from the proof
of Theorem 2.7.

Theorem 3.8. There exists a da-linear map v : N — M* such that ¥(N,) =
M?* Vz.

Proof. Let’s first check the formulas

My, +vM; if vs € W/, x5 > x;
CsM? = M, +v M if zs e W/, zs < x;
(v+ov )M} if xs ¢ W1,

Indeed, the matrix of the right action of Cs on M expressed in the basis of the M,
decomposes in 1 x 1-blocks and 2 x 2-blocks of the form (] 011 ). Thus this matrix
is its own transposed matrix, and this gives the above formulas.

We deduce the existence of an ¢-linear map M — M?* such that M, — M. On
the other hand from the proof of Theorem 3.5 we know there is a dia-linear map
N — M such that N, — (—1)l(w)Mz. Composing these two maps the theorem

follows. O

Certainly all our arguments and results stay valid when we exchange the roles of
N, N and M, M. For completeness I finish this section with Douglass’ inversion
formulas for finite W.

Proposition 3.9 ([Dou90]). Let W be finite and let w € W resp. wy € Wy be the
longest elements. Then we have

S ) OO gy = Sy

Remark 3.10. In particular this gives the inversion formulas of Kazhdan-Lusztig
[KL79]

Z(_l)l(m)+l(z)hz,mhzw,yw = 6r,y-

Proof. If we put §; = wSyw, the map = — wypwz gives an order-reversing bijection
W9 5 WF Therefore we get an H-skew-linear map

NQHN, Ng’_’wawwa
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where we put N' = N7f. Composing this with our ¢ : N' — M*, we get an a-linear
map

N9 M*, NI s Mwswe,

This map even commutes with the dualities on our modules, since N? is self-dual
and so is M™% because wsw is the maximal element in W/. But then our map
necessarily transforms N7 into M*“/** and we deduce

W WY, W WL

m = ngym = Nywyw,wrw-

After a transformation of the variables this gives

z
m¥? = N yw,wpzw- O

4. AFFINE REFLECTION GROUPS AND THE PERIODIC HECKE MODULE

For an explanation of the terminology used in the sequel one may look at [Bou81].
Let VD R D RT D A be a vector space over the reals, a root system, a system of
positive roots and the corresponding set of simple roots. Let W C GL(V) be the
Weyl group and W = W x ZR the affine Weyl group. For p € V' let W, resp. W,
be its stabilizer in W resp. W. Thus we have W = W,. The group W is generated
by its (affine) reflections, and we let F be the set of all its reflection hyperplanes.
For F' € F let sp € W be the reflection leaving F' invariant.

The connected components of the complement of all reflection hyperplanes V' —
Upes F are called “alcoves”. We denote by A the set of all alcoves. The obvious
action of W on A is free and transitive. Let

C={reV]|(r,a’)>0 VacR"}

be the dominant Weyl chamber. Let AT € A be the unique alcove contained in C
and having the null vector in its closure.

Let S C W be the the set of all reflections, which pointwise fix some wall of AT.
Then (W, S) is a Coxeter system. We also consider the bijection W = A, w
wA™T. The obvious right action of W on itself corresponds under such a bijection to
a right action of YW on A, denoted A — Aw. For A € A, s € S one may visualize As
as follows: Consider the wall of AT fixed by s. Exactly one wall of A is conjugate
to this wall of AT under the action of W on V. Then As meets A exactly along
this wall of A.

A reflecting hyperplane F' € F divides V into two halfspaces

V-F=FtUF-,

where we let '™ be the unique halfspace, which meets every translate of the domi-
nant Weyl chamber, FTN (7 +C)#0 Vre V. For A€ A s €S we write As = A
(resp. As < A) iff As C F* (resp. As C F'™) for the reflecting hyperplane F € F
separating As and A.

Now we may define the “periodic” Hecke module P. As an L-module P is just

free with basis A,
P=Pra
AcA
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Lemma 4.1 ([Lus80a]). On P there can be defined a right H-action such that for
all s € S we have:

As+vA if As = A;
ACs =
As+v71A if As < A,

Remark 4.2. To identify the M from [Lus80a] with our P, one needs a length
function 6 : A — Z as in [Lus80a]. Our A would be called ¢=*(4)/24 in Lusztig’s
notation. In addition we let H act from the right.

Proof. First let us consider for s € § the L-linear map ps : P — P given by

As+vA if As > A;
pS(A) = —1 .
As+v 1A if As < A.

For 11 € ZR we also consider (u) : P — P, A — p+ A. Certainly we have
(u) o ps = pso{u) for all p € ZR, s € S.

In any case we get a right action of H on P by transport of structure via the
L-linear bijection H — P given by H, — zAT Va € W. Let us denote this right
action by Px H for P € P,H € H. The map P — P, P — P x H will be denoted
by p*(H).

Let AT C A be the set of all alcoves contained in the dominant Weyl chamber,
AT ={A e A| AcCC}. Forx € W, s e S such that AT, zsAT € AT the
relation x > xs is equivalent to zAT = 2 ATs. Thus for all A € A, s € S such that
A, As € AT we have

ps(A) = AxCs.

Choose 1 € CNZR. For any alcove A the translated alcove nu + A lies inside C,
for n > 0. We deduce

ps(A) = (—npyopyo (u)(A)
= (=nw) o p™(Cs) o {np)(A),
if n > 0. Thus for all H € H, P € P the expression (—npu) o p*(H) o {(nu)(P) is

independent of n for n > 0. We call this expression PH and have thus defined the
looked-for right action of H on P. O

Let X C V be the lattice of integral weights. For A € X we define E) € P by
By =Y oA+ 247).

zeW
Let P° C P be the H-submodule generated by all the E) .

