Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren
HTML articles powered by AMS MathViewer
- by Wolfgang Soergel
- Represent. Theory 1 (1997), 115-132
- DOI: https://doi.org/10.1090/S1088-4165-97-00017-4
- Published electronically: May 9, 1997
English translation: Represent. Theory 2 (1998)
Abstract:
We show how to express the characters of tilting modules in a (possibly parabolic) category $\mathcal {O}$ over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles in lots of cases Conjecture 7.2 in Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory (1997), by the author, describing the character of tilting modules for quantum groups at roots of unity.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Sergej M. Arkhipov, Semi-infinite cohomology of associative algebras and bar duality, Preprint q-alg/9602013, 1996.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Differential operators on the base affine space and a study of ${\mathfrak {g}}$-modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 21–64. MR 0578996
- David H. Collingwood and Ronald S. Irving, A decomposition theorem for certain self-dual modules in the category ${\scr O}$, Duke Math. J. 58 (1989), no. 1, 89–102. MR 1016415, DOI 10.1215/S0012-7094-89-05806-7
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Vinay V. Deodhar, Ofer Gabber, and Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR 663417, DOI 10.1016/S0001-8708(82)80014-5
- S. Donkin, Finite resolutions of modules for reductive algebraic groups, J. Algebra 101 (1986), no. 2, 473–488. MR 847172, DOI 10.1016/0021-8693(86)90206-1
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025, DOI 10.1007/978-1-4684-9936-0
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Masaki Kashiwara, Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 407–433. MR 1106905, DOI 10.1007/978-0-8176-4575-5_{1}0
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- Patrick Polo, Projective versus injective modules over graded Lie algebras and a particular parabolic category $\mathcal {O}$ for affine Kac-Moody algebras, Preprint, 1991.
- Alvany Rocha-Caridi and Nolan R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151–177. MR 661694, DOI 10.1007/BF01318901
- Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209–223. MR 1128706, DOI 10.1007/BF02571521
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory (1997).
- Alexander A. Voronov, Semi-infinite homological algebra, Invent. Math. 113 (1993), no. 1, 103–146. MR 1223226, DOI 10.1007/BF01244304
Bibliographic Information
- Wolfgang Soergel
- Affiliation: Universität Freiburg, Mathematisches Institut, Eckerstrasse 1, D-79104 Freiburg, Germany
- Email: soergel@mathematik.uni-freiburg.de
- Received by editor(s): January 24, 1997
- Received by editor(s) in revised form: March 3, 1997
- Published electronically: May 9, 1997
- © Copyright 1997 By the author
- Journal: Represent. Theory 1 (1997), 115-132
- MSC (1991): Primary 17B70, 17B67, 17B37
- DOI: https://doi.org/10.1090/S1088-4165-97-00017-4
- MathSciNet review: 1445716