The adjoint representation in rings of functions
HTML articles powered by AMS MathViewer
- by Eric Sommers and Peter Trapa PDF
- Represent. Theory 1 (1997), 182-189 Request permission
Abstract:
Let $G$ be a connected, simple Lie group of rank $n$ defined over the complex numbers. To a parabolic subgroup $P$ in $G$ of semisimple rank $r$, one can associate $n-r$ positive integers coming from the theory of hyperplane arrangements (see P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189; Coxeter arrangements, in Proc. of Symposia in Pure Math., Vol. 40 (1983) Part 2, 269-291). In the case $r=0$, these numbers are just the usual exponents of the Weyl group $W$ of $G$. These $n-r$ numbers are called coexponents. Spaltenstein and Lehrer-Shoji have proven the observation of Spaltenstein that the degrees in which the reflection representation of $W$ occurs in a Springer representation associated to $P$ are exactly (twice) the coexponents (see N. Spaltenstein, On the reflection representation in Springer’s theory, Comment. Math. Helv. 66 (1991), 618-636 and G. I. Lehrer and T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. (Series A) 49 (1990), 449-485). On the other hand, Kostant has shown that the degrees in which the adjoint representation of $G$ occurs in the regular functions on the variety of regular nilpotents in $\mathfrak {g}:=\operatorname {Lie}(G)$ are the usual exponents (see B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404). In this paper, we extend Kostant’s result to Richardson orbits (or orbit covers) and we get a statement which is dual to Spaltenstein’s. We will show that the degrees in which the adjoint representation of $G$ occurs in the regular functions on an orbit cover of a Richardson orbit associated to $P$ are also the coexponents.References
- Dean Alvis and George Lusztig, On Springer’s correspondence for simple groups of type $E_{n}$ $(n=6,\,7,\,8)$, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 1, 65–78. With an appendix by N. Spaltenstein. MR 662961, DOI 10.1017/S0305004100059703
- Walter Borho and Hanspeter Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), no. 1, 61–104 (German, with English summary). MR 522032, DOI 10.1007/BF02566256
- Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1–19. MR 1327529, DOI 10.1007/978-1-4612-0261-5_{1}
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI 10.1007/BF01403182
- Wim H. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), no. 3, 217–234. MR 480765, DOI 10.1007/BF01237035
- Wim H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), no. 3, 179–182. MR 593631, DOI 10.1007/BF01420081
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Hanspeter Kraft and Claudio Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227–247. MR 549399, DOI 10.1007/BF01389764
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- G. I. Lehrer and T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A 49 (1990), no. 3, 449–485. MR 1074514, DOI 10.1017/S1446788700032444
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- William M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), no. 1, 209–217. MR 999319, DOI 10.1007/BF01850661
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Peter Orlik and Louis Solomon, Coxeter arrangements, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 269–291. MR 713255, DOI 10.1090/pspum/040.2/713255
- E. Sommers, A family of affine Weyl group representations, submitted to Transformation Groups.
- N. Spaltenstein, On the reflection representation in Springer’s theory, Comment. Math. Helv. 66 (1991), no. 4, 618–636. MR 1129801, DOI 10.1007/BF02566669
Additional Information
- Eric Sommers
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: esommers@math.mit.edu
- Peter Trapa
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: ptrapa@math.mit.edu
- Received by editor(s): April 28, 1997
- Received by editor(s) in revised form: May 31, 1997
- Published electronically: July 10, 1997
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 1997 American Mathematical Society
- Journal: Represent. Theory 1 (1997), 182-189
- MSC (1991): Primary 22E46, 05E99
- DOI: https://doi.org/10.1090/S1088-4165-97-00029-0
- MathSciNet review: 1457243