Theorem 4.3 ([Lus80a]). 1. On P° there exists a unique H-skew-linear invo-
lution P° — P°, P — P such that Ex = E for all A € X.
2. For all A € A there exists a unique P, € P° which is self-dual with respect to
this involution and such that P, € A+ "z vZ[v|B. The P, form an L-basis
of P°.

Remark 4.4. For A, B € Awedefine pp 4 € Z[v]|by P, = > pp.aB. Let d(B, A) €
Z be the weighted sum of reflecting hyperplanes H € F separating B from A, where
we count H with weight 1 resp. (—1) if B € H™ resp. B C H*. The polynomials
Qp,a of Lusztig [Lus80a] are related to these pp 4 by pp.a = v ¥ BAQp 4. T call
the pp 4 the “periodic polynomials”.
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The proof of the theorem needs some preparations and will be complete towards
the end of this section. We start by repeating Lusztig’s construction of an action
of W on P°.

Proposition 4.5 ([Lus80a]). For all w € W there exists a homomorphism of H-
modules (w) : P° — P° such that (W)Ey = Ey» for all A € X.

Remark 4.6. Certainly (w) is uniquely defined by this condition and we get thus an
action of W on P°. In addition for w = p € ZR this (u) is obviously the restriction
to P° of our translation (u) from above.

Proof. For « € R* let F, C F be the set of reflecting hyperplanes orthogonal
to . Thus F = Uae r+ Fa is a partition of 7. The connected components of
V—Upe F, I are called “a-strips”. Every a-strip U has the form U = FTNG™ for
unique F,G € Fo. Weput F =97 U and G =97U. For A € A, a € RT we define
alA=sgA, a] A= spA, if A lies in the a-strip U and F = 07U, G = 01U as
above. For a simple root o € A let us consider the £-submodule P, C P generated
by all A+ v(a| A) with A € A. Certainly these expressions form even an L-basis
of P,. So we can define for all F' € F, an L-linear map

(sp): Po — Pa
by the prescription (sp)(A+v(a|A)) =v(spA) + al(spA).
Lemma 4.7 ([Lus80a]). P, is an H-submodule of P and (sp) : Po — Pqo is H-

linear.

Proof. We have to show for all A € A, s € S that
(i) (A+v(alA))Cs € P,.
(i) (sp){(A+v(alA)Cs} ={(sr)(A+v(a] A))}Cs.
Let U be the a-strip of A. Let G € F be the reflecting hyperplane separating As
and A. We have to consider three cases.
1. G is not a wall of U. From there G € F with 8 € RT — {a}. In particular
sp(GT) = (spG)T. Then (i) and (ii) follow easily.
2. G = 01U, left to the reader.
3. G =07U, left to the reader.

The lemma is proved. |

Lemma 4.8 ([Lus80a]). We have Ex € P, for all simple roots o € A and (sp)E
= FE.» for all F € F,.

Proof. Left to the reader. O

In particular we have P° C P, and (sp)P° C P°. Now for w € W we get
(w) : P° — P° as follows: We write w = sp---sq with F,... ,G € J,ca Fa and
put (w) = (sp)o---o(sq). 0

It will be important to know, that the H-linear action of W on P° can be
extended to an L-linear action of the “extended affine Weyl group” W = W x X.

For any 1 € X let us consider the L-linear map (u) : P — P given by A —
uw+A VA e A It doesn’t commute with the right action of H in general. If Cj
denotes for the moment the map P — P, P — PCy, we have rather

(1) o Cs = C[u]s o ()
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for a suitable permutation [u] : & — S of the simple reflections, and we have
[w+v] = [p]o[v] for all p,v € X and [u] = id for p € ZR; hence in particular
[wp] = [p] = [—p]~! for all w € W, u € X.

Lemma 4.9. There exists an L-linear action ¢ : W — Aut P° of W on P° such
that p(w) = (w) for allw € W and o(u) = (u) for all p € X.

Remark 4.10. Once the lemma is established, we will abbreviate ¢(w) by (w) for
all w e W.

Proof. Tt is sufficient to show that the map (w)(u)(w=1){—wu) is the identity on
Pe, for all p € X, w € W. However this map commutes with the right action of
Cs and maps E) to itself. O

Now we can prove part (1) of Theorem 4.3.

Proposition 4.11 ([Lus80a]). There exists a unique skew-linear map P° — P°,
P — P such that Ex = E, VAe X.

Proof. Certainly by skew-linear we mean H-skew-linear here, but writing this pro-
duced an overfull box. Unicity is clear, we only have to construct such a map.
Let wy € W be the longest element and r = l(wp) its length. Let ¢ : P — P
denote the L-skew-linear map given by c¢(4) = wpA. For all s € § we have
A > As & woA < woAs. Hence we have ¢(ACs) = ¢(A)Cs for all s € S and
¢ is even H-skew-linear. Certainly we have ¢(E)) = v "Ey,x. In particular we get
c(P°) C P°. We put P = v"c(wp) P and are done. |

This duality even commutes with the W-action.
Proposition 4.12. We have (w)P = (w)P for allw € W, P € P°.

Proof. Let d : P° — P° denote our duality P — P. We have to show that
(wyd = d(w) for all w € W. Tt will be sufficient to show that (u)d(—pu)d resp.
{(w)d{w=1)d are the identity, for all 4 € X resp. w € W. However these maps
commute with the right action of the Cs and map E) to itself. O

We now establish the existence of the P 4. Let us consider the partial order <
on A generated by the relations

A=<spA itAe A, FeF, ACF™.

