Nilpotent orbits and theta-stable parabolic subalgebras
HTML articles powered by AMS MathViewer
- by Alfred G. Noël PDF
- Represent. Theory 2 (1998), 1-32 Request permission
Abstract:
In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra ${\mathfrak {g}}$ under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on ${\mathfrak {p}}_{{}_{\mathbb {C}}}$, the “complex symmetric space associated with ${\mathfrak {g}}$”. The Kostant-Sekiguchi correspondence, a bijection between nilpotent orbits in ${\mathfrak {g}}$ and nilpotent orbits in ${\mathfrak {p}}_{{}_{\mathbb {C}}}$, is also used. We identify a fundamental set of noticed nilpotents in ${\mathfrak {p}}_{{}_{\mathbb {C}}}$ and show that they allow us to recover all other nilpotents. Finally, we study the behaviour of a principal orbit, that is an orbit of maximal dimension, under our classification. This is not done in the other classification schemes currently available in the literature.References
- P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 417306, DOI 10.1017/S0305004100052403
- P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 417306, DOI 10.1017/S0305004100052403
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- N. Burgoyne and R. Cushman, Conjugacy classes in linear groups, J. Algebra 44 (1977), no. 2, 339–362. MR 432778, DOI 10.1016/0021-8693(77)90186-7
- William C. Brown, A second course in linear algebra, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988. MR 929820
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Dragomir Ž. Đoković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), no. 2, 503–524. MR 926619, DOI 10.1016/0021-8693(88)90104-4
- Dragomir Ž. Đoković, Classification of nilpotent elements in simple real Lie algebras $E_{6(6)}$ and $E_{6(-26)}$ and description of their centralizers, J. Algebra 116 (1988), no. 1, 196–207. MR 944155, DOI 10.1016/0021-8693(88)90201-3
- Dragomir Ž. Djoković, Closures of conjugacy classes in classical real linear Lie groups, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980) Lecture Notes in Math., vol. 848, Springer, Berlin, 1981, pp. 63–83. MR 613177, DOI 10.1007/BFb0090557
- E. Dynkin, Semisimple subalgebras of simple Lie algebras, Amer. Soc. Transl. Ser. 2 6, (1957), 111-245.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562, DOI 10.1007/978-1-4612-6398-2
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654, DOI 10.1007/978-1-4612-6101-8
- D. S. Johnston and R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups. II, Bull. London Math. Soc. 9 (1977), no. 3, 245–250. MR 480766, DOI 10.1112/blms/9.3.245
- Noriaki Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 573–597. MR 927602
- Donald R. King, The component groups of nilpotents in exceptional simple real Lie algebras, Comm. Algebra 20 (1992), no. 1, 219–284. MR 1145333, DOI 10.1080/00927879208824339
- A. W. Knapp, Lie groups beyond an introduction, vol. 140, Birkhäuser, Progress in Mathematics, Boston, 1996.
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- A. G. Noël, Classification of nilpotent orbits in symmetric spaces, Proceedings of the DIMACS workshop for African-American Researchers in the Mathematical Sciences, Amer. Math. Soc. 34 (1997).
- A. G. Noël, Nilpotent orbits and $\theta$-stable parabolic subalgebras, Ph.D. Thesis, Northeastern University, Boston (March 1997).
- R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1–15. MR 217079, DOI 10.2307/1970359
- R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1–28. MR 651417, DOI 10.1017/S0004972700005013
- R. W. Richardson, Finiteness theorems for orbits of algebraic groups, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 3, 337–344. MR 814886, DOI 10.1016/1385-7258(85)90045-9
- Gerhard Röhrle, On certain stabilizers in algebraic groups, Comm. Algebra 21 (1993), no. 5, 1631–1644. MR 1213978, DOI 10.1080/00927879308824642
- L. Preiss Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168 (1972), 403–421. MR 349778, DOI 10.1090/S0002-9947-1972-0349778-3
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Michèle Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 901–906 (French, with English and French summaries). MR 1328708
- E. B. Vinberg, On the classification of the nilpotent elements of graded Lie algebras, Soviet Math. Dokl. 16 (1975), 1517-1520.
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
Additional Information
- Alfred G. Noël
- Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts, 02115; Peritus Software Services Inc. 304 Concord Road, Billerica, Massachusetts 01821
- Email: anoel@lynx.neu.edu, anoel@peritus.com
- Received by editor(s): August 11, 1997
- Received by editor(s) in revised form: December 3, 1997
- Published electronically: February 3, 1998
- Additional Notes: The author thanks his advisor, Donald R. King, for his helpful suggestions.
- © Copyright 1998 American Mathematical Society
- Journal: Represent. Theory 2 (1998), 1-32
- MSC (1991): Primary 17B20, 17B70
- DOI: https://doi.org/10.1090/S1088-4165-98-00038-7
- MathSciNet review: 1600330