So A < B means that there exists some sequence of alcoves, say A = Ay, Aq,...,
A, = B and some sequence of reflecting hyperplanes F; € F such that A; C F;~
and A;+1 = sp,A; for i =0,... ,n — 1. To check that < is indeed a partial order,
we may proceed as follows: Let us denote for an alcove A € A by b(A) € V its
barycenter. Then A < B implies b(A) € b(B) + R<gRT. Thus B < A < B implies
b(A) = b(B) and hence A = B.

Obviously our new notation is compatible with our old notation A < As for
s € §. Obviously our partial order on A is invariant under translation by p € X.
In addition it has the following property:

Lemma 4.13 ([Lus80a]). Let A,B € A and s € S. Then B < A < As implies
Bs < As.

Proof. The Bruhat order on W defines via our bijection W — A, w +— wA™" another
partial order < on A. Deep inside C now =< and < coincide. More precisely we
have:
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Claim 4.14. Let p € X NC. For A, B € A are equivalent:

1. A<B.
2. nup+ A < nu+ B for n > 0, i.e. for all n above a suitable lower bound
depending on A, B and p.

This claim follows from the definition of Bruhat order. Indeed A < B means,
that there exists a sequence of alcoves A = Ag, A1,...,A, = B and a sequence of
reflecting hyperplanes F; € F such that A;+1 = sp, A; and that A; isn’t separated
from AT by F;. So for A,B € AT and I € F a hyperplane such that B = sp A, we
have

A<B & ACF~
&  Aand AT are not separated by F'
& ALB.
The equivalence of (1) and (2) in general can easily be deduced from this special

case. Using the claim we deduce the lemma from the analogous property of the
Bruhat order. O

Let IT C V be the fundamental box
O={reV|0<(r,a’)<1l VaeAl

For A\ € X we abbreviate A 4+ IT = IT,. For any alcove A € A there exists a unique
A= A(A) € X such that A C II,.

Lemma 4.15. Let X\ be a dominant weight, i.e. X € XNC. Then we have B < A\+B
for every alcove B.

Proof. We choose 7 € B and consider the line segment joining 7 and A + 7. It
meets in that order, say, the alcoves B = Ag, A1, As,..., A, = A+ B. Choosing
T properly we can assume that subsequent alcoves in our sequence are separated
just by one wall, A;;,1 = A;s; for s; € S. Now A € c implies A; < A;11, hence
B<\+B. O

Now we are ready to prove the existence part of Theorem 4.3 (2). More precisely
we show

Proposition 4.16 ([Lus80a]). For A € A there exists a self-dual P, € P° such
that Py € A+ 3 5 4 vZ[v|B and (w)P 4 = P for all w € Wy(a).

Proof. Certainly it will be sufficient to construct P, for A C II. We proceed by
induction on the ordered set of all alcoves in II and start the induction with

Py =Ey= Z 0! (2A7).
zeW

Now let A C II be an alcove and suppose we already know possible Py for B < A,
B CIL If A# A" we find s € S such that As < A and As C IL. Clearly P 4,C; is
self-dual and by Lemma 4.13 and the definition of ACs we get

P,Co= psB
B=<A

with pa = 1 and pg € Z[v] for all B. However certain pg with B # A could
also have a nonzero constant term. To eliminate these terms, we need a longer
argument.
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First let us define as in [Lus80a] a new action of W on A, denoted B — w * B,
by the formula

wkx (A+A) = (w))+ A
forall A € X, A CII.

Lemma 4.17. Let P € P° be of the form P = 3 ppB with pp € Z[v] for all B.
Take w € W. Then (w)P =" qpB with qg € Z[v] and pp(0) = qu«5(0) for all B.

Proof. Without restriction we assume w = sp with F € F, for « € A. Then our
definitions imply that the claim even holds for all P € P,,. O

For our special situation this means that pg(0) = p..5(0) for all z € W. But
for any alcove B we find 2 € W such that B’ = 2z« B € AT. Now pg # 0 and
B # A imply ppr # 0 and B’ # A, hence B’ < A. On the the other hand B’ € A™
implies B’ = A+ B” for suitable A € X NC and B" C II. From Lemma 4.15 we get
B" < A, so we know a possible Py, by induction, and translating this Pz, by A
we get a possible Pp,. We now consider

BA = BASCS - Z pB(O) Z<Z>£Bv

BeA+,B£A z

where in the second sum z runs over (a set of representatives for) the cosets
W/Wxpy- This completes the induction step and the existence of the P, is estab-
lished. O

Next we have to care for unicity of the P ,. By Proposition 4.16 we even know
that there exists a family of self-dual elements {P 4} 4c4 in P° such that

1. (WP, =Py, YVAe AweW.
2. Py A+ ) vZ[vB.
B<A
Indeed we get such a family by choosing possible P4 for A C II as in the proposition
and defining the remaining P, for A ¢ II as translations of these.

Proposition 4.18 ([Lus80a]). 1. Such a family {P4}aca already is an L-basis
of P°.
2. For P € P°NY_vZ[v|B self-duality P = P implies P = 0.

Remark 4.19. Certainly (2) implies the unicity of the P, claimed in Theorem 4.3.
The preceding considerations or Lemma 4.17 then show (w)P 4 = P, 4-

Proof. Let us start with (1). Clearly the P, are linearly independent. We have to
show they generate P° over £. Thus we have to show that for all A € X, H € H
the element EyH lies in the £-submodule generated by P,. Without restriction
we can assume A = 0. Clearly it will be sufficient to show that every W-invariant
Q € P° (ie. (2)Q = Q Vz € W) lies in the L-submodule generated by the P 4.

So suppose
Q= Z qBB.
BeA

For Q # 0 there exists B € AT such that qg # 0. (To see this, one may take the
smallest n € Z such that v"Q € Y 5 Z[v]B and apply Lemma 4.17 to v"Q.) Now
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we proceed by induction on #{A € AT | 3B € A™ such that gg # 0 and B = A}.
Let C € AT be maximal with gqc # 0. We consider

Q' =Q - (2)acPe,

where z runs over (a system of representations for) the cosets W/Wy. Then Q" is
W-invariant, and by induction @’ lies in the £-submodule generated by P 4. This
proves (1).

Next we show (2). Certainly any self-dual P has the form P = 37, ,caPy4
with ¢4 = c4. On the other hand P = > psA with py € vZ[v] by assumption.
If P # 0, there is A maximal such that p4 # 0. Then pa = ca, hence p4 = pa
and then p4 € vZ[v] implies py = 0. This contradiction proves the proposition and
completes the proof of Theorem 4.3. O

To simplify the calculation of pgp 4 one may use

Proposition 4.20 ([Lus80a]). For s € S and A € A such that As < A we have
P,Cs = (v+v Py, In other words, pps.a = vpp.a for all B € A such that
Bs < B.

Proof. We put P = P,Cs — (v + v 1)P,. From C? = (v+ v~ 1)Cs we deduce
PCs = 0. By construction P is of the form P = Y ppB with pp € Z[v], and since
P is self-dual we get P = > pp(0)Pg. In case P # 0 we would find D maximal
such that pp # 0, and for this D we would even get pp = pp(0). Now we write

PC,=> qsB
and deduce gps = pp # 0 if Ds = D, and qp = pps + v 'pp # 0 if Ds < D,
contradicting PCs = 0. Thus P = 0 and the proposition is proved. O

For later use we have to discuss an additional symmetry of P 4. As in the proof
of Proposition 4.11 let wy € W be the longest element and r its length. We define
a bijection A — A, A — A as follows: Write A = A+ B with A € X, B C II and
put A = XA+ woB. The inverse bijection is denoted A — A.

Lemma 4.21 ([Lus80a]). P, € v" (/1 +> oA U_IZ[U_l]B),

Proof. We may assume A C II. Then P, = P, = v"c(wo)P, = v"cP, and the

lemma follows from the definition of c. |
We will also need a bound on the support of P 4.

Proposition 4.22 ([Lus80a]). Let A, B € A be such that pp.a # 0. Then xB <
A Ve W)\(A).

Proof. This is proved by induction using the inductive construction of the P, in
the proof from Proposition 4.16. O

5. RELATIONS BETWEEN DIFFERENT SORTS OF POLYNOMIALS FOR AFFINE
REFLECTION GROUPS

We continue with the notations of the preceding section and put So = {s € S| s
stabilizes zero}. Then we can use our notations M = MY N = NO M* N* etc.
from Section 3. In particular Wy, = W is the (finite) Weyl group. The bijection
W — A, w — wAT restricts to a bijection W° — At. We use this bijection to
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rename our distinguished elements of N/, M*, etc. and put N, = N, N, = N 4,

Nay =mnap, M* = M4, etc. if v,y € W? and A, B € A are given as vAT = A,
AT =08

Yy )

Let ATT denote the set of all alcoves contained in p+C (where p is the half-sum
of positive roots). Then A — A is a bijection AT = AT+, Recall the £L-skew-linear
map v : N — M* from Theorem 3.8 given by ¢)(Na) = M4. The only essential
result of this article, which I couldn’t find in the literature, is the following

Theorem 5.1. For all A € AT we have MA = v"YN 3, in other words mbBA4 =
’UrﬁB7A.

This formula was suggested by the theory of tilting modules, as will be explained
in more detail at the end of this article. The proof of the theorem needs some
preparation. We consider in P the H-submodule

P ={PeP°|(z)P=(-1)!®P VzeW}.

Proposition 5.2. The L-linear “restriction” res : P — N given by res A = N4 if
A€ AT and res A = 0 otherwise induces a homomorphism of right H-modules res:

pen s N

Proof. We have to show that res commutes with all C; (s € S). The formula for
the action of W on P° implies that for P = > paA in P" we have pg = —vpas
for A€ AT, s € S such that As ¢ AT. The proposition follows. O

We define next the H-linear map
alt: P° — psen
P = > (-1)@ )P
zeW

Now our theorem follows from the following more detailed

Theorem 5.3. 1. For all A€ AT we have N 4 =resalt P,.
2. For all A €¢ At we have MA =v"Yresalt P .

Remark 5.4. The second statement is a reformulation of the main result in [Kan87]
and therefore contains some results of [And86]. Indeed, since ()P, = P,, 4 we
have

alt P, = Z (-1)!@p_ .
zeW

Proof. We start with (2) and for simplicity abbreviate the L-skew-linear map
(v"resalt) to ¢ : P° — M*. With respect to H both ¢, ¢ are da-linear. Now MA
can be characterized by a degree condition and self-duality. By Lemma 4.21 our
@(P ;) satisfies the degree condition. We only need to show that all ¢(P ;) € M*
are self-dual.

By our definitions F' € M* is self-dual iff (HF)(My+) = (HF)(My+) for all
H € H. We will check this for all FF = ¢(P,) with A € A. Certainly we can write
P,H =Y cpPp and deduce P,H = > .¢gPp. Then we get

(da(H)p(P))(Mas) = Y epp(Pp)(Mas),
(a(H)p(PA)(Mar) = Y enp(Pp)(Max),
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and hence only have to show that all (P g)(M 4+) are invariant for the substitution
v+ v~ L T claim that we have even

“1)H2) if B = 2% A+ with 2 € W;
o(Pp)(Mar) = {( ) .
0 otherwise.

To see this, we consider again Py = > pc,gC and prove

Lemma 5.5. Let B € A be such that pa+ g # 0. Then either B = A+ or A(B)
lies on a reflecting hyperplane for W.

Proof. To avoid introducing more notation we would rather show the equivalent
statement that for B C II and A € X both pyya+ 5 # 0 and A # —p together
imply Wy # 1. (Here p € X denotes as usual the half-sum of positive roots.)
Indeed we can take z € W such that (A + AT) C C and get by Proposition 4.22
and the definition of IT the relations

A+ AT) X B < p+ woA™.

But for an alcove C' C C such that C < p + woA™ it is clear that either all its
corners from X lie on walls of the dominant chamber or C' = p+woAT. For us this
means that either W,y # 1 hence Wy # 1 or A = —p, x = wy. O

Now the formula for p(Pg)(M 4+ ) follows from the observation that alt(Pg) = 0
and a fortiori p(Ppg) = 0 if A(B) lies on a a reflecting hyperplane of W. This proves

(2).

Next we attack (1). Let H* C H be the subring generated by v + v~! and all
Cs with s € S. By Proposition 3.3 we have H" = {H € H | H = H}. However we
will only use the obvious inclusion C. The proof of (1) rests on the following

Lemma 5.6. All M* lie in the H'-submodule of M* generated by the element
MP-HUOAJr'

Proof. First note that by (2) we have mA4 = v and deg,m®4 < r if B # A.
Now consider A € AT, s € S such that As < A (but not necessarily As € A™) and
write

a(Co )M = ZqBMB.
By Theorem 3.8 we know that
MBs v IMB, if Bse AT, Bs»> B;
a(Cs)MP = { MPs + oMPB,  if Bsc AT, Bs < B;
0 if Bs ¢ AT.
Thus we have ¢p € Z[v] for all B € AT and we deduce
a(COM* =" qp(0)M”.

Indeed any element of M* can be written uniquely as a formal linear combination
of the M B | if the element is self-dual all its coefficients are, and for an element from
S Zw]MPB all its coefficients lie in Z[v]. Thus if Y.*° ggM? is self-dual with all
gp in Z[v], then we have

> apMP =" qp0)M".
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For g € L let §(v) denote the coefficient of v, thus ¢ = > ¢(v)v” and ¢(0) = ¢(0).
We can further conclude G5 (r) = ¢p(0) for all B € A" and ¢p(r) =0 for B ¢ A*T.
Thus we get even

a(COMA =" g (r)MP.

Changing variables, we have proved: If D € A*T and s € S are given such that
Ds = D, when we write

a(CoMP = N qpM®,
BeA+

then we have

a(CoMP = 3" u(r)MP.
BeA++

On the other hand we know by (2) that mBL £ 0= B =D and mP? =" for
all D € A™*. Thus we get more precisely

a(CoMP =MP)" + ST Gp(r)MP.
Be ATt
B<Ds
Using this formula it is easy to show by induction on A+, that all M A With
A € AT lie in the H*-submodule of M* generated by MPTADY O

To show (1) we still need
Lemma 5.7. N, 4+ => . vl(Z)Np+ZA+.

Proof. Consider more generally for all A\ € (p + ZR) N C the expression F)\ =
Y oew v'*) Ny, 4+. We have to show N, 4+ = F,. Certainly it will be sufficient
to show F,, = F,. To show this consider the set

S,={seS|pecA=>pecids VAec A},

where exceptionally A resp. As means the closure of A resp. As. We claim that
F, € N is the unique element F' =% f4N4 of N such that

1. FCs = (v+v H)F VseS§,
2 fat0= A< pt AT
3. fa=1for A=p+ AT

Here < means the order we get on A™ by transporting the Bruhat order from W°.

First we see that condition (1) is satisfied precisely by all £-linear combinations
of the F\ with A € (p+ZR) NC. From there we see easily that F, is the unique
element of A satisfying (1)-(3). However these conditions are self-dual, hence F,
also satisfies (1)—(3) and we deduce F, = F),. O

Now by Lemma 5.6 all (resalt P,) are contained in the H*-submodule of A
generated by (resalt P, 4+ ), and (resalt P, 4+ ) is self-dual in N by Lemma 5.7.
This means all (resalt P,) are self-dual in N, and since they satisfy the degree
conditions characterizing the N 4, we deduce N 4, = resalt P, VA e AT, O
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6. THE GENERIC POLYNOMIALS

Once we are far enough inside the dominant chamber, the mp 4 depend only on
the relative position of the alcoves A and B. More precisely we show

Theorem 6.1 ([Lus80a). 1. For all A,B € A there exists qg.a € Z[v] such
that qp,a = Mx+BA+4, if A is sufficiently far inside the dominant chamber,
i.e. if A€ X N (np+C) for suitable n = n(A, B) € Z.
2. For the periodic polynomials pp,c we have the inversion formulas

Z(_]‘)d(A7B)quB7’w0A pB,c = 0A,C>
B

where (—1)4AB) means the parity of the number of affine reflection hyper-
planes separating A and B.

Remark 6.2. The “generic Kazhdan-Lusztig polynomials” P, p of Kato [Kat85] are
related to our g4, by the formula Py g = v_d(A*B)qAB.

To prove the theorem we consider the “completed below” Hecke module
P={f:A— L|thereis C € Asuch that f(4) #0= A< C}.

For two alcoves C1, Co € A there always exists C € A such that C; < C, Cy < C.
Thus P is an £-submodule of the space of all maps from A to £. We write elements
f € P as formal linear combinations f = S faA with fa = f(A), where the upper
index oo again should remind us also that certain infinite formal linear combinations
are permitted. We extend the right action of H on P to P in the obvious way. For
A € ZR we also extend (\) : P — P to amap (\) : P — P in the obvious way. For
a € RT we define the operator

Vo:P—P
as the formal sum
Vo = (1 4+ 0% (—a) + v {=2a) +v%(=3a) +---).

Certainly 9, commutes with the right H-action. Also the ¥, commute among
themselves. We put

n= H Do : P — P.
acRT
This 7 is closely related to Kostant’s partition function. It gives another relation
between the periodic and the generic polynomials, namely the following

Theorem 6.3 ([Kat85]). nP, = > 5qp,aB.
Proof. Will be given later. O

Finally we could also ask whether one could define alternative periodic polyno-
mials by changing v to v~! in the definition of P,. It turns out that the EA o)
defined exist only in P. More precisely we extend our skew-linear duality P — P
to P as follows: We can write P uniquely as a formal sum P = > X paP, with
pa € L, where we start in the highest alcoves where P has a nonzero coefficient,
and then work our way down. Then we define P = YU D, P4. It is easy to see
that A€ A+ > 5., LB for A€ A
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Theorem 6.4. 1. Our P, is the unique self-dual element of P contained in
A+ > FvZv|B.
2. P, = S (—1)4ABG, 4 B is the unique self-dual element of P contained in
A+ Y F v Zv Y B.

Remark 6.5. Here (1) comes from [Lus80a] and (2) from [Kat85].

Now we prove the three preceding theorems. Let Alt = (—p)oalto(p) : P° — P°
be anti-symmetrization around —p, thus

Alb(P)= > (-1)!®(z)P.
zeEW_,

We also define the L£-linear restriction

Res: P - M
Sox faAd = 3 acas faMa.

This restriction doesn’t commute with the H-actions on our spaces. However we
have

Proposition 6.6. The composition Resono Alt : P° — M is a homomorphism of
right H-modules.

Proof. Tt will be sufficient to show that this map commutes with all C's. With our
definitions this is easily deduced from the following

Claim 6.7. Let A,B € A be neighbouring alcoves such that A € AT, B ¢ A*.
Then for f =37 foC € no Alt(P°) we have fp = vfa.

Let us check this claim. By our assumptions A and B meet along a wall of the
dominant chamber. Let 6 € A be the corresponding simple root. By a f-string in
A we mean a minimal nonempty subset containing with A also 6T A and § | A.
Now let us consider in P the H-submodule

Ps = {Z faA € P | for every (-string K we have Z faA € Pg}.
AeA Aek

Certainly 9,P3 C Ps for a € Rt, a # . Let s5 € W_, be the reflection
along the O-wall passing through (—p). Then (s3) : Pg — Pg can be extended to
(s3) : Ps — Pps in an obvious way, and we have (s3) o U, = Vsy(a) © (p) for all
a € RT, a # . Now we choose a system of representatives Rep C W_, for the
cosets {e, sp\W_, and get

noAlt =[] dao@—(ss) [] (-D"(x)

aERT zERep

Ipo(1—(s) [T oo [T (-1)'@(a).
O‘ffg xzERep

Thus our claim will follow immediately from the much more elementary

Claim 6.8. Let A, B € A be neighbouring alcoves separated only by the g-wall
of the dominant chamber. If A lies above this wall, then for all f = > fcC €

9g(1 — <S~g>)755 we have fp =vfa.
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This claim can be checked separately for every (-string, thus we have only to
check the case

f=195(1—(s5)(C+v(BlO))
with C' € A. But this case is clear from the definitions. O

Corollary 6.9. M , = Resono Alt P, for all A € AT.

Remark 6.10. This is Theorem 4.2 of Kato [Kat85]. Note that
AP, = > (=)' @(zA(A)P,
zeEW_,
and thus

nALtPy = Y (=)@ @AA)nP 4.
TeEW_,

Thus the corollary implies in particular part (1) of Theorem 6.1 (where the generic
polynomials g 4 are defined) and Theorem 6.3.

Proof. For A = A" both sides equal M4+ = M 4+ and our formula is true. But
by Theorem 5.3 and Lemma 5.6 we know already that Alt P, € (Alt P4+ )H™ for
all A € A. Indeed, translating by p it will be sufficient to show that alt P; €
(alt P, 4+ )H* for all A € A*. By Theorem 5.3 (2) and its proof the map v"+ res
defines a da-linear injection alt P° < M* with alt P 5 — M Aforall A e At thus
it will be sufficient to show that M* € (MPT*AyH+ for all A € A*. But this is
precisely Lemma 5.6.
From Alt P, € (Alt P,y )HT we deduce immediately that

Resono Alt P, € MA+H+
is self-dual for all A € A. On the other hand certainly
Resono AltP, € Ma+ Y vZ[v]Mp
B
for all A € AT and the corollary is established. O

Next we show Theorem 6.4.

Proof. Here everything is left to the reader, except the proof that the formula
claimed for P, indeed gives a self-dual element of P. Let £ : P — P be the
L-skew-linear map such that

o0

£ pad) =Y (-1)¥ATAp, A,
A

A

We have to show that énPy € P is self-dual. We prove this by contradiction. Let
us write

EnPy—EnPy =Y fcC

and choose B € A such that fp # 0. Moving the pair (A4, B) sufficiently far
inside the dominant chamber, we may assume that n Alt P, and nP , coincide on
all alcoves C' such that C' = B. By Corollary 6.9 on these alcoves also ResnP 4
coincides with M 4 and resénP 4 with ¢~'M 4, where ¢ as in Section 3 denotes the
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L-skew-linear map ¢ : N' — M such that ¢(N,) = (1)@ M,, and we extended
our old res : P — A to P in the obvious way.

Now by Theorem 5.3 we know that N, = resalt P, for D € AT, in particular
we have N, =res Pp, for all D C C which are sufficiently far from all walls of the
dominant chamber. Moving (A, B) if necessary still further inside the dominant
chamber, we can assume in addition that all alcoves C' such that A > C' > B are
already so far from the walls that N, = res P,. Now we can write

&Py = Y pcPe,
C

¢ 'M, = > ncNg,

and deduce pc = no for A = C = B. But since ¢~ M , = iﬁA is self-dual (by
the end of the proof of Theorem 3.5), all ne have to be self-dual, hence all po for
A = C = B have to be self-dual as well, and this finally leads to the contradiction
fB=0. |

We are left with proving part (2) of Theorem 6.1.

Proof. Let us start with the almost tautological formula

Z(_l)d(A7B)mB,AmB7C — 6A,C-
B

If the pair (C, A) is sufficiently far inside the dominant chamber, we have mp 4 =
qp.a for all B = C, thus for all B such that m®¢ # 0. On the other hand we
also get mP¢ = V"D ¢ = PuwoBwoc- Here the first equality follows from Theorem
5.3, and the last equality follows from the fact that P is self-dual. Indeed from
there we get Pn = vrc<w0>£é = vTcﬂwoc by the construction of the duality on
P°, where we use the formula wq * C = woC.. O

All three theorems of this section are established.

7. RELATION WITH TILTING MODULES

Let i be the Coxeter number of our root system R, and let [ > h be odd. For a
primitive [-th root of unity { we form, following Lusztig, the quantum group with
divided powers U¢. Let Ug-mof be the category of all finite dimensional Us-modules,
and let B C Ug-mof be the principal block, i.e. the smallest direct summand
containing the trivial representation. Certainly B is a k-category for k = Q(().

The simple objects of B are parametrized in a natural way by the set AT of
alcoves in the dominant chamber. For A € A" let Ly € B be the corresponding
simple object. L4 is the socle resp. the unique simple quotient of the standard
modules V4 resp. Ay. For example Ly+ = Vi = Ay+ = k is the trivial
representation. In B there are enough projectives. The projective cover of Ly is
denoted P4. By a V-flag (resp. A-flag) of an object of B we mean a filtration such
that all subquotients are of the form V4 resp. A4 for suitable A € AT.

Definition 7.1. An object T' € B is called a tilting module if and only if 7" admits
a V-flag and a A-flag.
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We recall without proof some facts from the theory of tilting modules. As stan-
dard reference for the completely analogous case of algebraic groups in finite char-
acteristic compare [Don93]. First of all a direct summand of a tilting module is also
tilting. Furthermore for an A € A there exists a unique indecomposable tilting
module T4, which admits a A-flag starting with A4 C T4. Here unicity follows
easily from the following property of the standard objects:

k if A= B and n = 0;

Exts(8a, Vi) = {O otherwise

One may define a duality on B, i.e. an involutive exact contravariant k-functor d :
B — B fixing the simple objects and exchanging the standard objects, dA 4 = V 4.
It is known that tilting modules are self-dual for such a duality, dT4 = T4. In
particular T}y is the unique indecomposable tilting module which admits a V-flag
ending with a surjection T4 — V4.

The present work was motivated by the problem to determine the multiplicity
(T4 : V) of Vp as a subquotient in a V-flag of Ty, for all A, B € A". For this
problem I propose the following

Conjecture 7.1. (T4 : Vp) =np a(l).

Remark 7.2. 1. Recently I found a proof for this conjecture. However it is quite
far from the reason for the conjecture explained below. An interpretation of
the coefficients of the np 4 was proposed by [And96].

2. The conjecture also implies character formulas for indecomposable tilting
modules “on the walls”. More precisely we will show that for an indecompos-
able tilting module T on walls and ¥ the translation from the walls W7 is
indecomposable as well.

To see this, let ® be the translation onto the walls, i.e. the adjoint of W.
Let A(1),...,A(r) be the alcoves containing the highest weight of T' in their
closure. Then we have ®UT 2 T & ... @ T (r copies), since both sides are
tilting and have the same character. This already means that only the T'4(;
are possible direct summands of UT'.

Now let A(1) be maximal among the A(7). Since we know the highest
weight of WT', we also know that T's(;) has to be a summand of ¥T'. Using
Remark 3.2 (4), the conjecture implies that (Ty(1) : Va@)) = 1 for i =
1,...,r. But on the other hand we know that (VT : V() = 1 for i =
1,...,r. Thus in YT there is no room for other summands T)(;), and we
deduce UT = Ty(y).

Most indecomposable tilting modules are indeed projective; more precisely we
have P4 = T'; by [And92], 5.8. For projective objects the looked-for multiplicities
are given already by the reciprocity formulas (P4 : V) = [Vp : La]. Now the
Lusztig conjecture says that in the Grothendieck group of B we have

LA = Z(—l)d(B’A)mB7A(1)VB.
B

(Use Proposition 3.4 to see that this coincides with the conjecture formulated by
Lusztig in [Lus80b].) We can invert this equality to get

Z mC’A(l)LA = V.
A
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Thus the Lusztig conjecture implies (P4 : V) = m®4(1), and as a first test of our
conjecture we should check for m?4(1) = "B,A(1)~ This is an easy consequence of
Theorem 5.1.

The true motivation for our conjecture however comes from the philosophy of
“Z-graded representation theory,” as explained in the sequel. One expects, that
the category B admits a Z-graded version B in the meaning of [BGSQG] 4.3. The
objects V4, Ay, L should admit Z-graded versions Va,A4, La € B, there should
exist on B a “shift of Z-grading” M — M (i ) (for i € Z), the duality should lift to
a duality d : B — B such that d(M(i)) = (dM)(—i), d(V.a) = A4, and we would
have

k if A=Bandi=n=0;
0 otherwise.

Ext™ (AA,VB< >) {

Recall every s € S gives an exact functor ©5 : B — B, the so called “transla-
tion through the wall”. It commutes with the duality ©,d = dO©, and is easily
determined on standard modules: For A € AT we have short exact sequences

Vi — 0O,Vy—» Vyu, ifAs>= A Asc AT
Vias — O,Va4— Vu ifAs< A, Ase AT,

and O,V =0 if As ¢ A™. ) ) )
One may hope that ©5 admits a graded version ©; : B — B as well, which
commutes with d and is such, that again for A € A™ there are short exact sequences

Vall) = O, Va— Vi,  ifAs> A, Ase A
V as — @VA—» VA< 1) if As < A, As € AT,

resp. that O,V = 0 if As ¢ AT. These expectations are supported by the fact
that up to existence of d they can be proved in the analogous situation concerning
G1T-modules, see [AJS94].

Now we try to inductively build up graded tilting modules TA Thus a V- -flag
of TA should end with a surjection T4 — V4. We start with T4+ = V44 = LA+
If T is constructed already, we choose s € S such that As = A and form ©,T}.
Certainly this is tilting and even has a V-flag finishing with V 4,. However it should
not be indecomposable in general, but should rather decompose as

(:)STA = TAS 3 @TB,
B

where the sum runs over a suitable multiset of alcoves B < As. Now one might ex-
pect that all homomorphisms in B (i.e. all B-homomorphisms “of degree zero”) from
Tg to ©,T split, and this assumption leads precisely to the conjecture above. In-
deed let us consider the Grothendieck group [B] of B and define the homomorphism
h:[B] — N by h(V.4(i)) = v'N4. By our formulas we have h(6,M) = h(M)C,
for all s € S. Now assume we already know by induction that h(Ta) = N 4.
Certainly we have

dimHomg (T, 0,Ta) = 3, o(Ts: Ac(i))(OsTa : Veli))
= (0,74 :Vp),

since by induction Ty = dTp, thus (T : Ac(i)) = (T : Ve(—i)) = 0if i > 0 or
i =0, B#C. But we have h(©,74) = N ,Cs =) 5 mpNp and by our definitions
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(0,T4 : V) =mz(0), thus
h(Tas) = h(©Tx)— > dimHomg(Ts,0.Ta)h(Is)
B<As
= N,Cs— Z mp(0)Np
B<As
= NAS’

as I wished to explain.

I want to add that the formula h(TA) = N, also implies T4 is indecomposable.
Indeed one may check as above that under our assumptions £ = Endg T4 admits
a Z-grading

E= @ Homg(Ta (i), Ta)

which starts in degree zero with Ey = k and has no components of negative degree.
However a finite dimensional k-algebra which admits such a grading is necessarily
local. Hence under our assumptions T4 is indecomposable.

8. THE EXAMPLE Bsy

In the sequel I want to show for Bj the algorithm computing the N 4. An element
>~ naN4 € N will be represented by a picture, where the Laurent polynomial n 4
is written inside the alcove A. We put S = {k, [, a} with a for affine, [ long and &
for short, as in the picture

We start our computation with a picture of NV ,4+. A picture where only one
alcove A contains a 1 gives the corresponding N 4. Right multiplication by C, will
be written & In the element N 4Cs thus obtained there could be additional ones,
which have to be eliminated by subtraction of suitable Nz with B < As. This is
symbolized by a dotted arrow — — — —.
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The last picture represents resalt E, and thus illustrates 5.3 (1).
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9. NOTATIONS

w,S) a Coxeter group,
in Section 3 and after the affine Weyl group
W the extended affine Weyl group W x X
Wy, S¢) a parabolic subgroup of W
wi the shortest representatives of
the right cosets Wy \W
Wi the isotropy group of A in W
W =W, the finite Weyl group
W the isotropy group of A in W
p the half sum of positive roots
C the dominant Weyl chamber
A the set of all alcoves
AT the set of all alcoves
in the dominant chamber C
ATt the set of all alcoves in p + C
AT the fundamental dominant alcove
F the set of all affine reflection hyperplanes
Ft, F~ the open positive and negative halfspace

in the complement of F' € F
Lusztig’s partial order on the alcoves
T A, 8| A defined in the proof of 4.5
the lattice of integral weights
) the length of the element z of a Coxeter group

b A

S

wo the longest element of W

r the length of wq

I the fundamental box

I, the translated box A +II

A(A) the lower left corner of the box containing A
A is obtained by moving A with wgy around A(A)
A A — A is the inverse of A — A

H the Hecke algebra

d its standard involution d : H +— H

i,a two involutive anti-automorphisms of H,

defined in the proof of Theorem 2.7
p-linear defined right above Theorem 3.8
L the ring of Laurent-polynomials £ = Z[v, v~!]
Cy self-dual generators Cs = v(Ts + 1) of H
Some Hecke modules with duality, standard basis,
self-dual basis and transition matrix

(H,H,,H,,h,,) the Hecke algebra itself, i, = v'@)T,
(M, My, M,,m,,) Deodhar’s parabolic analogs,

(N, Nr,Nw,nzy) for z,y € W/

(M*, M*, M* m®Y¥) The dual Hecke-modules,

(N*,N* N®, my) for z,y € W/

From Section 4 we identify WY = AT and write Ma, M 4, ma g ... for My, M,
My - - -

s
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(P,A,P,4,pa ) Lusztig’s periodic Hecke module

'PO
qa.B
w* A

(w)

[AJS94]

[Ands6]
[And92]

[And96]
[BGS96)

[Bou81]
[Deo87]
[Deo91]

[De094]

[Don93]
[Dougo)
[Hum90]
[Kan87]
[Kat85]

[KL79]

[Lus80a)

[Lus80b]
[Lus91]

[Mi]]

submodule of P admitting a duality
the (renormalized) generic polynomials

a new action of W on A,
wkx (A+B)=(wA)+Bfor\e X, BCII

action of w € W on P°, see 4.10
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